首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present experiments measured the release of acetylcholine (ACh) by the cat superior cervical ganglia in the presence of, and after exposure to, 2-(4-phenylpiperidino)cyclohexanol (AH5183), a compound known to block the uptake of ACh by cholinergic synaptic vesicles. We confirmed that AH5183 blocks evoked ACh release during preganglionic nerve stimulation when approximately 13-14% of the initial ganglial ACh stores had been released; periods of rest in the presence of the drug did not promote recovery from the block, but ACh release recovered following the washout of AH5183. ACh was synthesized in AH5183-treated ganglia, as determined by the synthesis of [3H]ACh from [3H]choline, and this [3H]ACh could be released by stimulation following drug washout. The specific activity of the released ACh matched that of the tissue's ACh, and thus we conclude that ACh synthesized in the presence of AH5183 is a releasable as pre-existing ACh stores once the drug is removed. We tested the relative releasability of ACh synthesized during AH5183 exposure (perfusion with [3H]choline) and that synthesized during recovery from the drug's effects (perfusion with [14C]choline: the ratio of [3H]ACh to [14C]ACh released by stimulation was similar to the ratio in the tissue. These results suggest that the mobilization of ACh for release by ganglia during recovery from an AH5183-induced block is independent of the conditions under which the ACh was synthesized. Unlike nerve impulses, black widow spider venom (BWSV) induced the release of ACh from AH5183-blocked ganglia, even in the drug's continued presence. Venom-induced release of ACh from AH5183-treated ganglia was not less than the venom-induced release from tissues not exposed to AH5183. This effect of BWSV was attributed to the action of the protein, alpha-latrotoxin, because an anti-alpha-latrotoxin antiserum blocked the venom's action. ACh synthesized during AH5183 exposure was labelled from [3H]choline, and subsequent treatment with BWSV released [3H]ACh with the same temporal pattern as the release of total ACh. To exclude a nonexocytotic origin for the [3H]ACh released by BWSV, ganglia were preloaded with [3H]diethylhomocholine to form [3H]acetyldiethylhomocholine, an ACh analogue excluded from vesicles; the venom did not increase the rate of [3H]acetyldiethylhomocholine efflux. It is concluded that a vesicular ACh pool insensitive to the inhibitory action of AH5183 might exist and that this vesicular pool is not mobilized by electrical stimulation to exocytose in the presence of AH5183, but it is by BWSV.  相似文献   

2.
The effects of gamma-aminobutyric acid (GABA) on the release of [3H]acetylcholine ([3H]ACh) were studied in synaptosomes prepared from rat hippocampus, cerebral cortex, hypothalamus, and striatum and prelabelled with [3H]choline. When synaptosomes were exposed in superfusion to exogenous GABA (0.01-0.3 mM) the basal release of newly synthesized [3H]ACh was increased in a concentration-dependent way in hippocampus, cortex, and hypothalamus nerve endings. In contrast, the release of [3H]ACh was not significantly affected by GABA in striatal synaptosomes. The effect of GABA was not antagonized significantly by bicuculline or picrotoxin. Muscimol caused only a slight not significant increase of [3H]ACh release when tested at 0.3 mM whereas, at this concentration, (-)-baclofen was totally inactive. The GABA-induced release of [3H]ACh was counteracted by SKF 89976A, SKF 100561, and SKF 100330A, three strong and selective GABA uptake inhibitors. The data suggest that, in selective areas of the rat brain, GABA causes release of [3H]ACh following penetration into cholinergic nerve terminals through a GABA transport system.  相似文献   

