首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Embryos of goodeid fishes develop to term within the ovarian lumen, where they undergo considerable increase in weight due to transfer of maternal nutrients across a trophotaenial placenta. The placenta consists of an embryonic component, the trophotaeniae, and a maternal component, the ovarian lining. The latter was examined by transmission electron microscopy, scanning electron microscopy, and light microscopy in both gravid and nongravid ovaries of the viviparous goodeid fish, Ameca splendens. The single median ovary of A. splendens is a hollow structure whose lumen is divided into lateral chambers by a highly folded longitudinal ovarian septum. Germinal tissue occurs within folds of the ovarian lining that extend into each of the two lateral chambers. Matrotrophic embryonic development takes place within ovarian chambers. During gestation, the lining of the ovarian lumen is in direct apposition to body surfaces and trophotaenial epithelia of developing embryos. The ovarian lining consists of a simple cuboidal epithelium, termed the internal ovarian epithelium (IOE), overlying a well-vascularized bed of connective tissue. Cells of the IOE are apically convex. Well-developed granular and agranular endoplasmic reticula and numerous large membrane-bound vesicles with electron-dense content occupy the apical cytoplasm of IOE cells. Two functional states of the same cell type are distinguished within the IOE. Phase I cells contain few, if any, large apically situated vesicles; Phase II cells contain many. Secretory products of the IOE are presumed to be an important source of nutrients for embryonic development. Structural and functional relationships of the IOE to the trophotaenial epithelium of developing embryos are discussed in relation to maternal-embryonic nutrient transfer processes.  相似文献   

2.
Protein uptake and degradation by trophotaenial cells of the viviparous goodeid fish Ameca splendens were studied colorimetrically and ultrastructurally using horseradish peroxidase (HRP) as a tracer and acid (ACPase) and alkaline (ALPase) phosphatase cytochemistry. Trophotaeniae are ribbon-like external projections of the embryonic gut that are equivalent to greatly hypertrophied intestinal villi. During gestation within the ovarian lumen, trophotaeniae are directly apposed to the internal ovarian epithelium (IOE) where they establish a placental association between the developing embryo and maternal organism. Trophotaenial absorptive cells possess an ALPase reactive brush border, an endocytotic apparatus, and ACPase reactive standing lysosomes. Ultrastructural studies of protein uptake indicate that cells of the trophotaenial epithelium take up HRP by micropinocytosis and degrade it within lysosomes. Initially (from 1.5-10 min), HRP is taken up in vitro at 22 degrees C at the apical cell surface and passes via endocytotic vesicles into an apical canalicular system. From 1.5 to 10 min exposure, HRP passes passes from the apical canalicular system to a series of small collecting vesicles. After 10 min, HRP is detected within large ACPase reactive supranuclear lysosomes. Three hours after an initial 1 h exposure to HRP, most peroxidase activity within supranuclear lysosomes is no longer detected. Presence of Golgi complexes, residual bodies, and secretory granules in the infranuclear cytoplasm suggest that products of protein uptake and hydrolysis are discharged across basal and lateral cell surfaces and into the trophotaenial circulation. Trophotaeniae of embryos incubated in vitro in HRP-saline take up HRP at an initial rate of 13.5 ng HRP/mg trophotaenial protein/min. The system becomes saturated after 3 h. Trophotaeniae incubated at 4 degrees C show little or no uptake. In trophotaeniae continuously pulsed with HRP for 1 h, then incubated in HRP-free saline, levels of absorbed peroxidase declined at a rate of 0.5 ng/mg trophotaenial protein/min. HRP does not appear to enter the embryo via extra-trophotaenial routes. These findings are consistent with the putative role of trophotaeniae as the embryonic component of the functional placenta of goodeid fishes. Trophotaenial uptake of maternal nutrients accounts for a massive (15,000%) increase in embryonic dry weight during gestation.  相似文献   

