首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Thiol antioxidants are known to inhibit the nitric oxide-dependent induction of the hemoxygenase-1 gene (HOX-1). To estimate the degree to which the inhibitory effect of thiol antioxidants is accounted for by them scavenging oxidized NO derivatives or their precursors, the reactive oxygen and nitrogen species (ROS and RNS), we studied the inhibitory effect of nonthiol antioxidants: dimethyl sulfoxide, dimethylthiourea, sodium salicylate, sodium formate, uric acid, catalase, and superoxide dismutase. Partial inhibition of NO-dependent HOX-1 induction was observed in the presence of the nonpolar HO scavengers dimethyl sulfoxide and dimethylthiourea. The antioxidants which selectively bind other ROS had no effect on HOX-1 expression. To reveal the role of RNS in NO-dependent HOX-1 induction, cells were treated with the NO-generating compound DPTA-NO in the presence of 2-phenyl-4,4,5,5,-tetramethylimidazole-1-oxyl 3 oxide (PTIO), which oxidizes NO to NO2. PTIO proved to significantly enhance NO-dependent HOX-1 induction. Thiol antioxidants completely inhibited the stimulating effect of PTIO, which is evidence that their inhibitory effect is explained by RNS scavenging. The results of this study indicate that antioxidants can be used to modulate the cell response to NO.Translated from Molekulyarnaya Biologiya, Vol. 39, No. 1, 2005, pp. 89–95.Original Russian Text Copyright © 2005 by Litvinov, Prasolov, Bouton, Drapier, Turpaev.  相似文献   

2.
3.
4.
Sulindac is a sulfoxide prodrug that, in vivo, is converted to the metabolites sulindac sulfide and sulindac sulfone. It is therapeutically used as an anti-inflammatory and analgesic in the symptomatic treatment of acute and chronic rheumatoid arthritis, osteoarthritis, and ankylosing spondylitis. In addition to its anti-inflammatory properties, sulindac and its metabolites have been shown to have an important role in the prevention of colonic carcinogenesis. Although the inhibition of prostaglandin synthesis constitutes the primary mechanism of action of sulindac, it is well known that reactive oxygen species (ROS) and reactive nitrogen species (RNS) are implicated in the pathophysiology of inflammation and cancer. Thus, the aim of this study was to evaluate the scavenging activity of sulindac and its sulfone and sulfide metabolites for an array of ROS (HO*, O2(*-), and HOCl) and RNS (*NO and ONOO-) using in vitro systems. The results we obtained demonstrate that the metabolism of sulindac increases its scavenging activity for all RNS and ROS studied, notably with regard to the scavenging of HOCl. These effects may strongly contribute to the anti-inflammatory and anticarcinogenic efficacy that has been shown for sulindac.  相似文献   

5.
6.
7.
The effect of reactive oxygen/nitrogen species (ROS/RNS)(hydrogen peroxide -- H(2)O(2), superoxide anion radical O(2)*- and hydroxyl radical *OH -- the reaction products of hypoxanthine/xanthine oxidase system), nitric oxide (NO* from sodium nitroprusside -- SNP), and peroxynitrite (ONOO(-) from 3-morpholinosydnonimine -- SIN-1) on insulin mitogenic effect was studied in L6 muscle cells after one day pretreatment with/or without antioxidants. ROS/RNS inhibited insulin-induced mitogenicity (DNA synthesis). Insulin (0.1 microM), however, markedly improved mitogenicity in the muscle cells treated with increased concentrations (0.1, 0.5, 1 mM) of donors of H(2)O(2), O(2)*-, *OH, ONOO(-) and NO*. Cell viability assessed by morphological criteria was also monitored. Massive apoptosis was induced by 1 mM of donors of H(2)O(2) and ONOO(-), while NO* additionally induced necrotic cell death. Taken together, these results have shown that ROS/RNS provide a good explanation for the developing resistance to the growth promoting activity of insulin in myoblasts under conditions of oxidative or nitrosative stress. Cell viability showed that neither donor induced cell death when given below 0.5 mM. In order to confirm the deleterious effects of ROS/RNS prior to the subsequent treatment with ROS/RNS plus insulin one day pretreatment with selected antioxidants (sodium ascorbate - ASC (0.01, 0.1, 1 mM), or N-acetylcysteine - NAC (0.1, 1, 10 mM) was carried out. Surprisingly, at a low dose (micromolar) antioxidants did not abrogate and even worsened the concentration-dependent effects of ROS/RNS. In contrast, pretreatment with millimolar dose of ASC or NAC maintained an elevated mitogenicity in response to insulin irrespective of the ROS/RNS donor type used.  相似文献   

