首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mouse genes En-1 and En-2 display sequence similarity, in and around the homeobox region, to the engrailed family in Drosophila. This paper describes their pattern of expression in the 12.5-day mouse embryo as determined by in situ hybridization. En-2 is expressed in a subset of cells expressing En-1. Both genes are expressed in the developing midbrain and its junction with the hindbrain. In addition, En-1 is expressed in the floor of the hindbrain, a restricted ventrolateral segment of the neural tube throughout the trunk and anterior part of the tail, the dermatome of tail somites, the centrum and costal processes in developing vertebrae, a restricted region of facial mesenchyme and the limb-bud ectoderm. Supplementary studies of 9.5-day and 10.5-day embryos showed that the same pattern of expression pertained in the neural tube, but that expression in the somites is at first confined to the dermatome and later found at a low level in restricted sclerotomal regions. Both genes are expressed in restricted domains which do not cross tissue-type boundaries. In several instances, however, boundaries of expression lie within morphologically undifferentiated tissue. These results suggest that En-1 and En-2 may be involved in the establishment or maintenance of the spatial integrity of specific domains within developing tissues.  相似文献   

2.
3.
Crossregulation between En-2 and Wnt-1 in chick tectal development   总被引:1,自引:1,他引:0  
En-1, En-2 and Wnt-1 are proposed to be essential signals for the development of the optic tectum in chick embryos. Drosophila engrailed and wingless , homologs of En ( En-1 and En-2 ) and Wnt-1 , respectively, have been shown to crossregulate each other. In the present paper, it is reported that crossregulation between En-2 and Wnt-1 is preserved in the development of the chick optic tectum. When En-2 is overexpressed by the replication competent retroviral vector, Wnt-1 is expressed ectopically at the dorsal midline of the diencephalon. When Wnt-1 is introduced extrinsically either by ectopic transplantation of mesencephalon, or by implantation of Wnt-1 producing cells, En-2 is induced ectopically at the dorsal midline of the tel-diencephalic border. Thus, ectopic expression of En-2 and Wnt-1 leads to crossregulation of each other in the chick brain. As diencephalon transdifferentiates into the optic tectum by an appropriate signal, the crossregulation of En-2 and Wnt-1 in the diencephalon may mimic the relationship required for early development in the tectum.  相似文献   

4.
The eye field is initially a large single domain at the anterior end of the neural plate and is the first indication of optic potential in the vertebrate embryo. During the course of development, this domain is subject to interactions that shape and refine the organogenic field. The action of the prechordal mesoderm in bisecting this single region into two bilateral domains has been well described, however the role of signalling interactions in the further restriction and refinement of this domain has not been previously characterised. Here we describe a role for the rostral cephalic paraxial mesoderm in limiting the extent of the eye field. The anterior transposition of this mesoderm or its ablation disrupted normal development of the eye. Importantly, perturbation of optic vesicle development occurred in the absence of any detectable changes in the pattern of neighbouring regions of the neural tube. Furthermore, negative regulation of eye development is a property unique to the rostral paraxial mesoderm. The rostral paraxial mesoderm expresses members of the bone morphogenetic protein (BMP) family of signalling molecules and manipulation of endogenous BMP signalling resulted in abnormalities of the early optic primordia.  相似文献   

5.
Epithelial-mesenchymal interactions are critical for normal pancreas development. Fibroblast growth factor (Fgf)-10 is expressed in the pancreatic mesenchyme and its signalling is required for normal growth and regulation of gene expression in the pancreatic epithelium. However, little is known about putative Fgf signalling to the mesenchyme. Here we have examined the embryonic pancreas expression of differentially spliced Fgf receptor isoforms and their targets; the Sprouty (Spry) and Spred family genes which are induced by Fgf signalling. Using qPCR to quantify mRNA levels in microdissected pancreatic epithelium and mesenchyme as well as in FACS isolated Pdx1-GFP(+) and -GFP(-) cell populations we demonstrate that several members of the Spred and Sprouty families are expressed in embryonic mouse pancreas and find Spred1 and -2 as well as Spry2 and -4 to be predominantly expressed in pancreatic mesenchyme. Using embryonic pancreas explant cultures we demonstrate that Spred1/2 and Spry2/4 expression is regulated by Fgf receptor signalling and is increased by treatment with Fgf9, but not by Fgf7 or Fgf10. We extend previous work showing that Fgf9 is expressed in pancreatic mesenchyme, and since Fgf9 is known to activate the mesenchyme-specific "c"-splice forms of Fgf receptors, while Fgf7 and -10 both activate the epithelium-specific "b"-splice forms of Fgf receptors, these results suggest that Fgf signalling is active in the pancreatic mesenchyme, where expression of Spred1/2 and Spry2/4 appear downstream of Fgf9 signalling.  相似文献   