3.
Embryos of most species within the viviparous teleost family Goodeidae develop characteristics perianal processes that are considered to be derivatives of the embryonic hindgut. These processes, termed trophotaeniae, are covered with an epithelium that is continuous with the absorptive epithelium lining the hindgut. Gestation is intraovarian, and trophotaeniae mediate the uptake of maternally provided nutrients into the embryo from the ovarian fluid. Ultrastructural examination of the trophotaeniae of four goodeid species reveals substantial diversity in the organization of the epithelium within the family. The trophotaeniae of Alloophorus robustus, Zoogoneticus quitzeoensis, and Ilyodon furcidens have morphological features associated with the endocytosis of macromolecules and can be shown to endocytose the exogenous protein tracer horseradish peroxidase (HRP) rapidly. The trophotaenial epithelia of these species differ from one another with respect to other morphological features such as cell height, organization of the brush border, and the complexity of the intercellular spaces. The trophotaeniae of Goodea atripinnis lack an endocytotic apparatus and do not endocytose HRP. However, the overall organization of G. atripinnis trophotaenial cells suggests a function as a transporting epithelium. The cells have a dense brush border, numerous mitochondria, and many mitochondria that are enveloped by lamellar sheets of intracellular membrane. Post-fixation with osmium and potassium ferrocyanide reveals a marked difference in the complexity of the subepithelial connective tissue. Alloophorus robustus and Z. quitzeoensis exhibit an extremely electron-dense ground substance containing many acellular components. Goodea atripinnis exhibits an electron-lucid ground substance with few acellular components. © 1994 Wiley-Liss, Inc.  相似文献   

4.
Scanning and transmission electron microscopy were used to examine the morphology of the perianal processes (trophotaeniae) of goodeid embryos (Girardinichthys viviparus) at two stages of gestation. The epithelial surface of trophotaeniae is composed of two cell types, one of which shows distinct features associated with absorptive activity. Such cells are characterized by microvilli, abundant mitochondria, and an agranular tubulolamellar network. Micropinocytosis at the apical surface is relatively rare. The brush border membranes contain high levels of alkaline phosphatase. The cells of the second type are the minor component of the trophotaenial epithelium. Their surface is distinct, due to the presence of microridges rather than microvilli. The reticulate arrangement of the cells gives rise to intercellular spaces which occasionally are very large. These interstices are populated with leukocytes. The histological appearance of these sections indicates that this tissue is involved in gas exchange. Embryos at very early stages of development possess similar epithelia which are differentiated to a lesser extent. The connective tissue in some parts of the processes shows structural modifications. It is densely packed with numerous leukocytes occupying the spaces between the cytyoplasmic ramifications of the stroma cells. Possible roles of the trophotaeniae in absorption, respiration, excretion, and the acquisition of immunity are discussed, and it is concluded that the perianal processes of the Goodeidae are more than just trophic embryonic structures.  相似文献   

5.
Prepartum embryos obtained from old museum specimens of the ovo-viviparous fish, Oligopus longhursti, possess external intestinal appendages. They are structurally identical to the trophotaeniae described by Turner ('37) and Mendoza ('37) in goodeid fishes. This is the first report of trophotaeniae in the viviparous ophidioids. Two developmental Stages, A and B, were observed. A is a tailbud stage, 2.0-2.25 mm in length, and B is a finfold embryo, 3.0-3.25 mm in length (Wourms and Bayne, '73). Trophotaeniae occur in the form of a single median anterior process and a pair of median posterior processes. They originate from a conspicuous peduncle formed around the anus. The processes of stage A are 1.5-2.0 mm long, 0.05 mm in diameter at their base and 0.04 mm at their tip. The stage B processes are 2.75-3.00 mm long, 0.075 mm in diameter at their base and 0.050 mm at their tip. Serial sections show that the surface epithelium of the trophotaeniae is continuous with and identical to the surface epithelium of the trophotaeniae is continuous with and identical to the surface epithelium of the embryonic gut. Examination both by transmission and scanning electron microscopy confirms that the apical surface of the trophotaenial epithelium and intestinal epithelium are covered with microvilli. Trophotaeniae are considered to function in the uptake of nutrients since they are structurally identical to intestinal epithelial cells. We suggest that maternal nutrients absorbed by trophotaeniae rather than yolk reserves are the principal source of embryonic metabolites. Trophotaeniae may afford a selective advantage since their existence in O. longhursti maximizes the number of large size embryos which a female can produce at one time. Occurrence of trophotaeniae in ophidioid, goodeid and zoarcid embryos is a remarkable example of convergent evolution.  相似文献   

