首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Contribution of bone turnover to the hypercatabolic state observed in sickle cell anemia is unknown. We examined the association between markers of bone turnover and basal rates of whole body protein turnover and energy expenditure in 28 adolescents with homozygous sickle cell anemia (HbSS) and in 26 matched controls with normal phenotype (HbAA). Whole body protein breakdown and synthesis were measured using a stable isotope of [15N]glycine, resting energy expenditure was measured by whole room indirect calorimetry, and the rate of pyridinoline cross-link (PYD) excretion in urine and fasting serum levels of the type I procollagen carboxy-terminal propeptide (PICP) were measured with commercial kits. Urinary PYD and serum PICP were significantly elevated in HbSS patients. The increase in procollagen synthesis, indicated by high levels of PICP, was significantly correlated with increased whole body protein synthesis. The increase in type I collagen degradation, indicated by high PYD excretion, was significantly correlated with increased protein breakdown. We conclude that increased rates of bone turnover contribute to the increased rates of protein turnover and energy expenditure observed in adolescents with homozygous sickle cell anemia.  相似文献   

2.
3.
4.
Collagen defects in lethal perinatal osteogenesis imperfecta.   总被引:15,自引:3,他引:12       下载免费PDF全文
Quantitative and qualitative abnormalities of collagen were observed in tissues and fibroblast cultures from 17 consecutive cases of lethal perinatal osteogenesis imperfecta (OI). The content of type I collagen was reduced in OI dermis and bone and the content of type III collagen was also reduced in the dermis. Normal bone contained 99.3% type I and 0.7% type V collagen whereas OI bone contained a lower proportion of type I, a greater proportion of type V and a significant amount of type III collagen. The type III and V collagens appeared to be structurally normal. In contrast, abnormal type I collagen chains, which migrated slowly on electrophoresis, were observed in all babies with OI. Cultured fibroblasts from five babies produced a mixture of normal and abnormal type I collagens; the abnormal collagen was not secreted in two cases and was slowly secreted in the others. Fibroblasts from 12 babies produced only abnormal type I collagens and they were also secreted slowly. The slower electrophoretic migration of the abnormal chains was due to enzymic overmodification of the lysine residues. The distribution of the cyanogen bromide peptides containing the overmodified residues was used to localize the underlying structural abnormalities to three regions of the type I procollagen chains. These regions included the carboxy-propeptide of the pro alpha 1(I)-chain, the helical alpha 1(I) CB7 peptide and the helical alpha 1(I) CB8 and CB3 peptides. In one baby a basic charge mutation was observed in the alpha 1(I) CB7 peptide and in another baby a basic charge mutation was observed in the alpha 1(I) CB8 peptide. The primary defects in lethal perinatal OI appear to reside in the type I collagen chains. Type III and V collagens did not appear to compensate for the deficiency of type I collagen in the tissues.  相似文献   

5.
Monoclonal antibodies that recognize an epitope within the triple helix of type III collagen have been used to examine the distribution of that collagen type in human skin, cornea, amnion, aorta, and tendon. Ultrastructural examination of those tissues indicates antibody binding to collagen fibrils in skin, amnion, aorta, and tendon regardless of the diameter of the fibril. The antibody distribution is unchanged with donor age, site of biopsy, or region of tissue examined. In contrast, antibody applied to adult human cornea localizes to isolated fibrils, which appear randomly throughout the matrix. These studies indicate that type III collagen remains associated with collagen fibrils after removal of the amino and carboxyl propeptides, and suggests that fibrils of skin, tendon, and amnion (and presumably many other tissues that contain both types I and III collagens) are copolymers of at least types I and III collagens.  相似文献   

6.
Full-thickness, dermal wounds were surgically created on the dorsa of fetal rats on the 17th day of gestation. The granulation tissue which developed after 2 days (19 days of gestation) was harvested from six to nine animals and pooled and the collagen was extracted with 0.5 M acetic acid and acetic acid plus pepsin. The ratio of type III:type I collagen was estimated from densitometer scans of electrophoretically separated alpha-chains. Full-thickness (to fascia depth) wounds were also produced on the dorsa of adult rats and granulation tissue which had developed for different periods of time up to 30 days was excised. Relative proportions of type III and type I collagen were assessed in normal and granulation tissues taken from the adult rats. Both fetal and adult granulation tissues have elevated type III collagen content but normal fetal tissue has a much higher content of type III than does normal adult tissue.  相似文献   