3.
The spontaneous release of acetylcholine (ACh) from the guinea-pig myenteric plexus - longitudinal muscle preparation superfused at a constant rate in the presence of physostigmine was 10 nmol-g-1-h-1. This release was decreased to one-third by tetradotoxin or by MnCl2 and increased 2.5 times by 0.1 Hz and 20 times by 16 Hz stimulation. The formation of [3H]ACh from [3H]choline increased from 3 to 33 nmol-g(-1)-h(-1) when the concentration of [3H]choline was increased from 1 muM to 50 muM. The rate of [3H]ACh formation was not affected by tetrodotoxin, MnCl2, or physostigmine in the absence of stimulation. It was increased by 50% by 0.1 Hz and by 100% by 16 Hz stimulation during the first 9 min of exposure to [3H]choline but not subsequently. The myenteric plexus - longitudinal muscle preparation contains 200 nmol/g choline. Results suggest that the apparent small [3H]ACh formation from low concentrations of [3H]choline is due to the dilution of [3H]choline by endogenous choline. The major part of [3H]ACh formation appears to be due to the intracellular turnover of ACh while the evoked release of [3H]ACh appears to originate from a small pool.  相似文献   

4.
The relationships between presynaptic acetylcholinesterase (AChE) and high-affinity choline uptake (HACU) were investigated using a monolayer of rat cortex synaptosomes in superfusion conditions. The following sets of experiments were performed: determination of [3H]choline ([3H]Ch) uptake during superfusion with [3H]Ch; determination of [3H]Ch uptake during superfusion with acetylcholine (ACh) tritiated in the Ch moiety; evaluation of ACh hydrolysis during superfusion with ACh labelled in the acetate moiety; and comparison of the uptake of [3H]Ch generated by hydrolysis of [3H]ACh with that occurring during superfusion with [3H]Ch. Intact ACh was not taken up by superfused synaptosomes. The uptake of [3H]Ch during superfusion with 1 or 0.1 microM [N-methyl-3H]ACh was two-thirds of that occurring during superfusion with the same concentrations of [3H]Ch. The amount of [3H]Ch produced by hydrolysis during 16 min of superfusion was 1/25 of the amount passing through the synaptosomal monolayer during 16 min of superfusion with [3H]Ch. The results indicate that presynaptic AChE and HACU are located in close proximity to each other on the cholinergic terminal membrane, an observation suggesting the possibility of a functional coupling between the two mechanisms.  相似文献   

5.
The rate of translocation of newly synthesized acetylcholine (ACh) from the presynaptic cytosol of Torpedo electric organ nerve terminals into synaptic vesicles and the extent to which ACh release from these neurons is mediated by a vesicular mechanism were investigated. For this purpose the compound 2(4-phenylpiperidino)cyclohexanol (AH5183), which inhibits the active transport of ACh into isolated cholinergic synaptic vesicles, was employed. Preincubation of purified Torpedo nerve terminals (synaptosomes) with AH5183 does not affect the intraterminal synthesis of [3H]ACh but results in a marked inhibition (85%) of its Ca2+-dependent K+-evoked release. By contrast, the evoked release of the endogenous nonlabeled ACh is not affected by this compound. When AH5183 is added during radiolabeling, it causes a progressively smaller inhibition of [3H]ACh release which is completely abolished if the drug is added after the preparation has been labeled. These findings suggest that most of the newly synthesized synaptosomal [3H]ACh (85%) is released by a vesicular mechanism and that some [3H]ACh (15%) may be released by a different process. The translocation of cytosolic [3H]ACh into the synaptic vesicles was monitored by determining the time course of the loss of susceptibility of [3H]ACh release to AH5183. It was found not to be coupled kinetically to [3H]ACh synthesis and to lag behind it. The nature of the intraterminal processes underlying this lag is discussed.  相似文献   