6.
Embryonic growth and trophotaenial development are examined in two species of goodeid fish, Ameca splendens and Goodea atripinnis. During gestation of A. splendens, embryonic dry mass may increase from 0.21 mg at the onset of development to 31.70 mg at term. In G. atripinnis, embryonic dry mass ranges from 0.25 mg at the onset of development to 3.15 mg at term. Increase in mass is primarily due to the uptake of maternally derived nutrients by trophotaeniae, externalized embryonic gut derivatives. Trophotaenial development in both species is divisible into five phases. During the first phase, the anus is formed. The second phase involves dilation of the anus, enlargement of the perianal lips, differentiation of the hindgut absorptive epithelium, and formation of the trophotaenial peduncle. The third phase is characterized by a further marked hypertrophy and lateral expansion of the perianal lips that results in the formation of short trophotaenial processes. During the fourth phase, there is continued outward expansion of the inner mucosal surface of the trophotaenial peduncle that results in its eversion and lobulation. Placental function is established by this phase. Axial elongation and dichotomous branching of trophotaenial processes occurs during the fifth phase. Development of rosette and ribbon trophotaeniae differ in the degree of axial elongation during the fifth and final phase.  相似文献   

7.
Summary The trophotaeniae and abdominal epidermis of Xenoophorus captivus embryos were studied by light, scanning and transmission electron microscopy, freeze-fracture replication, and histochemical techniques for unspecific phosphatases. The trophotaenial epithelium is continuous with both the intestinal mucosa and the epidermis, and contains structural elements similar to both. The predominant component is a simple brush-border epithelium consisting of cuboid cells showing signs of endocytotic activity at their apical surfaces. These are the absorptive elements of the trophotaeniae, and phosphatase ultracytochemistry demonstrates the presence of alkaline phosphatase on the external leaflet of their exposed plasma membranes. Enormously dilated intercellular spaces and large gaps occur in this epithelial covering.Beneath this absorptive epithelium lies an incomplete layer of dense squamous cells that appear to be derived from the stratified epithelium covering trophotaenial areas free of brush border epithelium and the abdominal wall. The exposed cell surfaces of this component are modified to form an elaborate pattern of microplicae which can be seen by scanning EM where gaps appear in the overlying absorptive epithelium. The stratified epithelium of the abdominal wall is underlain with collagen fibrils and an intricate network of capillaries, and is considered to be a site of cutaneous respiration. This cutaneous gas-exchange pathway averages 2–4 m in thickness. Chloride cells are constituents of the stratified epithelium of the trophotaenial base and abdominal wall.The involvement of the endodermal component of the trophotaenial epithelium in the transfer of nutrients and possibly antibodies, and the role of the abdominal epidermis and ectodermal trophotaenial epithelium in gas exchange and osmoregulation, are discussed.  相似文献   

8.
The species of the family Goodeidae have evolved reproductive strategies involving intraovarian gestation, early evacuation of nearly yolk‐exhausted embryos from the ovigerous tissue into the ovarian cavity, placental matrotrophy during intraluminal gestation, and the birth of highly developed fry. The inner ovarian lining becomes hypervascularized during gestational periods and functions as the maternal component of the placental association. Embryotrophic liquid is secreted by the inner ovarian epithelium into the ovarian cavity. Comparative electrophoretic analyses of embryotrophe and maternal blood serum provide evidence for the transfer of maternal serum proteins into the embryotrophe. Trophotaeniae, proctodaeal processes of the embryos, provide a surface for nutrient absorption. Endocytic activity was demonstrated by ingestion of unspecific tracer proteins in various species. Moreover, the trophotaenial absorptive cells (TACs) in Ameca splendens ingest various proteins or random copolymers conjugated to colloidal gold as well as radioiodinated proteins in a way that satisfies the criteria of receptor‐mediated endocytosis. Several aminopeptidases (APs) on the surface of TACs were identified as protein binding sites as evidenced by inhibition of binding and uptake of marker proteins in the presence of AP substrates or AP inhibitors. Morphological adaptations of the embryonic circulatory system pertaining to nutrient and gas exchange were characterized. The embryonic epidermis comprises two layers of squamous cells closely underlain by a dense capillary net. Efficient gas exchange is facilitated by a thin embryotrophe‐blood barrier of both the embryonic skin and the intraovarian lining. J. Morphol. 276:991–1003, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   