7.
Collagen fibrillogenesis in vitro: comparison of types I, II, and III   总被引:4,自引:0,他引:4  
The self-assembly of pepsin-extracted types I, II, and III collagen was studied to determine how differences in the triple-helical structure between collagen types influence in vitro collagen fibrillogenesis. Collagen types I, II, and III were extracted and purified from bovine sources, and were studied in solution by laser light scattering, pH titration, and determination of turbidity-time curves. The molecular weights were between 280,000 and 289,000, while the translational diffusion coefficients and particle scattering factors at 175.5 degrees were consistent with those expected for single collagen molecules. Titration of collagen types I, II, and III between pH 7.0 and 2.0 using HCl indicated that type I collagen had the most titratable carboxylic groups with type II and III having significantly fewer titratable groups. The self-assembly of these collagens was studied in vitro in phosphate-buffered saline. The time course and extent of fibril formation were studied turbidimetrically, and were found to be dependent on collagen type. Apparent rate constants were determined for both the lag and growth phases of fibril formation. The rates of both phases were greater for type III than for type I collagen, with the rates for type II collagen being intermediate. The extent of fibril formation was based on the turbidity per unit concentration (specific turbidity) extrapolated to zero concentration (intrinsic turbidity), which was found to be greater for type I than for type III collagen. Type II collagen had the smallest intrinsic turbidity. The specific and intrinsic turbidity values were consistent with the relative fibril diameters seen in dermis and cartilage by transmission electron microscopy. These observations indicate that helix-helix interactions are important in the regulation of the rate and extent of collagen fibrillogenesis and may be involved in the determination of fibril structure.  相似文献   

8.
Summary The distribution of collagen types I, III, IV, and of fibronectin has been studied in the human dermis by light and electron-microscopic immunocytochemistry, using affinity purified primary antibodies and tetramethylrhodamine isothiocyanate-conjugated secondary antibodies. Type I collagen was present in all collagen fibers of both papillary and reticular dermis, but collagen fibrils, which could be resolved as discrete entities, were labeled with different intensity. Type III collagen codistributed with type I in the collagen fibers, besides being concentrated around blood vessels and skin appendages. Coexistence of type I and type III collagens in the collagen fibrils of the whole dermis was confirmed by ultrastructural double-labelling experiments using colloidal immunogold as a probe. Type IV collagen was detected in all basement membranes. Fibronectin was distributed in patches among collagen fibers and was associated with all basement membranes, while a weaker positive reaction was observed in collagen fibers. Ageing caused the thinning of collagen fibers, chiefly in the recticular dermis. The labeling pattern of both type I and III collagens did not change in skin samples from patients of up to 79 years of age, but immunoreactivity for type III collagen increased in comparison to younger skins. A loss of fibronectin, likely related to the decreased morphogenetic activity of tissues, was observed with age.  相似文献   

9.
Keloid is a dermal fibrotic disease characterized by excessive accumulation of mainly type I collagen in extracellular matrix of the dermis. We have studied the expression levels of collagen types I and III, and its molecular chaperone HSP47 in keloid lesions and surrounding unaffected skin using Northern and Western blotting and immunohistochemical analyses. Collagen types I and III mRNA levels were found to be upregulated 20-fold in keloid tissues, contradicting previous reports of nearly normal type III collagen levels in this disease. HSP47 expression in keloid lesions was also highly upregulated; eightfold at mRNA level and more than 16-fold at the protein level. Strong upregulation of these three proteins in keloid was confirmed by immunohistochemical staining. These results suggest that accumulation of both type I and type III collagen is important for the development of keloid lesions, and that HSP47 plays a role in the rapid and extensive synthesis of collagen in keloid tissues.  相似文献   