6.
β-Hydroxybutyrate as a Precursor to the Acetyl Moiety of Acetylcholine   总被引:3,自引:3,他引:0  
Abstract— Rat brain cortex slices were incubated with 10 mm -glucose and trace amounts of [6-3H]glucose and [3-14C]β-hydroxybutyrate. The effects of (-)-hydroxycitrate, an inhibitor of ATP-citrate lyase; methylmalonate, an inhibitor of β-hydroxybutyrate dehydrogenase; and increasing concentrations of unlabeled acetoacetate were examined. The incorporation of label into lactate, citrate, malate, and acetylcholine (ACh) was measured and 3H:14C ratios calculated. Incorporation of [14C]β-hydroxybutyrate into lactate was limited because of the low activity of gluconeogenic enzymes in brain, whereas incorporation of 14C label into Krebs cycle intermediates and ACh was higher than in previous experiments with [3H-,14C]-glucose. (–)-Hydroxycitrate (5.0 mM) reduced incorporation of [3H]glucose and [14C]β-hydroxybutyrate into ACh. In contrast, slices incubated with methylmalonate (1 mm ) showed a decrease in 14C incorporation without appreciably affecting glucose metabolism. The effects of high concentrations of methylmalonate were nonselective and yielded a generalized decrease in metabolism. Acetoacetate (1 mm ) also produced a decreased 14C incorporation into ACh and its precursors. At 10 mm , acetoacetate reduced 3H and 14C incorporation into ACh without substantially affecting total ACh content. From the results, it is suggested that in adult rats β-hydroxybutyrate can contribute to the acetyl moiety of ACh, possibly via the citrate cleavage pathway, though it is quantitatively less important than glucose and pyruvate. This contribution of ketone bodies could become significant should their concentration become abnormally high or glucose metabolism be reduced.  相似文献   

7.
Synaptosomes were prepared from rat cerebral cortex and incubated in [3H]choline for periods ranging from 1 to 90 min. The [3H]ACh synthesized during this period was found only in the cytoplasm and in a membrane-associated fraction. A negligible amount of the newly formed [3H]ACh was recovered in the vesicular fraction despite concerted efforts to protect a hypothetical population of labile vesicles. The specific activity of the membrane-associated component, accounting for 21% of the total [3H]ACh, was by far the highest. This membrane-associated fraction was not released by hypotonic shock or homogenization and apparently was not in association with the monodisperse synaptic vesicles. The [3H]ACh was released in a calcium dependent manner. This investigation has determined that the ACh synthesized by synaptosomes is localized in only two fractions, cytoplasmic and membrane-associated; that this newly synthesized ACh can be released from synaptosomes by a process consistent with physiological release; and that at least part of the ACh released was originally present in the cytoplasm.  相似文献   

8.
Guinea-pig ileum myenteric plexus-longitudinal muscle preparation was superfused with [3H]choline for 15 min either without being stimulated or during field stimulation at 0.1 or 16 Hz; the preparation was then either removed immediately or after 75- or 135-min superfusion with hemicholinium-3 (HC-3) and the total acetylcholine (ACh) and [3H]ACh contents were determined. For measuring the release of [3H]ACh the preparation was stimulated for 60 min the second time at 0.1 or 16 HZ in the presence of hemicholinium. Exposure to [3H]choline without stimulation resulted in the formation of [3H]ACh stores which were maintained in the first 75 min but decreased therafter. Labelling during stimulation at 16 Hz produced the largest and best maintained [3H]ACh content. Following labelling during 0.1-Hz stimulation, more label could be released than following labelling in the absence of stimulation. Labelling during 16-Hz stimulation did not increase any further in fool of [3H]ACh accessible to release by 0.1-Hz stimulation, but caused a 2.5 times increase in the pool from which Hz stimulation released [3H]ACh. These results suggest that two populations of cholinergic neurons exist in the myenteric plexus, one activated only by high frequency stimulation, the other by both high and low frequency stimulation.  相似文献   