9.
Embryos of the poeciliid Heterandria formosa develop to term in the ovarian follicle in which they establish a placental association with the follicle wall (follicular placenta) and undergo a 3,900% increase in embryonic dry weight. This study does not confirm the belief that the embryonic component of the follicular placenta is formed only by the surfaces of the pericardial and yolk sacs; early in development the entire embryonic surface functions in absorption. The pericardial sac expands to form a hood-like structure that covers the head of the embryo and together with the yolk sac is extensively vascularized by a portal plexus derived from the vitelline circulation. The hood-like pericardial sac is considered to be a pericardial amnion-serosa. Scanning and transmission electron microscopy reveal that during the early and middle phases of development (Tavolga's stages 10–18 for Xiphophorus maculatus) the entire embryo is covered by a bilaminar epithelium whose apical surface is characterized by numerous, elongate microvilli and coated pits and vesicles. Electron-lucent vesicles in the apical cytoplasm appear to be endosomes while a heterogeneous group of dense-staining vesicles display many features characteristic of lysosomes. As in the larvae of other teleosts, cells resembling chloride cells are also present in the surface epithelium. Endothelial cells of the portal plexus lie directly beneath the surface epithelium of the pericardial and yolk sacs and possess numerous transcytotic vesicles. The microvillous surface epithelium becomes restricted to the pericardial and yolk sacs late in development when elsewhere on the embryo the non-absorptive epidermis differentiates. We postulate that before the definitive epidermis differentiates, the entire embryonic surface constitutes the embryonic component of the follicular placenta. The absorptive surface epithelium appears to be the principle embryonic adaptation for maternal-embryonic nutrient uptake in H. formosa, suggesting that a change in the normal differentiation of the surface epithelium was of primary importance to the acquisition of matrotrophy in this species. In other species of viviparous poeciliid fishes in which there is little or no transfer of maternal nutrients, the embryonic surface epithelium is of the non-absorptive type.  相似文献   

10.
Intraluminal gestation, as it occurs in viviparous goodeids, allows a wide diversity of embryo‐maternal metabolic exchanges. The branchial placenta occurs in embryos developing in intraluminal gestation when ovarian folds enter through the operculum, into the branchial chamber. The maternal ovarian folds may extend to the embryonic pharyngeal cavity. A branchial placenta has been observed in few viviparous teleosts, and there are not previous histological analyses. This study analysis the histological structure in the goodeid Ilyodon whitei. The moterno ovarian folds extend through the embryonic operculum and reach near the gills, occupying part of the branchial chamber. These folds extend also into the pharyngeal cavity. In some regions, the epithelia of the ovarian folds and embryo were in apposition, developing a placental structure in which, maternal and embryonic capillaries lie in close proximity. The maternal epithelium has desquamated cells which may enter through the branchial chamber to the pharyngeal cavity and the alimentary tract. The complex processes that occur in the ovaries of viviparous teleosts, and its diverse adaptations for viviparity, as the presence of branchial placenta, are relevant in the study of the evolution of vertebrate viviparity. J. Morphol. 275:1406–1417, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