10.
Molecular sieve column chromatography was used to determine the amount of type I and III collagen synthesized by normal dermis and keloid biopsies and fibroblasts derived from these tissues. After incubation with radioactive proline, the collagen was extracted and separated into types I and III and then quantitated. There was no significant difference in the percent type III collagen synthesized by fresh keloid biopsies compared to normal dermis. Likewise, there was no significant difference in the percent type III collagen synthesized by keloid fibroblasts compared to normal dermal fibroblasts. However, fibroblasts from both keloid and normal dermis synthesized a lower percentage of type III collagen in cell culture compared to the original biopsies. These findings demonstrate that keloid collagen has the same type distribution as normal dermis and suggest that increased collagen synthesis in these lesions is not related to altered collagen types.  相似文献   

11.
Molecular sieve column chromatography was used to determine the amount of type I and III collagen synthesized by normal dermis and keloid biopsies and fibroblasts derived from these tissues. After incubation with radioactive proline, the collagen was extracted and separated into types I and III and then quantitated. There was no significant difference in the percent type III collagen synthesized by fresh keloid biopsies compared to normal dermis. Likewise, there was no significant difference in the percent type III collagen synthesized by keloid fibroblasts compared to normal dermal fibroblasts, However, fibroblasts from both keloid and normal dermis synthesized a lower percentage of type III collagen in cell culture compared to the original biopsies. These findings demonstrate that keloid collagen has the same type distribution as normal dermis and suggest that increased collagen synthesis in these lesions is not related to altered collagen types.  相似文献   

12.
In contrast with smooth-muscle cells from the same tissue, endothelial cells from pig aorta were found to exhibit in culture considerable variability in the pattern of collagen synthesis between one isolation of cells and the next. Synthesis varied from largely collagen type I to virtually all type III in the absence of type I but with small amounts still of collagens types IV and V, to, in one instance, synthesis basically of only type V. Synthesis usually by these cells of collagen predominantly of the interstitial type (I and III) rather than, as might be expected, that from basement membrane (type IV) was not attributable to the influence of subculture. All four collagen types were deposited in the cell layer to an increased extent in primary compared with secondary cultures of either smooth muscle or endothelial origin. Endothelial cells appeared sometimes to synthesize a large-Mr collagenous entity that might conceivably be related to 'short-chain' collagen. In addition, small-Mr hydroxyproline-containing peptides were detected that might reflect rapid collagen(s) turnover in endothelial cultures.  相似文献   

13.
Despite the fact that type III collagen is the second most abundant collagen type in the body, its contribution to the physiologic maintenance and repair of skeletal tissues remains poorly understood. This study queried the role of type III collagen in the structure and biomechanical functions of two structurally distinctive tissues in the knee joint, type II collagen-rich articular cartilage and type I collagen-dominated meniscus. Integrating outcomes from atomic force microscopy-based nanomechanical tests, collagen fibril nanostructural analysis, collagen cross-link analysis and histology, we elucidated the impact of type III collagen haplodeficiency on the morphology, nanostructure and biomechanical properties of articular cartilage and meniscus in Col3a1+/− mice. Reduction of type III collagen leads to increased heterogeneity and mean thickness of collagen fibril diameter, as well as reduced modulus in both tissues, and these effects became more pronounced with skeletal maturation. These data suggest a crucial role of type III collagen in mediating fibril assembly and biomechanical functions of both articular cartilage and meniscus during post-natal growth. In articular cartilage, type III collagen has a marked contribution to the micromechanics of the pericellular matrix, indicating a potential role in mediating the early stage of type II collagen fibrillogenesis and chondrocyte mechanotransduction. In both tissues, reduction of type III collagen leads to decrease in tissue modulus despite the increase in collagen cross-linking. This suggests that the disruption of matrix structure due to type III collagen deficiency outweighs the stiffening of collagen fibrils by increased cross-linking, leading to a net negative impact on tissue modulus. Collectively, this study is the first to highlight the crucial structural role of type III collagen in both articular cartilage and meniscus extracellular matrices. We expect these results to expand our understanding of type III collagen across various tissue types, and to uncover critical molecular components of the microniche for regenerative strategies targeting articular cartilage and meniscus repair.  相似文献   