8.
9.
We evaluated the involvement of nitric oxide (NO) in salicylic acid (SA)-induced accumulation of ginsenoside in adventitious roots of Panax ginseng and its mediation by reactive oxygen species (ROS). Related effects of SA on components of the antioxidant system were also sought. Adventitious roots of P. ginseng were grown in suspension culture for 3 weeks in MS medium and treated over 5 days with SA (100 μM) alone, SA in combination with the NO scavenger 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (PTIO), or PTIO alone. Nitric oxide, the superoxide anion (O2·−), H2O2, nitrite, nonprotein thiol, and ascorbate were monitored together with ginsenoside, NADPH oxidase activity, and several antioxidant enzymes. Salicylic acid did not inhibit root growth but induced accumulation of ginsenoside, lipid peroxidation, and generation of NO and O2·−. It also enhanced activities of NADPH oxidase, superoxide dismutase, catalase, and peroxidase, including ascorbate peroxidase. These effects were suppressed by PTIO. Salicylic acid also decreased glutathione reductase activity. Inclusion of PTIO with SA decreased the activity of glutathione reductase further. Treatment with SA plus PTIO also decreased nonprotein thiol and ascorbate contents but caused nitrite to overaccumulate. Salicylic acid applied to adventitious roots in culture induced accumulation of ginsenoside in an NO-dependent manner that was mediated by the associated increases in O2·−, which gave other antioxidant responses that were dependent on NO.  相似文献   

10.
Background Peroxisomes are highly dynamic, metabolically active organelles that used to be regarded as a sink for H2O2 generated in different organelles. However, peroxisomes are now considered to have a more complex function, containing different metabolic pathways, and they are an important source of reactive oxygen species (ROS), nitric oxide (NO) and reactive nitrogen species (RNS). Over-accumulation of ROS and RNS can give rise oxidative and nitrosative stress, but when produced at low concentrations they can act as signalling molecules.Scope This review focuses on the production of ROS and RNS in peroxisomes and their regulation by antioxidants. ROS production is associated with metabolic pathways such as photorespiration and fatty acid β-oxidation, and disturbances in any of these processes can be perceived by the cell as an alarm that triggers defence responses. Genetic and pharmacological studies have shown that photorespiratory H2O2 can affect nuclear gene expression, regulating the response to pathogen infection and light intensity. Proteomic studies have shown that peroxisomal proteins are targets for oxidative modification, S-nitrosylation and nitration and have highlighted the importance of these modifications in regulating peroxisomal metabolism and signalling networks. The morphology, size, number and speed of movement of peroxisomes can also change in response to oxidative stress, meaning that an ROS/redox receptor is required. Information available on the production and detection of NO/RNS in peroxisomes is more limited. Peroxisomal homeostasis is critical for maintaining the cellular redox balance and is regulated by ROS, peroxisomal proteases and autophagic processes.Conclusions Peroxisomes play a key role in many aspects of plant development and acclimation to stress conditions. These organelles can sense ROS/redox changes in the cell and thus trigger rapid and specific responses to environmental cues involving changes in peroxisomal dynamics as well as ROS- and NO-dependent signalling networks, although the mechanisms involved have not yet been established. Peroxisomes can therefore be regarded as a highly important decision-making platform in the cell, where ROS and RNS play a determining role.  相似文献   