11.
Embryos of viviparous goodeid fishes undergo a 10 to 150 × increase in dry weight during gestation. Maternal nutrients are transferred across a trophotaenial placenta comprised of the ovarian lumenal epithelium and the trophotaeniae of the embryo. Trophotaeniae are externalized projections of the embryonic hindgut. Epithelial cells of the ribbon trophotaenia (Ameca splendens) resemble intestinal absorptive cells of suckling mammals and endocytose macromolecules. They possess an apical brush border, endocytotic complex, endosomal–lysosomal system, and apical and basal clusters of mitochondria. Cells of the rosette trophotaenia (Goodea atripinnis) lack an endocytotic apparatus, have small lysosomes, two mitochondrial clusters, and transport small molecules. Organelle-specific fluorescent probes were employed to characterize the functional organization of the two types of trophotaenial cells. In A. splendens, Lucifer Yellow, a membrane-impermeable tracer of vesicular transport, first appears in peripheral vesicles (15–45 sec), then passes into elongated tubular endosomes (1–3 min) and later appears in large central vacuoles (10–15 min). These vacuoles accumulate Acridine Orange, a classical probe for lysosomes, and have been shown to contain lysosomal enzymes. Endosomelysosome fusion was observed. In both A. splendens and G. atripinnis, Rhodamine 123 fluorescence was localized in two clusters of fine spots that corresponded to mitochondria. 4′,6-diaminido-2-phenyl-indole (DAPI) staining of nuclei established the positional relationships of cell organelles with respect to the nuclei. 3,3′-dihexyloxacarbo-cyanine iodide (DiOC6) revealed the perinuclear distribution of the endoplasmic reticulum. In order to compare in vivo fluorescence of Lucifer Yellow with previous ultrastructural observations, we employed fluorescence photoconversion and electron microscopy. © 1994 Wiley-Liss, Inc.  相似文献   

12.
Surface topography and cross-sections of the placental membranes were examined by scanning electron microscopy in two species of Thamnophis. The chorionic epithelium of the chorioallantoic placenta consists of broad, squamous cells that lack surface specializations. The apposed uterine epithelium contains ciliated cells and larger, nonciliated cells. Neither the epithelium of the chorion nor that of the uterus is eroded; thus, underlying capillaries are not exposed to the luminal surface. In both the omphaloplacenta and the omphalallantoic placenta, epithelium of the omphalopleure consists of brush-border cells bearing prominent microvilli, interspersed with cells bearing minuscule microvilli. These surface epithelial cells are joined at their apices and their lateral surfaces are extensively sculpted by intercellular channels, presenting the appearance of an epithelium specialized for absorption. Deep to the epithelium lie the yolk spheres of the isolated yolk mass, interspersed with endodermal cells. Surface topography of the uterine epithelia of the omphaloplacenta and omphalallantoic placenta is relatively unspecialized. The acellular shell membrane separates maternal and fetal tissues in each of the three placental types. Marked differences in surface features of the chorioallantois and omphalopleure probably reflect different roles of these membranes in gas exchange and transfer of water and nutrients.  相似文献   

13.
Embryos of the viviparous poeciliid fish, Heterandria formosa, develop to term in the ovarian follicle where they undergo a 3,900% increase in embryonic dry weight. Maternal-embryonic nutrient transfer occurs across a follicular placenta that is formed by close apposition of the embryonic surface (i.e., the entire body surface during early gestation and the pericardial amnionserosa during mid-late gestation) to the follicular epithelium. To complement our recent study of the embryonic component of the follicular placenta, we now describe the development and fine structure of the maternal component of the follicular placenta. Transmission electron microscopy reveals that the ultrastructure of the egg envelope and the follicular epithelium that invests vitellogenic oocytes is typical of that described for teleosts. The egg envelope is a dense matrix, penetrated by microvilli of the oocyte. The follicular epithelium consists of a single layer of cuboidal cells that lack apical microvilli, basal surface specializations, and junctional complexes. Follicle cells investing the youngest embryonic stage examined (Tavolga's and Rugh's stage 5–7 for Xiphophorus maculatus) also lack apical microvilli and basal specializations, but possess junctional complexes. In contrast, follicle cells that invest embryos at stage 10 and later display ultrastructural features characteristic of transporting epithelial cells. Apical microvilli and surface invaginations are present. The basal surface is extensively folded. Apical and basal coated pits are present. The cytoplasm contains a rough endoplasmic reticulum, Golgi complexes, and dense staining vesicles that appear to be lysosomes. The presence of numerous apically located electron-lucent vesicles that appear to be derived from the apical surface further suggests that these follicle cells may absorb and process follicular fluid. The egg envelope, which remains intact throughout gestation and lacks perforations, becomes progressively thinner and less dense as gestation proceeds. We postulate that these ultrastructural features, which are not present in the follicles of the lecithotrophic poeciliid, Poecilia reticulata, are specializations for maternal-embryonic nutrient transfer and that the egg envelope, follicular epithelium, and underlying capillary network form the maternal component of the follicular placenta. © 1994 Wiley-Liss, Inc.  相似文献   

