首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
DNA microarray technology has become an important research tool for microbiology and biotechnology as it allows for comprehensive DNA and RNA analyses to characterize genetic diversity and gene expression in a genome-wide manner. DNA microarrays have been applied extensively to study the biology of many bacteria including Mycobacterium tuberculosis, but only recently have they been used for the related high-GC Gram-positive Corynebacterium glutamicum, which is widely used for biotechnological amino acid production. Besides the design and generation of microarrays as well as their use in hybridization experiments and subsequent data analysis, recent applications of DNA microarray technology in C. glutamicum including the characterization of ribose-specific gene expression and the valine stress response will be described. Emerging perspectives of functional genomics to enlarge our insight into fundamental biology of C. glutamicum and their impact on applied biotechnology will be discussed.  相似文献   

3.
Toxicogenomics represents the merging of toxicology with genomics and bioinformatics to investigate biological functions of genome in response to environmental contaminants. Aquatic species have traditionally been used as models in toxicology to characterize the actions of environmental stresses. Recent completion of the DNA sequencing for several fish species has spurred the development of DNA microarrays allowing investigators access to toxicogenomic approaches. However, since microarray technology is thus far limited to only a few aquatic species and derivation of biological meaning from microarray data is highly dependent on statistical arguments, the full potential of microarray in aquatic species research has yet to be realized. Herein we review some of the issues related to construction, probe design, statistical and bioinformatical data analyses, and current applications of DNA microarrays. As a model a recently developed medaka (Oryzias latipes) oligonucleotide microarray was described to highlight some of the issues related to array technology and its application in aquatic species exposed to hypoxia. Although there are known non-biological variations present in microarray data, it remains unquestionable that array technology will have a great impact on aquatic toxicology. Microarray applications in aquatic toxicogenomics will range from the discovery of diagnostic biomarkers, to establishment of stress-specific signatures and molecular pathways hallmarking the adaptation to new environmental conditions.  相似文献   

4.
5.
Chasing the dream: plant EST microarrays   总被引:12,自引:0,他引:12  
DNA microarray technology is poised to make an important contribution to the field of plant biology. Stimulated by recent funding programs, expressed sequence tag sequencing and microarray production either has begun or is being contemplated for most economically important plant species. Although the DNA microarray technology is still being refined, the basic methods are well established. The real challenges lie in data analysis and data management. To fully realize the value of this technology, centralized databases that are capable of storing microarray expression data and managing information from a variety of sources will be needed. These information resources are under development and will help usher in a new era in plant functional genomics.  相似文献   

6.
单细胞基因组学分析的技术前沿   总被引:1,自引:0,他引:1  
Pan XH  Zhu HY  Marjani SL 《遗传》2011,33(1):17-24
基因组学已经深刻地改变了生命科学的诸多领域的面貌。目前它的主要内容是新的全基因组碱基序列的测定和在全基因组范围内鉴定那些在不同水平上影响生命活动的基因群的功能和相互作用。为达此要求,近年出现的第二代测序(深度测序)技术和基因芯片技术发挥了关键作用,但是两者都需要足够的高质量的核酸样品。所以,在只有或只能用单细胞或极少量细胞的情况下,如果没有特殊手段,上述分析往往不能常规、方便地进行。文章以DNA扩增为主线,综合阐述了目前在单细胞(特别是微生物)全基因组测序和大基因组的靶向重测序,以及对单细胞或微量细胞进行的基于深度测序或芯片杂交的功能基因组分析,如转录组、ChIP和DNA的CpG甲基化分析等的最新策略和技术,评价了单细胞基因组测序和功能基因组学各技术的特点并对发展前景进行了展望。  相似文献   

7.
The development of DNA microarray technology a decade ago led to the establishment of functional genomics as one of the most active and successful scientific disciplines today. With the ongoing development of immunomic microarray technology—a spatially addressable, large-scale technology for measurement of specific immunological response—the new challenge of functional immunomics is emerging, which bears similarities to but is also significantly different from functional genomics. Immunonic data has been successfully used to identify biological markers involved in autoimmune diseases, allergies, viral infections such as human immunodeficiency virus (HIV), influenza, diabetes, and responses to cancer vaccines. This review intends to provide a coherent vision of this nascent scientific field, and speculate on future research directions. We discuss at some length issues such as epitope prediction, immunomic microarray technology and its applications, and computation and statistical challenges related to functional immunomics. Based on the recent discovery of regulation mechanisms in T cell responses, we envision the use of immunomic microarrays as a tool for advances in systems biology of cellular immune responses, by means of immunomic regulatory network models.  相似文献   

