首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated the neuroendocrine changes involved in the transition from incubating eggs to brooding of the young in turkeys. Numbers of mesotocin (MT; the avian analog of mammalian oxytocin) immunoreactive (ir) neurons were higher in the nucleus paraventricularis magnocellularis (PVN) and nucleus supraopticus, pars ventralis (SOv) of late stage incubating hens compared to the layers. When incubating and laying hens were presented with poults, all incubating hens displayed brooding behavior. c-fos mRNA expression was found in several brain areas in brooding hens. The majority of c-fos mRNA expression by MT-ir neurons was observed in the PVN and SOv while the majority of c-fos mRNA expression in dopaminergic (DAergic) neurons was observed in the ventral part of the nucleus preopticus medialis (POM). Following intracerebroventricular injection of DA or oxytocin (OT) receptor antagonists, hens incubating eggs were introduced to poults. Over 80% of those injected with vehicle or the D1 DA receptor antagonist brooded poults, while over 80% of those receiving the D2 DA receptor antagonist or the OT receptor antagonist failed to brood the poults. The D2 DA/OT antagonist groups also displayed less c-fos mRNA in the dorsal part of POM and the medial part of the bed nucleus of the stria terminalis (BSTM) areas than did the D1 DA/vehicle groups. These data indicate that numerous brain areas are activated when incubating hens initially transition to poult brooding behavior. They also indicate that DAergic, through its D2 receptor, and MTergic systems may play a role in regulating brooding behaviors in birds.  相似文献   

2.
3.
MK-801, also known as dizocilpine, is a noncompetitive N-methyl-D-aspartic acid (NMDA) receptor antagonist that induces schizophrenia-like symptoms. While astrocytes have been implicated in the pathophysiology of psychiatric disorders, including schizophrenia, astrocytic responses to MK-801 and their significance to schizotypic symptoms are unclear. Changes in the expression levels of glial fibrillary acid protein (GFAP), a marker of astrocyte activation in response to a variety of pathogenic stimuli, were examined in the hippocampus of rats treated with the repeated MK-801 injection (0.5 mg/10ml/kg body weight for 6 days) and in primary cultured hippocampal astrocytes incubated with MK-801 (5 or 20 μM for 24 h). Moreover, the expression levels of BDNF and its receptors TrkB and p75 were examined in MK-801-treated astrocyte cultures. MK-801 treatment enhanced GFAP expression in the rat hippocampus and also increased the levels of GFAP protein and mRNA in hippocampal astrocytes in vitro. Treatment of cultured hippocampal astrocytes with MK-801 enhanced protein and mRNA levels of BDNF, TrkB, and p75. Collectively, our results suggest that hippocampal astrocytes may contribute to the pathophysiology of schizophrenia symptoms associated with NMDA receptor hypofunction by reactive transformation and altered BDNF signaling.  相似文献   

4.
This study was conducted to determine the mechanisms by which serotonin (5-hydroxytryptamine, 5-HT) receptors are involved in the suppression of food intake in a rat stress model and to observe the degree of activation in the areas of the brain involved in feeding. In the stress model, male Sprague–Dawley rats (8 weeks old) were given intracerebroventricular injections of urocortin (UCN) 1. To determine the role of the 5-HT2c receptor (5-HT2cR) in the decreased food intake in UCN1-treated rats, specific 5-HT2cR or 5-HT2b receptor (5-HT2bR) antagonists were administered. Food intake was markedly reduced in UCN1-injected rats compared with phosphate buffered saline treated control rats. Intraperitoneal administration of a 5-HT2cR antagonist, but not a 5-HT2bR antagonist, significantly inhibited the decreased food intake. To assess the involvement of neural activation, we tracked the expression of c-fos mRNA as a neuronal activation marker. Expression of the c-fos mRNA in the arcuate nucleus, ventromedial hypothalamic nucleus (VMH) and rostral ventrolateral medulla (RVLM) in UNC1-injected rats showed significantly higher expression than in the PBS-injected rats. Increased c-fos mRNA was also observed in the paraventricular nucleus (PVN), the nucleus of the solitary tract (NTS), and the amygdala (AMG) after injection of UCN1. Increased 5-HT2cR protein expression was also observed in several areas. However, increased coexpression of 5-HT2cR and c-fos was observed in the PVN, VMH, NTS, RVLM and AMG. Whereas, pro-opiomelanocortin mRNA expression was not changed. In an UNC1-induced stress model, 5-HT2cR expression and activation was found in brain areas involved in feeding control.  相似文献   