14.
Certain viviparous animals possess mechanisms for mother-to-embryo nutrient transport during gestation. Xenotoca eiseni is one such viviparous teleost species in which the mother supplies proteins and other components to the offspring developing in the ovary. The embryo possesses trophotaenia, hindgut-derived placental structure, to receive the maternal supplement. However, research on the molecular mechanisms underlying viviparous species is scarce in non-mammalian vertebrates, including teleosts. Thus, we conducted this study to investigate the mechanism for nutrient absorption and degradation in trophotaeniae of X. eiseni. A tracer assay indicated that a lipid transfer protein, vitellogenin (Vtg), was absorbed into the epithelial layer cells of the trophotaeniae. Vtg uptake was significantly suppressed by Pitstop-2, an inhibitor of clathrin-mediated endocytosis. Gene expression analysis indicated that the genes involved in endocytosis-mediated lipolysis and lysosomal cholesterol transport were expressed in the trophotaeniae. In contrast, plasma membrane transporters expressed in the intestinal tract were not functional in the trophotaeniae. Our results suggested that endocytosis-mediated lysosomal lipolysis is one of the mechanisms underlying maternal component metabolism. Thus, our study demonstrated how viviparous teleost species have acquired a unique developmental system that is based on the hindgut-derived placenta.  相似文献   

15.
Viviparity in goodeid teleosts is characterized by the elaboration of trophotaeniae, extraembryonic proctodaeal appendages facilitating maternal-embryonic nutrient transfer. The trophotaenial absorptive cells (TACs) express aminopeptidases (APs) such as APA, APN, gamma-glutamyltransferase (gamma-GT), dipeptidyl aminopeptidase (DAP) IV, and neutral endopeptidase (NEP) as inferred from the results of cleavage experiments with, respectively, Glu-alpha-(4M beta NA), Ala-(4M beta NA), Glu-gamma-(4M beta NA), Gly-Pro-(4M beta NA), and Gl-(Ala)(3)-(4M beta NA). Enzyme reaction product was localized to the apical and basolateral plasma membrane as well as to some intracellular compartments. In the accompanying report (Schindler, 2003) evidence is presented that the trophotaeniae of Ameca splendens embryos randomly, yet specifically, bind and ingest proteins as well as certain copolymers of amino acids. Present results demonstrate that endocytosis is significantly inhibitable by unspecific proteinase inhibitors, such as diisopropylphosphorofluoride, phenylmethanesulfonylfluoride, antipain, 1.10-phenanthroline, and dithiothreitol. The specific microbial AP inhibitors amastatin, bestatin, and phosphoramidon suppressed protein binding to TACs more effectively when added in combination than did either agent alone. Moreover, in the presence of 4M beta NA assay substrates of APs the capability of TACs to bind proteins was significantly reduced. Conversely, the rate at which 4M beta NA substrates were cleaved by trophotaenial APs was modified in the presence of proteins. Depending on protein concentrations the AP-catalyzed reactions either decreased or increased in velocity. Analysis of the enzyme kinetics by methods of linear transformation suggests that proteins bind to APs competitively, thereby adopting the role of enzyme inhibitors. On the other hand, protein binding to APs appears to be a signal to translocate enzymes from an internal pool to the surface membrane. In the presence of primaquine, the rate of AP-catalyzed cleavage of 4M beta NA substrates was significantly reduced. That can be put down to the fact that weak bases disrupt the recycling of endocytosed membrane constituents. In conclusion, there is evidence that APs in the trophotaenial placenta of A. splendens function as scavenger receptors mediating in the delivery of embryotrophic proteins for lysosomal degradation.  相似文献   