6.
The appearance of bottle cells at the dorsal vegetal/marginal boundary of Xenopus embryos marks the onset of blastopore formation. The conditions leading to this epithelial activity were investigated by inducing bottle cells ectopically in the animal region with VegT or different members of the transforming growth factor (TGF)-beta family. Morphological studies on the ectopic bottle cells indicate their close similarity to the endogenous bottle cells at the dorsal blastopore lip. The subepithelial cells of the induced animal region express mesodermal genes in a pattern reminiscent to that observed on the dorsal lip. Relating this expression pattern to the position of the ectopic bottle cells leads to the conclusion that bottle cells form in regions of high TGF-beta signalling. The specific inhibitory effects of cerberus on ectopically induced bottle cells revealed that nodal related growth factors are the intrinsic signals that elicit bottle cell formation in the normal embryo. In addition, fibroblast growth factor signalling is an essential precondition for this epithelial response as it is for mesoderm formation. We conclude that bottle cell formation in the epithelial layer of the gastrula is closely linked to mesodermal patterning in the subepithelial tissues.  相似文献   

7.
8.
Apolipoprotein D (ApoD) is a secreted protein that belongs to the lipocalin family. We describe the expression pattern of ApoD during mouse embryogenesis by in situ hybridization using RNA probes. ApoD is expressed at E9 in mesenchymal cells in the rombencephalic–mesencephalic region. At E9.5 the cephalic ApoD-positive cells appear in the mesenchyme, and at later stages (starting at E10.5) ApoD expression is seen in meninges. Within the neuroepithelium, ApoD is expressed in pericytes surrounding brain and spinal cord capillaries from E10.5 to birth. Other places of expression of ApoD are the mesenchyme surrounding the olfactory epithelium and semicircular canals, as well as chondroblasts of skull and vertebrae.  相似文献   

9.
In Drosophila, the Polycomb-group constitutes a set of structurally diverse proteins that act together to silence target genes. Many mammalian Polycomb-group proteins have also been identified and show functional similarities with their invertebrate counterparts. To begin to analyze the function of Polycomb-group proteins in Xenopus development, we have cloned a Xenopus homolog of Drosophila Polycomblike, XPcl1. XPcl1 mRNA is present both maternally and zygotically, with prominent zygotic expression in the anterior central nervous system. Misexpression of Pcl1 by RNA injection into embryos produces defects in the anterior central nervous system. The forebrain and midbrain contain excess neural tissue at the expense of the ventricle and include greatly thickened floor and roof plates. The eye fields are present but Rx2A, an eye-specific marker, is completely repressed. Overexpression of Pcl1 in Xenopus embryos alters two hindbrain markers, repressing En-2 and shifting it and Krox-20 in a posterior direction. Similar neural phenotypes and effects on the En-2 expression pattern were produced by overexpression of three other structurally unrelated Polycomb-group proteins: M33, XBmi-1, and mPh2. These observations indicate an important role for the Polycomb-group in regulating gene expression in the developing anterior central nervous system.  相似文献   