5.
用不同实验小鼠品系建立精神分裂症的动物模型   总被引:14,自引:0,他引:14  
Wu JH  Zou H  Yu J  Zhou XD  Xie QL  Jin ML 《生理学报》2003,55(4):381-387
基于精神分裂症的谷氨酸功能紊乱假说,实验用N-甲基-D-天门冬氨酸(NMDA)非竞争性受体拮抗剂MK801(5-甲基二氢二苯并环庚稀亚氨马来酸或地卓西平马来酸盐)作用于实验小鼠,观察到类似精神分裂症的症状:移动加快(hyperlocomotion)和刻板性动作(stereotypy),建立了可用仪器测定的两项量化指标。根据作用于近交系BALB/c小鼠的MK801的剂量优化结果,用0.6mg/kg体重的MK801剂量初步建立了精神分裂症小鼠模型,并用近交系C57BL/6小鼠成功重复了上述实验。进一步用系列剂量的MK801作用于远交群ICR小鼠,同样也诱发了类似精神分裂症的症状。用目前临床上常用的抗精神分裂症药物利培酮作用于已建立的BALB/c小鼠和C57BL/6小鼠的精神分裂症模型,结果表明利培酮能显著地抑制两品系模型小鼠的类似精神分裂症的症状。实验结果证明:用MK801作用于实验小鼠建立精神分裂症动物模型是可行的。  相似文献   

6.
This study focused on the function of hnRNP-R in the regulation of c-fos expression. We demonstrated that hnRNP-R accelerated the rise and decline phases of c-fos mRNAs and Fos proteins, allowing PMA to induce an augmented pulse response of c-fos expression. Then, we examined the role of the c-fos-derived AU-rich element (ARE) in hnRNP-R-regulated mRNA degradation. Studies with the ARE-GFP reporter gene showed that hnRNP-R significantly reduced the expression of GFP with an inserted ARE. Moreover, immunoprecipitation-RT-PCR analysis demonstrated that in R28 cells and rat retinal tissues, the c-fos mRNA was co-immunoprecipitated with hnRNP-R. These findings indicate that hnRNP-R regulates the c-fos expression in retinal cells, and that the ARE of c-fos mRNAs contributes to this regulation.  相似文献   

7.
Summary 1. This study presents a time course analysis of the messenger RNA (mRNA) levels of c-fos, vasopressin (VP), and oxytocin (OT) in the paraventricular (PVN) and supraoptic nucleus (SON), following acute and chronic dehydration by water deprivation. 2. Male Wistar rats were separated into five groups: nondehydrated (control group) and dehydrated for 6, 24, 48 and 72 h. Following water deprivation, animals were decapitated, their blood was collected for hematocrit, osmolality, and plasma sodium measurements, and brains were removed for dissection of both PVN and SON. 3. As expected, the hematocrit, osmolality, plasma sodium, and weight loss were increased after water deprivation. In SON, a significant increase in both VP and OT mRNA expression was observed 6 h after dehydration reaching a peak at 24 h and returning to basal levels of expression at 72 h. In the PVN, an increase in both VP and OT mRNA expression occurred 24 h after dehydration. At 72 h the VP and OT mRNA expression levels had decreased but they were still at higher levels than those detected in control animals. 4. These results suggest that SON is the first nucleus to respond to the dehydration stimulus. Additionally, we also observed an increase in c-fos mRNA expression in both PVN and SON 6 h after water deprivation, which progressively decreased 24, 48, and 72 h after the onset of water deprivation. Therefore, it is possible that c-fos may be involved in the modulation of VP and OT genes, regulating the mRNA expression levels on a temporally distinct basis within the PVN and SON.  相似文献   