11.
Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are generated throughout the human body. Enzymatic and nonenzymatic antioxidants detoxify ROS and RNS and minimize damage to biomolecules. An imbalance between the production of ROS and RNS and antioxidant capacity leads to a state of "oxidative stress" that contributes to the pathogenesis of a number of human diseases by damaging lipids, protein, and DNA. In general, lung diseases are related to inflammatory processes that generate increased ROS and RNS. The susceptibility of the lung to oxidative injury depends largely on its ability to upregulate protective ROS and RNS scavenging systems. Unfortunately, the primary intracellular antioxidants are expressed at low levels in the human lung and are not acutely induced when exposed to oxidative stresses such as cigarette smoke and hyperoxia. However, the response of extracellular antioxidant enzymes, the critical primary defense against exogenous oxidative stress, increases rapidly and in proportion to oxidative stress. In this paper, we review how antioxidants in the lung respond to oxidative stress in several lung diseases and focus on the mechanisms that upregulate extracellular glutathione peroxidase.  相似文献   

12.
Turpaev K  Bouton C  Drapier JC 《Biochemistry》2004,43(33):10844-10850
In living cells, NO signaling is mediated by NO-derived metabolites and is therefore dependent on the rate of formation of these so-called reactive nitrogen intermediates (RNIs). We have examined the effects of NO-oxidizing agents, the nitronyl nitroxide PTIO and its less hydrophobic analogue carboxy-PTIO (CPTIO), on the expression of NO-sensitive genes in monocytic U937 and Mono Mac 6 cells. We have observed that pretreatment of cells with PTIO boosted expression of IL-8 and heme oxygenase 1 (HOX) genes to a high level in cells treated with the NO donor DPTA-NO. In contrast, pretreatment of cells with CPTIO significantly inhibited NO-dependent expression of IL-8 and hardly stimulated HOX gene expression by DPTA-NO. The effect of PTIO was abrogated by reduced glutathione, suggesting that upregulation of the IL-8 and HOX genes is dependent on RNI-mediated S-nitrosation of specific regulator(s). The concentration of PTIO required to enhance mRNA level was different for IL-8 and HOX genes. Analysis of 4,5-diaminofluorescein (DAF) nitrosation in the presence of PTIO and DPTA-NO showed that optimal PTIO concentrations required for maximal N(2)O(3) synthesis and for highest IL-8 gene expression are similar. Furthermore, we have shown that, besides IL-8 and HOX, PTIO superactivates NO-dependent expression of TNF-alpha and p21/WAF1 genes. In contrast, the level of MIP-1alpha, c-jun, and c-fos genes was not changed by the presence of PTIO in U937 cells and was even reduced in Mono Mac 6 cells.  相似文献   

13.
Nitric oxide (NO) acts in a concentration and redox-dependent manner to counteract oxidative stress either by directly acting as an antioxidant through scavenging reactive oxygen species (ROS), such as superoxide anions (O2?*), to form peroxynitrite (ONOO?) or by acting as a signaling molecule, thereby altering gene expression. NO can interact with different metal centres in proteins, such as heme-iron, zinc–sulfur clusters, iron–sulfur clusters, and copper, resulting in the formation of a stable metal–nitrosyl complex or production of varied biochemical signals, which ultimately leads to modification of protein structure/function. The thiols (ferrous iron–thiol complex and nitrosothiols) are also involved in the metabolism and mobilization of NO. Thiols bind to NO and transport it to the site of action whereas nitrosothiols release NO after intercellular diffusion and uptake into the target cells. S-nitrosoglutathione (GSNO) also has the ability to transnitrosylate proteins. It is an NO˙ reservoir and a long-distance signaling molecule. Tyrosine nitration of proteins has been suggested as a biomarker of nitrosative stress as it can lead to either activation or inhibition of target proteins. The exact molecular mechanism(s) by which exogenous and endogenously generated NO (or reactive nitrogen species) modulate the induction of various genes affecting redox homeostasis, are being extensively investigated currently by various research groups. Present review provides an in-depth analysis of the mechanisms by which NO interacts with and modulates the activity of various ROS scavenging enzymes, particularly accompanying ROS generation in plants in response to varied abiotic stress.  相似文献   