9.
The effects of acetylethylcholine mustard and its aziridinium derivative (AMMA) on acetylcholine (ACh) release and [3H]quinuclidinyl benzilate (QNB) binding were studied in rat cortical synaptosomes. After incubation for 5 min at 37 degrees C, AMMA reduced [3H]QNB binding with an IC50 of 9 microM. Following incubation for 5 min with 50 microM AMMA and washing, there was a 62% reduction in the [3H]QNB binding capacity with no change in the KD value for the remaining receptors, a result indicating the irreversibility of the AMMA binding. AMMA and oxotremorine both reduced the basal and 30 mM K+-induced release of newly synthesized [3H]ACh in dose-dependent manners over a 2.5-min period. At identical 50 microM concentrations, AMMA produced a much longer inhibition of basal [3H]ACh release than oxotremorine did. The inhibition of basal and 30 mM K+-induced [3H]ACh release by AMMA (10-250 microM) was blocked by 2 microM atropine during a 2.5-min release incubation, but not during a 30-min release incubation. After synaptosomes were treated with 50 microM AMMA for 5 min and the unbound drug was washed out from the tissue, [3H]ACh release (basal and K+-induced) was reduced. AMMA (50 microM) reduced high-affinity choline uptake and ACh synthesis by greater than 90% in this tissue, but these effects did not account for the [3H]ACh release inhibition, because they were not atropine sensitive and hemicholinium-3 had no effect on [3H]ACh release under the conditions used in these studies, i.e., after extracellular [3H]choline was washed out. Taken together, these results suggest that AMMA may be an irreversible agonist at presynaptic muscarinic autoreceptors.  相似文献   

10.
The in vivo regulation of [3H]acetylcholine [( 3H]ACh) recognition sites on nicotinic receptors in rat brain was examined by administering drugs that increase stimulation of nicotinic cholinergic receptors, either directly or indirectly. After 10 days of treatment with the cholinesterase inhibitor diisopropyl fluorophosphate, [3H]ACh binding in the cortex, thalamus, striatum, and hypothalamus was decreased. Scatchard analyses indicated that the decrease in binding in the cortex was due to a reduction in the apparent density of [3H]ACh recognition sites. In contrast, after repeated administration of nicotine (5-21 days), the number of [3H]ACh recognition sites was increased in the cortex, thalamus, striatum, and hypothalamus. Similar effects were observed in the cortex and thalamus following repeated administration of the nicotinic agonist cytisin. The nicotinic antagonists mecamylamine and dihydro-beta-erythroidine did not alter [3H]ACh binding following 10-14 days of administration. Further, concurrent treatment with these antagonists and nicotine did not prevent the nicotine-induced increase in these binding sites. The data indicate that [3H]ACh recognition sites on nicotinic receptors are subject to up- and down-regulation, and that repeated administration of nicotine results in a signal for up-regulation, probably through protracted desensitization at the recognition site.  相似文献   

11.
The nature of the intraterminal compartments from which acetylcholine (ACh) is released following presynaptic stimulation was investigated. This was pursued by examining the effects of the anticholinergic drug 2-(4-phenylpiperidino)cyclohexanol (AH5183) on the release of newly synthesized [3H]ACh and of endogenous ACh from purified cholinergic nerve terminals (synaptosomes) which were isolated from the electric organs of Torpedo. Preincubation of the synaptosomes, with AH5183 (1-10 microM), does not affect either the intraterminal synthesis of [3H]ACh or the uptake of its precursors, but results in a marked inhibition (85%) of the release of the newly synthesized [3H]ACh. However, when AH5183 is added following the accumulation of [3H]ACh in the nerve terminals, it does not affect [3H]ACh release. AH5183 also has no effect on the release of preformed endogenous ACh. These findings, together with the previous in vitro demonstrations that AH5183 is a potent inhibitor of ACh uptake into isolated cholinergic vesicles, suggest that most of the synaptosomal ACh is secreted by a vesicular mechanism.  相似文献   

12.
[3H]Acetylcholine (ACh) release, malonaldehyde formation and45calcium-uptake were measured in rat cerebral cortical nerve terminal that were exposed to various concentrations of ferrous and ascorbate ions. At a constant molar ratio of 25:1, ferrous:ascorbate, these ions increased malonaldehyde (MA) synthesis in a concentration-dependent manner. Treatment with these ions in the same ratio also induced a dose-related inhibition of the K+-depolarization-induced release of newly synthesized [3H]ACh. Combined exposure to Fe2+/ascorbate also reduced calcium ionophore A23187-induced [3H]ACh release. Neither ferrous nor ascorbate ions alone altered depolarization-or ionophore-induced [3H]ACh release over this concentration range. Depolarization- and A23187-induced45calcium uptake were not affected by peroxidation, suggesting that membrane peroxidation influenced some process in the release-process subsequent to calcium influx in a manner similar to what is observed during aging.  相似文献   