10.
We have identified three genes, expressed in zebrafish embryos, that are members of the engrailed gene family. On the basis of sequence comparisons and analyses of their expression patterns, we suggest that two of these genes, eng2 and eng3, are closely related to the En-2 gene of other vertebrates. The third gene, eng1, is probably the zebrafish homolog of En-1. Subsets of cells at the developing junction between the midbrain and hindbrain express three different combinations of these genes, revealing a previously unknown complexity of this region of the CNS. Other cells, for example, jaw and myotomal muscle precursors, express two of the three genes in combinations which, in the myotomal muscles, change during development. Cells in the developing hindbrain and fins express only a single engrailed gene. We propose that the fates and patterning of these cells may be regulated by the coordinate expression of particular combinations of these closely related homeoproteins.  相似文献   

11.
To elucidate roles of fibroblast growth factors (FGF)18 during vertebrate development, we examined expression patterns of Fgf18 in chick embryos and observed effects of FGF18 protein on the Hensen's node, isthmus, and limb buds. Fgf18 is expressed on the right side of the node before the expression of Fgf8 starts. FGF18 protein can induce expression of Fgf8 on the left side of the node, indicating involvement of both FGFs in specification of left-right asymmetry. In the developing brain, Fgf18 is expressed in the isthmus, following the Fgf8 expression. Since Fgf18 is induced ectopically during formation of the second midbrain by FGF8 protein, both FGFs also elaborate midbrain development. In the limb bud, Fgf18 is expressed in the mesenchyme and ectopic application of FGF18 protein inhibits bone growth in the limb. FGF18 is thus likely an endogenous ligand of FGF receptor 3, whose mutation causes bone dysplasia in humans. These results demonstrate that the FGF18-FGF8 signaling is involved in various organizing activities and the signaling hierarchies between FGF18 and FGF8 seem to change during patterning of different structures.  相似文献   

12.
13.
Craniofacial morphogenesis is a complex multi-step process that involves numerous biological processes to coordinate the growth, proliferation, migration, and subsequent differentiation of the cranial neural crest cells. Members of the Fibronectin Leucine-Rich Transmembrane (Flrt) gene family have been previously reported to be widely expressed in the developing embryo. We mapped the expression of Flrt2 and Flrt3 at critical stages of craniofacial development and found that, during early craniofacial development, Flrt2 was highly expressed initially in the cranial neural crest cells and Flrt3 in the midbrain. Later both genes were expressed in the developing pharyngeal region. Flrt2 expression predominated in the neural crest-derived mesenchyme in the medial aspect of the developing frontonasal region in close relationships with the expression of Fgfr2, Shh, and Msx1, three genes shown previously to play critical roles in craniofacial development. Flrt2 was also present in the vomero-nasal organ, mandibular primodia, and the posterior aspects of the unfused and fused secondary palatal shelves. Flrt3, however, had a more restrictive expression, being present in the mesenchyme underlying the ectoderm of the medial nasal process and in the mandibular primordium and in regions undergoing outgrowth, in a pattern that overlapped with Bmp4 expression. Both Flrt2 and Flrt3 were later found to be present at sites of epithelial–mesenchymal interactions such as the developing tooth buds, hair follicles, and eye. Together the data suggested important roles for Flrt2 and Flrt3 in mediating events such as NCC migration, chondrogenesis and epithelial–mesenchymal interactions during craniofacial development.  相似文献   

14.
15.
Six/sine oculis (Six/so) class genes, with representatives in vertebrates and invertebrates, include members with key developmental roles in the anterior part of the central nervous system (CNS) and eye. Having characterized the role of the first planarian gene of the Six/so family in eye development, we attempted to identify novel genes of this family related to the platyhelminth eye genetic network. We isolated a new Six/so gene in the planarian Girardia tigrina, Gtsix-3, which belongs to the Six3/6 class. Whole mount in situ hybridization revealed Gtsix3 expression in a stripe surrounding the cephalic ganglia in adults. This spatial pattern corresponds to the cephalic branches, the nerve cells that connect the CNS with the marginal sensory organs located continuously at the edge of the head. During head regeneration, Gtsix-3 shows delayed activation compared to other head genes, with an initial two spot pattern that later evolves to a continuous lateral expression in the new regenerated cephalic ganglia with a final reduction to the adult pattern. However, Gtsix-3 is not activated in tail regeneration and no eye expression is observed at any regenerative stage. These findings provide a new marker for the developing anterior nervous system and evidence the complexity of planarian brain.  相似文献   