8.
Neocortex and hippocampus play important role in motor activity, neuronal plasticity and learning and memory mechanisms. Electroencephalographic (EEG) activity of neocortex and hippocampus of rat following NMDA-receptor agonist, N-methyl-D-aspartate (NMDA), 0.25-2 nmol in 10 microliters, ICV and noncompetitive NMDA-receptor antagonists, MK 801 (0.025-0.1 mg/kg, ip) and ketamine (10-50 mg/kg, ip) at OH, 1/2H, 4H, 8H and 24H was recorded. The electrodes were implanted stereotaxically in hippocampus and neocortex respectively. NMDA (0.25 and 1 nmol) showed longer lasting decrease in amplitude in hippocampus and in frequency in cortical neurons while 2 nmol produced epileptogenic neurotoxicity. Opposite effect i.e. increase in amplitude in both, hippocampus and neocortex was observed with MK 801 and ketamine and these agents also showed longer lasting influence. Administration of MK 801 (0.05 mg/kg) and ketamine (50 mg/kg) prior to NMDA 2 nmol protected 40% animals from NMDA-induced neurotoxicity and blockade of NMDA-induced long term influence. The EEG effect of NMDA agonist and NMDA-induced neurotoxicity at higher dose and its modification by NMDA-antagonist, MK 801 and ketamine suggest that beside NMDA agonists (NMDA), its antagonists may, also affect long lasting changes in hippocampus and cortex. These antagonists reverse NMDA-mediated long term influence in these brain areas.  相似文献   

9.
The modulation of histamine neuron activity by various non-competitive NMDA-receptor antagonists was evaluated by changes in tele-methylhistamine (t-MeHA) levels and histidine decarboxylase (hdc) mRNA expression induced in rodent brain. The NMDA open-channel blockers phencyclidine (PCP) and MK-801 enhanced t-MeHA levels in mouse brain by 50-60%. Ifenprodil, which interacts with polyamine sites of NR2B-containing NMDA receptors, had no effect. PCP also increased hdc mRNA expression in the rat tuberomammillary nucleus. The enhancement of t-MeHA levels elicited by MK-801 (ED50 of approximately 0.1 mg/kg) was observed in the hypothalamus, cerebral cortex, striatum and hippocampus. Control t-MeHA levels and the t-MeHA response to MK-801 were not different in male and female mice. Double immunostaining for HDC and NMDA receptor subunits showed that histamine neurons of the rat tuberomammillary nucleus express NMDA receptor subunit 1 (NR1) with NMDA receptor subunit 2A (NR2A) and NMDA receptor 2B subunit (NR2B). In addition, immunoreactivity for the neuronal glutamate transporter EAAC1 was observed near most histaminergic perikarya. Hence, these findings support the existence of histamine/glutamate functional interactions in the brain. The increase in histamine neuron activity induced by NMDA receptor antagonists further suggests a role of histamine neurons in psychotic disorders. In addition, the decrease in MK-801-induced hyperlocomotion observed in mice after administration of ciproxifan further strengthens the potential interest of H3-receptor antagonist/inverse agonists for the symptomatic treatment of schizophrenia.  相似文献   

10.
Systemic administration of the noncompetitive NMDA-receptor antagonist, MK-801, has been proposed to model cognitive deficits similar to those seen in patients with schizophrenia. The present work investigated the ability of a dopamine-binding DNA aptamer to regulate these MK-801-induced cognitive deficits when injected into the nucleus accumbens. Rats were trained to bar press for chocolate pellet rewards then randomly assigned to receive an intra-accumbens injection of a DNA aptamer (200 nM; n = 7), tris buffer (n = 6) or a randomized DNA oligonucleotide (n = 7). Animals were then treated systemically with MK-801 (0.1 mg/kg) and tested for their ability to extinguish their bar pressing response. Two control groups were also included that did not receive MK-801. Data revealed that injection of Tris buffer or the random oligonucleotide sequence into the nucleus accumbens prior to treatment with MK-801 did not reduce the MK-801-induced extinction deficit. Animals continued to press at a high rate over the entire course of the extinction session. Injection of the dopamine aptamer reversed this MK-801-induced elevation in lever pressing to levels as seen in rats not treated with MK-801. Tests for activity showed that the aptamer did not impair locomotor activity. Results demonstrate the in vivo utility of DNA aptamers as tools to investigate neurobiological processes in preclinical animal models of mental health disease.  相似文献   