13.
Abstract: The existence in the mammalian CNS of release-inhibiting muscarinic autoreceptors is well established. In contrast, few reports have focused on nicotinic autoreceptors mediating enhancement of acetylcholine (ACh) release. Moreover, it is unclear under what conditions the function of one type of autoreceptor prevails over that of the other. Rat cerebrocortex slices, prelabeled with [3H]choline, were stimulated electrically at 3 or 0.1 Hz. The release of [3H]ACh evoked at both frequencies was inhibited by oxotremorine, a muscarinic receptor agonist, and stimulated by atropine, a muscarinic antagonist. Nicotine, ineffective at 3 Hz, enhanced [3H]ACh release at 0.1 Hz; mecamylamine, a nicotinic antagonist, had no effect at 3 Hz but inhibited [3H]ACh release at 0.1 Hz. The cholinesterase inhibitor neostigmine decreased [3H]ACh release at 3 Hz but not at 0.1 Hz; in the presence of atropine, neostigmine potentiated [3H]ACh release, an effect blocked by mecamylamine. In synaptosomes depolarized with 15 mM KCI, ACh inhibited [3H]ACh release; this inhibition was reversed to an enhancement when the external [Ca2+] was lowered. The same occurred when, at 1.2 mM Ca2+, external [K+] was decreased. Oxotremorine still inhibited [3H]ACh release at 0.1 mM Ca2+. When muscarinic receptors were inactivated with atropine, the K+ (15 mM)-evoked release of [3H]ACh (at 0.1 mM Ca2+) was potently enhanced by ACh acting at nicotinic receptors (EC50? 0.6 µM). In conclusion, synaptic ACh concentration does not seem to determine whether muscarinic or nicotinic autoreceptors are activated. Although muscarinic autoreceptors prevail under normal conditions, nicotinic autoreceptors appear to become responsive to endogenous ACh and to exogenous nicotinic agents under conditions mimicking impairment of ACh release. Our data may explain in part the reported efficacy of cholinesterase inhibitors (and nicotinic agonists) in Alzheimer's disease.  相似文献   

14.
1. The effect of ouabain on the release of [3H]acetylcholine ([3H]ACh) in rat brain cortical slices was investigated. 2. The ouabain-induced release of [3H]ACh was calcium-independent and not blocked by EGTA. 3. BAPTA-AM, a chelator of intracellular calcium, inhibited the ouabain effect suggesting the involvement of intracellular calcium stores. 4. Vesamicol, a drug that blocks the storage of acetylcholine in synaptic vesicles inhibited by 73% the ouabain-induced release of [3H] ACh, suggesting exocytotic release of the neurotransmitter. 5. Dantrolene and tetracaine, inhibitors of ryanodine and InP3 receptors, inhibited by 57 and 66% respectively, the ouabain-elicited release of [3H]ACh in brain cortical slices. 6. Confocal microscopy and calcium imaging showed that ouabain increased the levels of [Ca2+]i in cholinergic SN56 cells and that this increase was concentrated in the cell soma. 7. In conclusion, we suggested that ouabain causes Ca2+ release from intracellular stores that can increase [3H] ACh exocytosis from rat brain cortical slices.  相似文献   