14.
Collagens of either soft connective or mineralized tissues are subject to continuous remodeling and turnover. Undesired cleavage can be the result of an imbalance between proteases and their inhibitors. Owing to their superhelical structure, collagens are resistant to many proteases and matrix metalloproteinases (MMPs) are required to initiate further degradation by other enzymes. Several MMPs are known to degrade collagens, but the action of MMP-12 has not yet been studied in detail. In this work, the potential of MMP-12 in recognizing sites in human skin collagen types I and III has been investigated. The catalytic domain of MMP-12 binds to the triple helix and cleaves the typical sites -Gly775-Leu776- in α-2 type I collagen and -Gly775-Ile776- in α-1 type I and type III collagens and at multiple other sites in both collagen types. Moreover, it was observed that the region around these typical sites contains comparatively less prolines, of which some have been proven to be only partially hydroxylated. This is of relevance since partial hydroxylation in the vicinity of a potential scissile bond may have a local effect on the conformational thermodynamics with probable consequences on the collagenolysis process. Taken together, the results of the present work confirm that the catalytic domain of MMP-12 alone binds and degrades collagens I and III.  相似文献   

15.
The mechanical properties of ligaments are key contributors to the stability and function of musculoskeletal joints. Ligaments are generally composed of ground substance, collagen (mainly type I and III collagen), and minimal elastin fibers. However, no consensus has been reached about whether the distribution of different types of collagen correlates with the mechanical behaviors of ligaments. The main objective of this study was to determine whether the collagen type distribution is correlated with the mechanical properties of ligaments. Using axial tensile tests and picrosirius red staining-polarization observations, the mechanical behaviors and the ratios of the various types of collagen were investigated for twenty-four rabbit medial collateral ligaments from twenty-four rabbits of different ages, respectively. One-way analysis of variance was used in the comparison of the Young''s modulus in the linear region of the stress-strain curves and the ratios of type I and III collagen for the specimens (the mid-substance specimens of the ligaments) with different ages. A multiple linear regression was performed using the collagen contents (the ratios of type I and III collagen) and the Young''s modulus of the specimens. During the maturation of the ligaments, the type I collagen content increased, and the type III collagen content decreased. A significant and strong correlation () was identified by multiple linear regression between the collagen contents (i.e., the ratios of type I and type III collagen) and the mechanical properties of the specimens. The collagen content of ligaments might provide a new perspective for evaluating the linear modulus of global stress-strain curves for ligaments and open a new door for studying the mechanical behaviors and functions of connective tissues.  相似文献   

16.
17.
Fibril-forming collagens in lamprey   总被引:1,自引:0,他引:1  
Five types of collagen with triple-helical regions approximately 300 nm in length were found in lamprey tissues which show characteristic D-periodic collagen fibrils. These collagens are members of the fibril forming family of this primitive vertebrate. Lamprey collagens were characterized with respect to solubility, mobility on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, carboxylmethyl-cellulose chromatography, peptide digestion patterns, composition, susceptibility to vertebrate collagenase, thermal stability, and segment long spacing-banding pattern. Comparison with fibril-forming collagens in higher vertebrates (types I, II, III, V, and XI) identified three lamprey collagens as types II, V, and XI. Both lamprey dermis and major body wall collagens had properties similar to type I but not the typical heterotrimer composition. Dermis molecules had only alpha 1(I)-like chains, while body wall molecules had alpha 2(I)-like chains combined with chains resembling lamprey type II. Neither collagen exhibited the interchain disulfide linkages or solubility properties of type III. The conservation of fibril organization in type II/type XI tissues in contrast to the major developments in type I and type III tissues after the divergence of lamprey and higher vertebrates is consistent with these results. The presence of type II and type I-like molecules as major collagens and types V and XI as minor collagens in the lamprey, and the differential susceptibility of these molecules to vertebrate collagenase is analogous to the findings in higher vertebrates.  相似文献   