8.
分析植物应答环境因子的一种有效平台--DNA微阵列   总被引:1,自引:0,他引:1  
王珍  种康  许智宏 《遗传学报》2005,32(2):210-218
随着植物基因组测序工程的迅速发展,大量的DNA序列不断地快速对外公布。如何把这庞大的核苷酸序列信息与植物的生命活动有机地联系起来?高通量的DNA微阵列技术是连接植物基因组序列信息和植物功能基因组的桥梁;而且,这一技术在分析基因表达谱和基因的功能上已经得到了应用。通过简要叙述DNA微阵列技术的几个特点,着重分析近几年来该技术在研究植物对环境胁迫的响应机制以及环境信号间相互作用方面的应用。  相似文献   

9.
ABSTRACT

Introduction: Protein microarray is a powerful tool for both biological study and clinical research. The most useful features of protein microarrays are their miniaturized size (low reagent and sample consumption), high sensitivity and their capability for parallel/high-throughput analysis. The major focus of this review is functional proteome microarray.

Areas covered: For proteome microarray, this review will discuss some recently constructed proteome microarrays and new concepts that have been used for constructing proteome microarrays and data interpretation in past few years, such as PAGES, M-NAPPA strategy, VirD technology, and the first protein microarray database. this review will summarize recent proteomic scale applications and address the limitations and future directions of proteome microarray technology.

Expert opinion: Proteome microarray is a powerful tool for basic biological and clinical research. It is expected to see improvements in the currently used proteome microarrays and the construction of more proteome microarrays for other species by using traditional strategies or novel concepts. It is anticipated that the maximum number of features on a single microarray and the number of possible applications will be increased, and the information that can be obtained from proteome microarray experiments will more in-depth in the future.  相似文献   

10.
近年来,随着许多植物基因组测序和可利用序列的增加,相继建立了一些基于靶基因诱变的“反向”遗传学研究策略,如T—DNA诱变、基因敲除、基因沉默和超表达分析等。同时,DNA微阵列和基因芯片技术的发展使得快速、定量检测植物发育不同时期和不同组织器官的基因转录时空变化成为现实。作图技术的改进和来自不同物种基因组信息的整合也正在加速图谱克隆程序的简化和发展。因此,随着生物基因组测序工作日益增多,整合不同类群植物基因组的信息和资源,在植物功能基因组学研究中的重要性日趋显著。  相似文献   

11.
DNA microarrays were originally devised and described as a convenient technology for the global analysis of plant gene expression. Over the past decade, their use has expanded enormously to cover all kingdoms of living organisms. At the same time, the scope of applications of microarrays has increased beyond expression analyses, with plant genomics playing a leadership role in the on-going development of this technology. As the field has matured, the rate-limiting step has moved from that of the technical process of data generation to that of data analysis. We currently face major problems in dealing with the accumulating datasets, not simply with respect to how to archive, access, and process the huge amounts of data that have been and are being produced, but also in determining the relative quality of the different datasets. A major recognized concern is the appropriate use of statistical design in microarray experiments, without which the datasets are rendered useless. A vigorous area of current research involves the development of novel statistical tools specifically for microarray experiments. This article describes, in a necessarily selective manner, the types of platforms currently employed in microarray research and provides an overview of recent activities using these platforms in plant biology.  相似文献   