15.
The release of total acetylcholine (ACh) and [3H]ACh was investigated in electrically stimulated cortical slices prepared from 4- and 18-month-old male Wistar rats. The slices were prelabeled with [3H]choline ([3H]Ch) and perfused with Krebs solution containing physostigmine. Total ACh was measured and the nature of the tritium efflux identified by HPLC. The total tritium content in the slices at the end of the incubation period was half as great in the old as in young rats. A linear relationship was found between stimulation frequencies (2, 5, and 10 Hz) and fractional [3H]ACh release in both young and old rats. In the latter the release was significantly smaller. At 10 Hz stimulation frequency the ratio between the two 2-min stimulation periods, S2/S1, was higher in the 18-month-old rats than in the young rats. Specific activity of the evoked ACh release was significantly smaller in S2 than in S1 in 4-month-old rats only. These findings indicate that the young synthetize ACh from endogenous unlabeled Ch more than older rats. In 18-month-old rats both the evoked total ACh and [3H]ACh release, expressed as picograms per minute, showed an approximately 50% decrease in both S1 and S2 stimulation periods, with no significant difference in specific activity. Phosphatidylserine (PtdSer) administration (15 mg/kg, i.p. daily) for 1 week to 18-month-old rats prevented the reduction in total evoked ACh release but not the reduction in evoked [3H]ACh release. The specific activity of ACh release was therefore significantly smaller than that of the young and untreated old rats.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Release of [3H]acetylcholine (ACh) under the influence of bradykinin was measured from myenteric plexus-longitudinal muscle strips taken from guinea pig small intestine. Bradykinin stimulated the efflux of [3H]ACh in a dose-dependent manner. This stimulation by bradykinin was resistant to the effect of [Des-Arg9-Leu8]-bradykinin but not to indomethacin, indicating that the ACh-releasing action of bradykinin was mediated indirectly by a prostaglandin mechanism. Direct evidence for a stimulation of ACh release by prostaglandin E1 was obtained. Prostaglandin was able to stimulate ACh release in a dose-related fashion. The inhibition of bradykinin-induced ACh release by indomethacin was partly reversed by exogenous prostaglandin E1. These results suggest a neuromodulatory role for bradykinin in the enteric nervous system.  相似文献   

17.
Rat striatal slices prelabelled with [3H]choline were superfused with dopamine D-1 and D-2 agonists and antagonists, separately and in combination, during measurement of [3H]acetylcholine (ACh) release. SKF38393 (D-1 agonist), 10(-7)-10(-4) M, and SCH23390 (D-1 antagonist), 10(-7)-10(-5) M, produced a dose-dependent increase in [3H]ACh release when given separately. The increased [3H]ACh release induced by either drug could not be attenuated by sufficient L-sulpiride to block D-2 receptors. Yet both SKF38393, 10(-6)-10(-5) M, and SCH23390, 10(-6)-10(-5) M, were able to partially or fully overcome the [3H]ACh release-depressant effect of cosuperfused LY171555 (D-2 agonist), 10(-6) M. This suggests that a functional antagonism regarding striatal ACh release exists between D-1 and D-2 dopaminergic receptor-mediated mechanisms, but that D-1 modulation of local ACh release does not occur at the level of the recognition site of the striatal D-2 receptor. Finally, although attenuation of the increased release of striatal [3H]ACh induced by 10(-5) M SCH23390 by SKF38393 was seen, it is possible that such functional antagonism is not mediated by exclusively D-1 dopaminergic means.  相似文献   

18.
A previous structure-activity investigation of acetylcholine (ACh) revealed a positive correlation between additional hydrophobic bulk and increased potency for inhibition of active transport of [3H]ACh by synaptic vesicles isolated from the electric organ of Torpedo. In the current study, several ACh analogues that are significantly larger than previously studied "false transmitters" were synthesized in the tritiated form by chemical means and tested for active transport. These are analogue 14 [(+/-)-(cis,trans)-1-benzyl-1-methyl-3-acetoxypyrrolidinium iodide], analogue 15 [(+/-)-1,1-dimethyl-3-benzoyloxypyrrolidinium iodide], and analogue 16/17 [(+/-)-(cis,trans)-1-benzyl-1-methyl-3-benzoyloxypyrrolidinium iodide]. These analogues place significant additional hydrophobic bulk on one or the other (analogues 14 and 15) or both (analogue 16/17) of the two pharmacophores of a small, conformationally constrained analogue of ACh. [3H]Analogue 14 and [3H]analogue 15 are actively transported, with Vmax values the same as or less than that of ACh, depending on the vesicle preparation. The observation that Vmax is the same for an analogue and ACh in some vesicle preparations suggests that the rate-limiting step does not involve ACh bound to the transporter. [3H]Analogue 16/17 is actively transported very poorly. Km values for ACh and for transported ACh analogues vary by up to two- to threefold in different vesicle preparations. The ACh transporter is much less selective for transported substrates than anticipated.  相似文献   