11.
The expression of c-fos mRNA in rat brain was induced by intraperitoneal administration of pentylenetetrazole (PTZ) and picrotoxin, which act on the picrotoxin binding site of the gamma-aminobutyric acid-benzodiazepine (GABA-BZ) receptor complex, by N-methyl-D-aspartate (NMDA) and kainic acid, agonists of different classes of glutamate receptors and by caffeine, an antagonist of adenosine receptors. The actions of PTZ and picrotoxin but not that of NMDA were blocked by ethanol and the NMDA-receptor antagonist, MK-801. Ro 15-4513 partially reversed the inhibitory effect of ethanol on PTZ-induced c-fos mRNA synthesis. Acute ethanol administration blocked the actions of PTZ and NMDA without affecting the response to kainic acid or caffeine. Taken together, these data suggest that ethanol blocks c-fos gene activation by noncompetitive antagonists of the GABA-BZ receptor via actions on both the NMDA and GABA receptors.  相似文献   

12.
The olfactory bulb (OB) of rodents has been suggested to possess a self-sustaining circadian oscillator which functions independent from the master circadian clock in the suprachiasmatic nucleus (SCN) of the hypothalamus. However, neither histology nor physiology of this extra-SCN clock is studied yet. In the present study, we examined circadian variation of major clock gene expressions in the OB and responsiveness to single photic stimuli. Here we show significant circadian variation in the expression of clock genes, Per1, Per2 and Bmal1 in the OB. Per1 and PER2 were mainly expressed in the mitral cell and granular cell layers of the OB. Light responsiveness of Per1 and Per2 expression was different in the OB from that in the parietal cortex. Both Per1 and Per2 are expressed in the OB only by l000 lux light pulse, whereas 100 lux light was enough to induce Per1 mRNA in the parietal cortex. Interestingly, even 1000 lux light failed to induce Per2 mRNA in the parietal cortex. These clock gene-specific and brain region-dependent responses to lights in the OB and parietal cortex suggest that single light stimulus induces various physiological functions in different brain areas via specific clock gene.  相似文献   

13.
1. c-fos mRNA expression and Fos protein expression were investigated by in situ hybridization and immunohistochemistry after 30 min of forced restraint stress or pentylenetetrazol (PTZ; 64 mg/kg, i.p.)-induced seizures.2. Forced restraint stress and PTZ-induced seizures generated c-fos mRNA expression of distinct intensities, but in similar brain regions, including the hippocampus, the amygdala, the piriform cortex, the paraventricular hypothalamic nucleus, the habenula, and parts of the cerebral cortex.3. The distribution of Fos-like immunoreactivity induced by stress or seizures only partially overlap. No Fos-like expression was found in the hippocampus or the habenula after restraint stress. Nevertheless, both areas presented Fos-like expression after PTZ-induced seizures.4. Our results support the suggestion that immediate early gene expression in vivo may exhibit both region- and stimulus-specific expression.  相似文献   

14.
Using Northern analysis, in situ hybridization, and nuclease protection assays, the expression and regulation of androgen receptor messenger RNA (AR mRNA) was examined in the CNS of juvenile Xenopus laevis. Only one of the AR mRNA isoforms expressed in X. laevis is transcribed in the CNS as shown by Northern blot analysis. Nuclease protection assays demonstrate that the expression of AR mRNA is higher in the brain stem than in the telencephalon and diencephalon. Although expression of AR mRNA is widespread throughout the CNS, cells of cranial nerve nucleus IX-X (N. IX-X) and spinal cord display the highest in situ hybridization signals in their cytoplasm. Double labeling using horseradish peroxidase and digoxigenin labeled AR probes reveals that laryngeal and anterior spinal cord motor neurons express AR mRNA. More cells express AR mRNA in N. IX-X of males than of females. The number of AR expressing cells in N. IX-X decreases following gonadectomy in both sexes, and dihydrotestosterone (DHT) treatment for 1 month reverses this effect. Increased expression of AR mRNA in the brain of DHT treated animals is also apparent in nuclease protection assays. Sex differences in number of AR expressing cells and hormone regulation of AR mRNA expression in motor nuclei may influence neuromuscular systems devoted to sexually differentiated behaviors. © 1996 John Wiley & Sons, Inc.  相似文献   