12.
植物的功能基因组学研究进展   总被引:39,自引:1,他引:38  
李子银  陈受宜 《遗传》2000,22(1):0-60
基因组研究计划包括以全基因组测序为目标的结构基因组学和以基因功能鉴定为目标的功能基因组学两方面的内容。目前基因功能鉴定的方法主要有:基因表达的系统分析(SAGE)、cDNA微阵列、DNA(基因)芯片、蛋白组技术以及基于转座子标签和T_DNA标签的反求遗传学技术等。本文对上述各种技术的优缺点以及它们在植物基因功能鉴定中的应用进行了综述。 Abstract: The genome projects comprise the structural genomics focusing on determining the complete sequences of the genome and the functional genomics focusing on elucidating the biological function of genes.The rapidly evolving tools for functional genomics research include Serial Analysis of Gene Expression (SAGE),cDNA microarray,DNA (or gene) chips,proteome project and the reverse genetics technique based on the well-established transposon tagging and T?DNA tagging systems.In this paper,the advantages and disadvantages of such techniques and application of these techniques in plant functional genomics research are reviewed and future prospective are also presented.  相似文献   

13.
Motivation: DNA microarrays are a well-known and established technology in biological and pharmaceutical research providing a wealth of information essential for understanding biological processes and aiding drug development. Protein microarrays are quickly emerging as a follow-up technology, which will also begin to experience rapid growth as the challenges in protein to spot methodologies are overcome. Like DNA microarrays, their protein counterparts produce large amounts of data that must be suitably analyzed in order to yield meaningful information that should eventually lead to novel drug targets and biomarkers. Although the statistical management of DNA microarray data has been well described, there is no available report that offers a successful consolidated approach to the analysis of high-throughput protein microarray data. We describe the novel application of a statistical methodology to analyze the data from an immune response profiling assay using human protein microarray with over 5000 proteins on each chip.  相似文献   

14.
Large volumes of genomic data have been generated for several plant species over the past decade, including structural sequence data and functional annotation at the genome level. Various technologies such as expressed sequence tags (ESTs), massively parallel signature sequencing (MPSS) and microarrays have been used to study gene expression and to provide functional data for many genes simultaneously. This review focuses on recent advances in the application of microarrays in plant genomic research and in gene expression databases available for plants. Large sets of Arabidopsis microarray data are publicly available. Recently developed array platforms are currently being used to generate genome-wide expression profiles for several crop species. Coupled to these platforms are public databases that provide access to these large-scale expression data, which can be used to aid the functional discovery of gene function.  相似文献   

15.
Advances in genomics and proteomics have opened up new possibilities for the rapid functional assignment and global characterization of proteins. Large-scale studies have accelerated this effort by using tools and strategies that enable highly parallel analysis of huge repertoires of biomolecules. Organized assortments of molecules on arrays have furnished a robust platform for rapid screening, lead discovery and molecular characterization. The essential advantage of microarray technology is attributed to the massive throughput attainable, coupled with a highly miniaturized platform--potentially driving discovery both as an analytical and diagnostic tool. The scope of microarrays has in recent years expanded impressively. Virtually every biological component--from diverse small molecules and macromolecules (such as DNA and proteins) to entire living cells--has been harnessed on microarrays in attempts to dissect the bewildering complexity of life. Herein we highlight strategies that address challenges in proteomics using microarrays of immobilized proteins and small molecules. Of specific interest are the techniques involved in stably immobilizing proteins and chemical libraries on slide surfaces as well as novel strategies developed to profile activities of proteins on arrays. As a rapidly maturing technology, microarrays pave the way forward in high-throughput proteomic exploration.  相似文献   

16.
17.
18.
19.
A major focus of systems biology is to characterize interactions between cellular components, in order to develop an accurate picture of the intricate networks within biological systems. Over the past decade, protein microarrays have greatly contributed to advances in proteomics and are becoming an important platform for systems biology. Protein microarrays are highly flexible, ranging from large-scale proteome microarrays to smaller customizable microarrays, making the technology amenable for detection of a broad spectrum of biochemical properties of proteins. In this article, we will focus on the numerous studies that have utilized protein microarrays to reconstruct biological networks including protein-DNA interactions, posttranslational protein modifications (PTMs), lectin-glycan recognition, pathogen-host interactions and hierarchical signaling cascades. The diversity in applications allows for integration of interaction data from numerous molecular classes and cellular states, providing insight into the structure of complex biological systems. We will also discuss emerging applications and future directions of protein microarray technology in the global frontier.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号