19.
Summary Clostridium botulinum type toxin A (BoTx) blocks stimulus-induced acetylcholine (ACh) release from presynaptic nerve terminals at peripheral neuromuscular junctions. However, the detailed mechanism of this effect remains elusive. One obstacle in solving this problem is the lack of a suitable in vitro homogenous cholinergic neuronal model system. We studied the clonal pheochromocytoma PC12 cell line to establish such a model. PC12 cells were differentiated in culture by treatment with 50 ng/ml nerve growth factor (NGF) for 4 days to enhance cellular ACh synthesis and release properties. Stimulation of these cells with high K+ (80 mM) in the perfusion medium markedly increased calcium-dependent [3H]ACh release compared to undifferentiated cells. Stimulated [3H]ACh release was totally inhibited by pretreatment of cells with 2 nM BoTx for 2 h. BoTx inhibition of [3H]ACh release was time- and concentration-dependent. A 50% inhibition was obtained after 2 h incubation with a low (0.02 nM) toxin concentration. The time required for 2 nM BoTx to cause a measurable inhibition (18%) of stimulated [3H]ACh release was 30 min. Botulinum toxin inhibition of stimulated ACh release was prevented by toxin antiserum and heat treatment, suggesting the specificity of the toxin effect. Our results show that by differentiation with NGF, PC12 cells can be shifted from an insensitive to a sensitive state with respect to BoTx inhibition of stimulated ACh release. This cell line, therefore, may serve as a valuable in vitro cholinergic model system to study the mechanism of action of BoTx.  相似文献   

20.
Abstract : The mechanisms regulating the compartmentation of acetylcholine (ACh) and the relationship between transmitter release and ACh stores are not fully understood. In the present experiments, we investigated whether the inhibitors of serine/threonine phosphatases 1 and 2A, calyculin A and okadaic acid, alter subcellular distribution and the release of ACh in rat hippocampal slices. Calyculin A and okadaic acid significantly (p < 0.05) depleted the occluded ACh of the vesicular P3 fraction, but cytoplasmic ACh contained in the S3 fraction was not significantly affected. The P3 fraction is known to be heterogeneous ; calyculin A and okadaic acid reduced significantly (p < 0.05) the amount of ACh recovered with a monodispersed fraction (D) of synaptic vesicles, but the other nerve terminal bound pools (E-F and G-H) were not so affected. K+-evoked ACh release decreased significantly (p < 0.01) in the presence of calyculin A and okadaic acid, suggesting that fraction D's vesicular store of ACh contributes to transmitter release. The loss of ACh from synaptic vesicle fractions prepared from tissue exposed to phosphatase inhibitors appeared not to result from a reduced ability to take up ACh. Thus, when tissue was allowed to synthesize [3H]ACh from [3H]choline, the ratio of [3H]ACh in the S3 to P3 fractions was not much changed by exposure of tissue to calyculin A or okadaic acid ; furthermore, the specific activity of ACh recovered from the D fraction was not reduced disproportionately to that of cytosolic ACh. The changes are considered to reflect reduced synthesis of ACh by tissue treated with the phosphatase inhibitors, rather than an effect on vesicle uptake mechanisms. Thus, exposure of tissue to calyculin A or okadaic acid appears to produce selective depletion of tissue ACh content in a subpopulation of synaptic vesicles, suggesting that phosphatases play a role in ACh compartmentation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号