18.
Human skin collagenase activity was examined against type III collagens, in both soluble and fibrillar form, from different animal species. In either form, human, dog, and cat type III were degraded 10- to 30-fold faster than was that from guinea pig and nearly 100-fold more readily than chick type III. These differences in susceptibility were mirrored by essentially identical differences in the rate of trypsin cleavage of the same substrates. Human, dog, and cat type III were cleaved most rapidly by trypsin, guinea pig III more slowly, and chick III was completely resistant to the serine protease. Arrhenius plots, relating enzyme activity to temperature, revealed differences in the various type III substrates consistent with their collagenase and trypsin susceptibilities. Human, dog, and cat type III collagens yielded nonlinear plots, with accompanying activation energies which decreased at temperatures above 26 degrees C; guinea pig type III displayed a plot which deviated only slightly from linearity while the plot for chick type III was completely linear. These data strongly suggest that type III collagens display substantial variability in the stability of the helix at or near the collagenase cleavage site. The susceptibility of these type III substrates as reconstituted fibrils was also examined. The relative rates of degradation of these substrates by collagenase, and by trypsin, were the same as those observed in solution. The absolute rates of degradation of collagen in fibrillar form, however, were massively lower than predicted by extrapolation from solution values. This reduction in rate is even greater for type III than for type I collagens. Thus, whereas in solution type III substrates are cleaved much faster than type I collagens, in fibrillar form these differences are less than 2-fold. These data, together with values for activation energies and deuterium isotope effects on type III fibrillar substrates, reinforce the concept that helical integrity near the collagenase cleavage site is a major specifier of the rate of collagenase activity. Furthermore, the data suggest that the exclusion of water accompanying the tight packing of monomers into fibrils presents a major energy barrier to collagenase activity, which is particularly large for type III collagen.  相似文献   

19.
The molecular packing arrangement within collagen fibrils has a significant effect on the tensile properties of tissues. To date, most studies have focused on homotypic fibrils composed of type I collagen. This study investigates the packing of type I/III collagen molecules in heterotypic fibrils of colonic submucosa using a combination of X-ray diffraction data, molecular model building, and simulated X-ray diffraction fibre diagrams. A model comprising a 70-nm-diameter D- (approximately 65 nm) axial periodic structure containing type I and type III collagen chains was constructed from amino acid scattering factors organised in a liquid-like lateral packing arrangement simulated using a classical Lennard-Jones potential. The models that gave the most accurate correspondence with diffraction data revealed that the structure of the fibril involves liquid-like lateral packing combined with a constant helical inclination angle for molecules throughout the fibril. Combinations of type I:type III scattering factors in a ratio of 4:1 gave a reasonable correspondence with the meridional diffraction series. The attenuation of the meridional intensities may be explained by a blurring of the electron density profile of the D period caused by nonspecific or random interactions between collagen types I and III in the heterotypic fibril.  相似文献   

20.
Collagen gene expression during mouse molar tooth development was studied by quantitative in situ hybridization techniques. Different expression patterns of type I and type III collagen mRNAs were observed in the various mesenchymal tissues that constitute the tooth germ. High concentration for pro-alpha 1(I) and pro-alpha 2(I) collagen mRNAs were found within the osteoblasts. We found that the cellular content of type I collagen mRNAs in the odontoblasts varies throughout the tooth formation: whereas mRNA concentration for pro-alpha 1(I) collagen decreases and that of pro-alpha 2(I) increases, during postnatal development. Moreover, different amounts of pro-alpha 1(I) and pro-alpha 2(I) collagen mRNAs were observed in crown and root odontoblasts, respectively. Type III collagen mRNAs were detected in most of the mesenchymal cells, codistributed with type I collagen mRNAs, except in odontoblasts and osteoblasts. Finally, this study reports differential accumulation of collagen mRNAs during mouse tooth development and points out that type I collagen gene expression is regulated by distinct mechanisms during odontoblast differentiation process. These results support the independent expression of the collagen genes under developmental tissue-specific control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号