16.
《Journal of morphology》2017,278(5):675-688
Ultrastructure of the placental tissues from redbelly watersnakes (Nerodia erythrogaster ) was analyzed during late pregnancy to provide insight into placental development and function. Examination of the chorioallantoic placenta with transmission electron microscopy reveals that chorionic and uterine epithelia are extremely attenuated but intact and that the eggshell membrane is vestigial and lacks a calcareous layer. These features minimize the interhemal diffusion distance across the placenta. Scanning electron microscopy reveals that fetal and maternal components of the placentas are richly vascularized by dense networks of capillaries. Although the yolk sac omphalopleure has largely been replaced by chorioallantois by late gestation, it retains patches of yolk droplets and regions of absorptive cells with microvilli and abundant mitochondria. Transmission electron microscopy reveals that yolk material is taken up for digestion by endodermal cells. As yolk is removed, allantoic capillaries invade to occupy positions just beneath the epithelium, forming regions of chorioallantoic placentation. Ultrastructural features indicate that the chorioallantoic placenta is specialized for gas exchange, while the omphalallantoic (“yolk sac”) placenta shows evidence of functions in yolk digestion and maternal‐fetal nutrient transfer. Placental features of this species are consistent with those of other thamnophines, and are evolutionarily convergent on snakes of other viviparous clades.  相似文献   

17.
Placentae show considerable diversity in a number of nonmammalian, viviparous organisms, including amphibians, reptilian sauropsids, teleost fish, and chondrichthyes. However, the evolutionary processes driving the evolution of placenta are still debated. In teleost fishes, the genus Poeciliopsis (Poeciliidae) offers a rare opportunity for studying placental evolution: extensive placentation has evolved three independent times within the last 750,000 years and there is substantial interspecific variation in the degree of embryonic, maternal nutrient provisioning and development of the placenta. In poeciliids, the placenta is composed of a hypertrophied maternal follicular epithelium apposed to a highly vascularized embryonic pericardial sac. To better understand placental evolution, we have undertaken a comprehensive comparative study of the maternal follicle in eight closely related Poeciliopsis species that span the range in postfertilization, embryonic, maternal nutrient provisioning (from lecithotrophs, to moderate matrotrophs, to extensive matrotrophs). Using light and scanning electron microscopy, we found that the species that provide extensive postfertilization maternal nutrient provisioning (extensive matrotrophs) have thicker follicles and more extensive folding of the follicular epithelium compared to the lecithotrophs and moderate matrotrophs. Follicle sections and histology revealed that epithelial folds of the extensive matrotrophs are comprised primarily of cuboidal and columnar cells and are richly supplied with capillaries. Among the extensive matrotrophs, enhancements of follicle traits corresponded with increases in the level of maternal nutrient provisioning. Hypertrophied maternal follicles with richly vascularized folds can serve to increase the surface area and, thus, facilitate the transfer of substances between the mother and developing embryo. Finally, we found egg envelopes in the lecithotrophs and moderate matrotrophs, but not in the extensive matrotrophs. Morphological studies, like this one, can provide a better understanding of the natural variation in the structure and functioning of maternal and offspring traits associated with matrotrophy and, thus, insights into the processes driving placental evolution. J. Morphol. 276:707–720, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

18.
Summary The absorptive epithelium of the trophotaeniae of goodeid embryos is involved in the micropinocytotic uptake of protein macromolecules from the ovarian embryotrophe. Incubations of viable Xenoophorus captivus embryos in vitro with horseradish peroxidase (HRP) and/or cationized ferritin (CF) allows the tracing of the fluid-phase and receptor-mediated pathways, respectively. Effects of lowered temperature on both these endocytotic mechanisms have been investigated. At 10° C, trophotaenial absorptive cells (TACs) have a strong capacity to ingest marker proteins from double tracer media. Surface-bound ligands (CF) and solutes (HRP), taken up in primary pinocytic vesicles, are rapidly channelled to the endosomal compartment. Part of the ingested CF is segregated into dense apical tubules and small vesicles indicating that membrane recycling and transcytosis continue at 10° C. Adsorptive endocytosis of CF at 5° C proceeds at a decreased rate. After incubation periods of 30 min and 1 h, tracer molecules can be found in vesicular, tubular and vacuolar compartments of the apical endocytic zone. At 0° C, no uptake of ligand worth mentioning could be ascertained. Fluid-phase endocytosis, on the other hand, is observable at this temperature. Enzyme reaction product accumulates in flattened vacuoles rather than typical voluminous endosomes. After prolonged exposure to HRP, the epithelial junctional complex becomes leaky and the marker protein penetrates the intercellular space and the lateral lamellar membrane invaginations of TACs.Supported by the Deutsche Forschungsgemeinschaft  相似文献   