15.
This study addressed the hypotheses that exposure to chronic hypoxia (CH) and chronic hypercapnia (CHC) would modify the acute hypercapnic ventilatory response in the cane toad (Rhinella marina; formerly Bufo marinus or Chaunus marinus) and its regulation by NMDA-mediated processes. Cane toads were exposed to 10 days of CH (10% O2) or CHC (3.5% CO2) followed by acute in vivo hypercapnic breathing trials, conducted before and after an injection of the NMDA-receptor channel blocker, MK801 into the dorsal lymph sac. CH, CHC and MK801 did not alter ventilation under acute normoxic normocapnic conditions. CH blunted the increase in breathing frequency during acute hypercapnia while CHC had no effect. The effect of CH on breathing frequency was mediated by a decrease in the number of breaths per breathing episode. Neither CH nor CHC altered breath area (volume). MK801 augmented breathing frequency (via an increase in breaths per episode) and total ventilation during acute hypercapnia in control toads and toads exposed to CH; there was no effect of MK801 on the increase in breathing frequency or total ventilation, during acute hypercapnia in toads exposed to CHC. The results indicate that CH and CHC differentially alter breathing pattern. Furthermore, they indicate an absence of NMDA-mediated glutamatergic tone during normoxic normocapnia but that NMDA-mediated processes attenuate the increase in breathing frequency during acute hypercapnia under control conditions and following CH but not following CHC. Given that MK801 was administered systemically, the effects could be acting anywhere in the reflex pathway from CO2-sensing to respiratory motor output.  相似文献   

16.
Currently not much is known about the distribution and function of the phosphodiesterase type 7 (PDE-7) enzyme. Therefore, we carried out an extensive distribution analysis of the rat and human PDE-7 byin situ hybridization as well as RT-PCR. We isolated a partial rat cDNA clone that is highly homologous to the sequence of the human PDE-7 gene. RT-PCR tissue distribution analyses revealed expression of the mRNA of the human and rat-enzymes in most of the examined tissues, like adult heart, lung, brain, and liver, as well as in several cell lines of the immune system.In situ hybridization with the rat PDE-7 showed a differential expression pattern during the late phases of the developing rat brain with higher levels of mRNA in cortical and telencephalic structures in d 16, 18 and 20 embryonic stages, whereas in adult rat brain, higher amounts of mRNA could only be detected in cerebellum and, to a lesser extent, in hippocampus and the olfactory system.  相似文献   

17.
A single exposure to a severe emotional stressor such as immobilization in wooden boards (IMO) causes long‐term (days to weeks) peripheral and central desensitization of the hypothalamic‐pituitary‐adrenal (HPA) response to the same (homotypic) stressor. However, the brain areas putatively involved in long‐term desensitization are unknown. In the present experiment, adult male rats were subjected to 2 h of IMO and, 1 or 4 weeks later, exposed again to 1 h IMO together with stress‐naive rats. C‐fos mRNA activation just after IMO and 1 h after the termination of IMO (post‐IMO) were evaluated by in situ hybridization. Whereas in most brain areas c‐fos mRNA induction caused by the last IMO session was similar in stress‐naive (controls) and previously immobilized rats, a few brain areas showed a reduced c‐fos mRNA response: ventral lateral septum (LSv), medial amygdala (MeA), parvocellular region of the paraventricular hypothalamic nucleus (pPVN), and locus coeruleus (LC). In contrast, an enhanced expression was observed in the medial division of the bed nucleus stria terminalis (BSTMv). The present work demonstrates that a previous experience with a stressor can induce changes in c‐fos mRNA expression in different brain areas in response to the homotypic stressor and suggests that LSv, MeA, and BSTMv may be important for providing signals to lower diencephalic (pPVN) and brainstem (LC) nuclei, which results in a lower physiological response to the homotypic stressor. © 2006 Wiley Periodicals, Inc. J Neurobiol, 2006  相似文献   