14.
This study was undertaken to evaluate the scavenging activity for reactive oxygen species (ROS) and reactive nitrogen species (RNS) by several nonsteroidal anti-inflammatory drugs (NSAIDs), namely indole derivatives (indomethacin, acemetacin, etodolac), pyrrole derivatives (tolmetin and ketorolac), and an oxazole derivative (oxaprozin). The inhibition of prostaglandin synthesis constitutes the primary mechanism of the anti-inflammatory action of these drugs. Nevertheless, it has been suggested that the anti-inflammatory activity of NSAIDs may be also partly due to their ability to scavenge ROS and RNS and to inhibit the respiratory burst of neutrophils triggered by various activator agents. Thus, the scavenging activity of these NSAIDs was evaluated against an array of ROS (O(2)(-), HO, HOCl, and ROO) and RNS (NO and ONOO(-)) using noncellular in vitro systems. The results obtained demonstrated that tolmetin, ketorolac, and oxaprozin were not active against O(2)(-), while acemetacin, indomethacin, and etodolac exhibited concentration-dependent effects. Oxaprozin was also the least active scavenger for HO, among all the tested NSAIDs shown to be active. The scavenging effect for HOCl was not observed for any of the tested NSAIDs. The ROO was effectively scavenged by etodolac, with the other tested NSAIDs being much less active. NO and ONOO(-) were scavenged by all the tested NSAIDs. These effects may strongly contribute to the anti-inflammatory therapy benefits that may be attained with some of the studied NSAIDs.  相似文献   

15.
2-Styrylchromones are a small group of naturally occurring chromones, vinylogues of flavones (2-phenylchromones). Natural and synthetic 2-styrylchromones have been tested in different biological systems, showing activities with potential therapeutic applications. In particular, the potential and hitherto understudied antioxidant behavior of these compounds has been raised as a matter of interest. Thus the present work consisted in the study of the in vitro scavenging activities for reactive oxygen species (ROS) and reactive nitrogen species (RNS) of various 2-styrylchromone derivatives and structurally similar flavonoids. Some of the studied 2-styrylchromones proved to be extremely efficient scavengers of the different ROS and RNS, showing, in some cases, IC(50)s under 1 microM. The hydroxylation pattern of 2-styrylchromones, especially in the B-ring but also in the A ring, modulates the activity of these compounds, the catecholic derivatives being the most effective scavengers. The styryl pattern also contributes to their observed outstanding antioxidant activity. In conclusion, the scavenging activities for ROS/RNS of 2-styrylchromone derivatives, here shown for the first time, provide novel and most promising compounds to be applied as antioxidants.  相似文献   

16.
Fan S  Yu Y  Qi M  Sun Z  Li L  Yao G  Tashiro S  Onodera S  Ikejima T 《Free radical research》2012,46(9):1082-1092
Silibinin is an active constituent extracted from the blessed milk thistle (Silybum marianum). In a previous study, we demonstrated that silibinin treatment induced the generation of reactive nitrogen species (RNS), which were associated with reactive oxygen species (ROS), and caused apoptosis and autophagy in HeLa cells. Another study reported that silibinin treatment attenuated the apoptotic effect of sodium nitroprusside (SNP) by generating ROS in rat pheochromocytoma PC12 cells [ 1 ]. To clarify the relationship between RNS and nitric oxide (NO) in HeLa cells, we chose SNP as a NO donor to inhibit the cell viability. We found that silibinin treatment did not reduce the cytotoxicity of NO by reducing the ROS-induced RNS levels; conversely, silibinin treatment enhanced the cytotoxicity of NO. Pre-treatment with the NO scavenger PTIO preserved the viability of SNP- or silibinin-treated cells. Buthionine sulfoximine (BSO) treatment was also used to deplete the level of glutathione (GSH) and subsequently enhance the cytotoxicity of NO. Pre-treatment with BSO enhanced the SNP-induced reduction of cell viability but had no such effects in the silibinin-treated cells. These results led us to investigate whether silibinin treatment could induce the depletion of GSH. JNK and p53 have been shown to mediate the depletion of GSH [ 2 , 3 ], and we previously demonstrated the existence of a ROS-JNK-p53 cycle in silibinin-treated HeLa cells [ 4 ]. Thus, we speculated that p53 also plays a crucial role in the silibinin-induced GSH depletion. To elucidate the role of p53 in this process, A431 cells were used because they are naturally devoid of a functional p53 (p53His273 mutation). To our surprise, silibinin treatment did not lower the GSH level in A431 cells but rather elevated the GSH level. Unlike the ROS level, the NO level was still up-regulated by silibinin treatment in A431 cells. Cumulatively, these findings support the idea that the silibinin-induced GSH depletion, which is mediated by p53, enhances the cytotoxicity of NO in HeLa cells.  相似文献   