19.
We used scanning electron microscopy (SEM) and transmission electron microscopy (TEM) to describe the complete ontogeny of simple placentation and the development of both the yolk sac placentae and chorioallantoic placentae from nonreproductive through postparturition phases in the maternal uterine epithelium of the Australian skink, Eulamprus tympanum. We chose E. tympanum, a species with a simple, noninvasive placenta, and which we know, has little net nutrient uptake during gestation to develop hypotheses about placental function and to identify any difference between the oviparous and viviparous conditions. Placental differentiation into the chorioallantoic placenta and yolk sac placenta occurs from embryonic Stage 29; both placentae are simple structures without specialized features for materno/fetal connection. The uterine epithelial cells are not squamous as previously described by Claire Weekes, but are columnar, becoming increasingly attenuated because of the pressure of the impinging underlying capillaries as gestation progresses. When the females are nonreproductive, the luminal uterine surface is flat and the microvillous cells that contain electron-dense vesicles partly obscure the ciliated cells. As vitellogenesis progresses, the microvillous cells are less hypertrophied than in nonreproductive females. After ovulation and fertilization, there is no regional differentiation of the uterine epithelium around the circumference of the egg. The first differentiation, associated with the chorioallantoic placentae and yolk sac placentae, occurs at embryonic Stage 29 and continues through to Stage 39. As gestation proceeds, the uterine chorioallantoic placenta forms ridges, the microvillous cells become less hypertrophied, ciliated cells are less abundant, the underlying blood vessels increase in size, and the gland openings at the uterine surface are more apparent. In contrast, the yolk sac placenta has no particular folding with cells having a random orientation and where the microvillous cells remain hypertrophied throughout gestation. However, the ciliated cells become less abundant as gestation proceeds, as also seen in the chorioallantoic placenta. Secretory vesicles are visible in the uterine lumen. All placental differentiation and cell detail is lost at Stage 40, and the uterine structure has returned to the nonreproductive condition within 2 weeks. Circulating progesterone concentrations begin to rise during late vitellogenesis, peak at embryonic Stages 28-30, and decline after Stage 35 in the later stages of gestation. The coincidence between the time of oviposition and placental differentiation demonstrates a similarity during gestation in the uterus between oviparous and simple placental viviparous squamates.  相似文献   

20.
We used light microscopy to study placental structure of the lizard Sceloporus mucronatus throughout 6 months of embryonic development. Three stages of placental development could be assigned to embryos based on the arrangement of the extraembryonic membranes. A highly vascular choriovitelline placenta was present in the embryonic hemisphere and a nonvascular bilaminar omphalopleure covered most of the abembryonic hemisphere of the egg during embryonic Stages 10-28. A chorioallantoic placenta replaced the choriovitelline placenta by embryonic Stage 29 and an omphaloplacenta covered the abembryonic hemisphere at this stage. The combination of these two placental types occurred in Stage 29-36 embryos. The final stage of placentation, embryonic Stages 37-40, was characterized by an omphalallantoic placenta in the abembryonic hemisphere and a chorioallantoic placenta in the embryonic hemisphere of the egg. The choriovitelline and chorioallantoic placentae are well vascularized, with closely apposed maternal and embryonic blood vessels. These structures are the most likely sites of respiratory exchange. In contrast, the omphaloplacenta and omphalallantoic placentae contain cuboidal or columnar epithelia and these structures may function in histotrophic exchange. Placentation of S. mucronatus is similar to that of predominantly lecithotrophic species in other squamate lineages suggesting that the evolution of this placental morphology is a response to similar factors and is independent of phylogeny.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号