18.
In humans, loss or alteration of the CHL1/CALL gene may contribute to mental impairment associated with the 3p‐syndrome, caused by distal deletions of the short (p) arm of chromosome 3, and schizophrenia. Mice deficient for the Close Homologue of L1 (CHL1) show aberrant connectivity of hippocampal mossy fibers and olfactory sensory axons, suggesting participation of CHL1 in the establishment of neuronal networks. Furthermore, behavioral studies showed that CHL1‐deficient mice react differently towards novel experimental environments. These data raise the hypothesis that processing of information, possibly novel versus familiar, may be altered in the absence of CHL1. To test this hypothesis, brain activities were investigated after presentation of a novel, familiar, or neutral gustatory stimulus using metabolic mapping with (14C)‐2‐deoxyglucose (2‐DG) and analysis of mRNA expression of the immediate early genes (IEGs) c‐fos and arg 3.1/arc by in situ hybridization. 2‐DG labeling revealed only small differences between CHL1‐deficient and wild‐type littermate mice. In contrast, while the specific novelty‐induced increase in c‐fos expression was maintained in most of the brain areas analyzed, c‐fos mRNA expression was similar after the novel and familiar taste in several brain areas of the CHL1‐deficient mice. Furthermore, in these mutants, arg 3.1/arc expression was slightly reduced after the novel taste and increased after the familiar taste, leading to a similar arg 3.1/arc mRNA expression after both stimuli. Our results indicate that, in contrast to controls, CHL1‐deficient mice might process novel and familiar information similarly and suggest that the altered neuronal connectivity in these mutants disturbs information processing at the molecular level. © 2003 Wiley Periodicals, Inc. J Neurobiol 57: 67–80, 2003  相似文献   

19.
In view of the hypothesis that glutamatergic dysfunction of brain can underlie the negative symptoms of schizophrenia (including cognitive deficit), the aim of this study was to develop a model of cognitive impairment in Wistar male rats after administration of a noncompetitive NMDA-receptor antagonist in early postnatal period. Rat pups were daily subcutaneously injected with 0.05 mg/kg MK-801 on postnatal days 7-49. On the 27th and 28th days 24 h after the last previous injection, the MK-801-treated rats demonstrated lower spontaneous locomotor and exploratory activity in comparison with saline control, however, they retained the reaction of hyperlocomotion which developed immediately after the MK-801 administration. In these rats, the anxiety level in the elevated plus-maze (on the 40th postnatal day) was found to be decreased, and the spatial learning in food rewarded task was negatively affected (on the 50th-54th days). It is suggested that impairment of the input of sensory information and its correct assessment by the animals can be associated with the early neonatal blockade of NMDA glutamate receptors.  相似文献   

20.
Amnesia may result from ageing, chronic drug abuse or head injury and there are limited therapeutic strategies to such conditions. We have shown that Bacopa monniera, a memory enhancing drug can reverse both diazepam and scopolamine induced amnesia in mice. In order to understand the downstream effects of B. monniera, this study was designed to investigate how B. monniera antagonizes MK801, an NMDA receptor antagonist and N ω-Nitro-L-arginine (L-NNA), a nitric oxide synthase inhibitor. We compared the degree of reversal B. monniera imparts on MK801 and L-NNA induced anterograde amnesia in experimental mice. Our data revealed that L-NNA induced anterograde amnesia was significantly reversed by B. monniera, however, it did not attenuate the MK 801 induced anterograde amnesia. B. monniera significantly increased calmodulin (CaM) and pCREB/CREB levels when the whole brain lysates of B. monniera pretreated amnesic mice were compared with those of L-NNA treated mice. We conclude that antiamnesic effect B. monniera on L-NNA induced amnesia may be mediated by NO pathyway involving CaM, which is required for LTP sustenance. These studies evoke interest in their future development as potential antiamnesic drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号