17.
18.
The present study investigated changes in the production of reactive oxygen species (ROS) and reactive nitrogen species (RNS) in isolated mesophyll protoplasts and cell cultures of the cucumber Cucumis sativus cv. Marketer. Although only a minor increase in the level of nitrogen oxide (NO) was observed during the first 7 days of culture following protoplast isolation, a substantial accumulation of ROS was detected. Compounds known to modulate endogenous ROS and RNS levels were employed to study their role in cucumber protoplast regeneration and growth. Supplementing the culture medium with the NO donors S-nitrosoglutathione and sodium nitroprusside and the ROS scavenger ascorbate significantly increased protoplast viability and cell density. In contrast, cell density was significantly decreased following the addition of catalase to the medium. Scavenging of ROS and RNS induced the formation of cucumber microcalli, thus suggesting a differential role of NO in the maintenance of cell viability and in the control of cell division. Our findings confirm the crucial role of controlled ROS and RNS production in both protoplast regeneration and cellular growth and differentiation.  相似文献   

19.
In this study, we found that production of both reactive oxygen (ROS) and nitrogen (RNS) species is a very early event related to treatment with hyperosmotic concentration of sorbitol. The production of nitric oxide (NO) was paralleled by the increase of the mRNA and protein level of the inducible form of the nitric oxide synthase (iNOS). ROS and RNS enhancement, process concomitant to the failure of mitochondrial trans-membrane potential (ΔΨ), was necessary for the induction of apoptosis as demonstrated by the protection against sorbitol-mediated toxicity observed after treatment with ROS scavengers or NOS inhibitors. The synergistic action of ROS and RNS was finally demonstrated by pre-treatment with rosmarinic acid that, by powerfully buffering both these species, prevents impairment of ΔΨ and cell death. Overall results suggest that the occurrence of apoptosis upon sorbitol treatment is an event mediated by oxidative/nitrosative stress rather than a canonical hyperosmotic shock.  相似文献   

20.
Muscle-derived ROS and thiol regulation in muscle fatigue.   总被引:2,自引:0,他引:2  
Muscles produce oxidants, including reactive oxygen species (ROS) and reactive nitrogen species (RNS), from a variety of intracellular sources. Oxidants are detectable in muscle at low levels during rest and at higher levels during contractions. RNS depress force production but do not appear to cause fatigue of healthy muscle. In contrast, muscle-derived ROS contribute to fatigue because loss of function can be delayed by ROS-specific antioxidants. Thiol regulation appears to be important in this biology. Fatigue causes oxidation of glutathione, a thiol antioxidant in muscle fibers, and is reversed by thiol-specific reducing agents. N-acetylcysteine (NAC), a drug that supports glutathione synthesis, has been shown to lessen oxidation of cellular constituents and delay muscle fatigue. In humans, NAC pretreatment improves performance of limb and respiratory muscles during fatigue protocols and extends time to task failure during volitional exercise. These findings highlight the importance of ROS and thiol chemistry in fatigue, show the feasibility of thiol-based countermeasures, and identify new directions for mechanistic and translational research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号