16.
Six/sine oculis (Six/so) class genes, with representatives in vertebrates and invertebrates, include members with key developmental roles in the anterior part of the central nervous system (CNS) and eye. Having characterized the role of the first planarian gene of the Six/so family in eye development, we attempted to identify novel genes of this family related to the platyhelminth eye genetic network. We isolated a new Six/so gene in the planarian Girardia tigrina, Gtsix-3, which belongs to the Six3/6 class. Whole mount in situ hybridization revealed Gtsix3 expression in a stripe surrounding the cephalic ganglia in adults. This spatial pattern corresponds to the cephalic branches, the nerve cells that connect the CNS with the marginal sensory organs located continuously at the edge of the head. During head regeneration, Gtsix-3 shows delayed activation compared to other head genes, with an initial two spot pattern that later evolves to a continuous lateral expression in the new regenerated cephalic ganglia with a final reduction to the adult pattern. However, Gtsix-3 is not activated in tail regeneration and no eye expression is observed at any regenerative stage. These findings provide a new marker for the developing anterior nervous system and evidence the complexity of planarian brain.  相似文献   

17.
18.
19.
The midbrain–hindbrain boundary (MHB) acts as an organiser/signalling centre to pattern tectal and cerebellar compartments. Cells in adjacent compartments must be distinct from each other for boundary formation to occur at the interface. Here we have identified the leucine-rich repeat (LRR) neuronal 1 (Lrrn1) protein as a key regulator of this process in chick. The Lrrn family is orthologous to the Drosophila tartan/capricious (trn/caps) family. Differential expression of trn/caps promotes an affinity difference and boundary formation between adjacent compartments in a number of contexts; for example, in the wing, leg and eye imaginal discs. Here we show that Lrrn1 is expressed in midbrain cells but not in anterior hindbrain cells. Lrrn1 is down-regulated in the anterior hindbrain by the organiser signalling molecule FGF8, thereby creating a differential affinity between these two compartments. Lrrn1 is required for the formation of MHB — loss of function leads to a loss of the morphological constriction and loss of Fgf8. Cells overexpressing Lrrn1 violate the boundary and result in a loss of cell restriction between midbrain and hindbrain compartments. Lrrn1 also regulates the glycosyltransferase Lunatic Fringe, a modulator of Notch signalling, maintaining its expression in midbrain cells which is instrumental in MHB boundary formation. Thus, Lrrn1 provides a link between cell affinity/compartment segregation, and cell signalling to specify boundary cell fate.  相似文献   

20.
HoxD expression and cartilage pattern formation were compared after application of a recombinant amino-terminal peptide of Sonic hedgehog protein (Shh-N) and implantation of cells expressing the Sonic hedgehog (Shh) gene. During digit duplication after implantation of a Shh-N-soaked bead, BMP-2 and Patched expression was transiently induced in the anterior limb mesenchyme 20 h after grafting, but was reduced to the basal level 48 h after grafting. On the contrary, when Shh-expressing cells were grafted to the anterior limb bud, expression domains of the BMP-2 and Patched genes were initially induced in the restricted region in close proximity to the grafted cells. Induced expression of BMP-2 and Patched was maintained in the anterior-peripheral region of the limb bud for 42 h after grafting. In either case, HoxD12 and HoxD13 were consistently induced in the anterior-distal limb mesenchyme, accompanying mirror-image duplication of the digit pattern. Induction and maintenance of HoxD expression were consistent with the resultant digit pattern. A steep gradient of Shh activity provided by Shh-expressing cells is most adequate to induce complete digit pattern, as compared to the shallow gradient provided by Shh-N protein released from a bead. These results suggest that positional identity is respecified by Shh-N activity within the first 24 h during digit duplication, and that Shh-N on its own is not acting as a long-range signaling molecule to determine positional identity at a distance in the limb bud.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号