首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
利用扫描电镜(SEM)和光镜(LM)对臭椿花序及花器官的分化和发育进行了初步研究,表明:1)臭椿花器官分化于当年的4月初,为圆锥花序;2)分化顺序为花萼原基、花冠原基、雄蕊原基和雌蕊原基。5个萼片原基的发生不同步,并且呈螺旋状发生;5个花瓣原基几乎同步发生且其生长要比雄蕊原基缓慢;雄蕊10枚,两轮排列,每轮5个原基的分化基本是同步的;雌蕊5,其分化速度较快;3)在两性花植株中,5个心皮顶端粘合形成柱头和花柱,而在雄株中,5个心皮退化,只有雄蕊原基分化出花药和花丝。本研究着重观察了臭椿中雄花及两性花发育的过程中两性花向单性花的转变。结果表明,臭椿两性花及单性花的形成在花器官的各原基上是一致的(尽管时间上有差异),雌雄蕊原基同时出现在每一个花器官分化过程中,但是,可育性结构部分的形成取决于其原基是否分化成所应有的结构:雄蕊原基分化形成花药与花丝,雌蕊原基分化形成花柱、柱头和子房。臭椿单性花的形成是由于两性花中雌蕊原基的退化所造成,其机理有待于进一步研究。  相似文献   

2.
外来物种黄顶菊花器官分化的初步研究   总被引:2,自引:0,他引:2  
利用扫描电镜(SEM)观察了黄顶菊(Flaveria bidentis(L.)Kuntz)花序发育过程中蝎尾状聚伞花序、头状花序和小花的形成.黄顶菊的花序由主轴及一至三级分枝组成,各级分枝交互对生,形成方式相同.植株主轴和侧枝顶端的每个花序由3~6个蝎尾状聚伞花序密集而成;每一蝎尾状聚伞花序由5~15个头状花序组成;每一头状花序中有4~11枚小花.小花分化顺序为5个花冠原基、5个雄蕊原基和2个心皮原基.2007年,天津地区黄顶菊的花期是7月下旬到9月下旬.7月中旬,花序和花器官原基不断形成并分化,至花器官成熟经历的时间约15 d.  相似文献   

3.
在扫描电镜下观察了桦木科(Betulaceae)铁木属花序和花的形态发生过程。结果显示, 铁木雌花序由多个小聚伞花序螺旋状排列组成。每个小花序原基分化出1枚初级苞片和一团小花序原基分生组织, 由小花序原基分生组织分化形成1对次级苞片和2个花原基, 每个花原基分化出2个或3个心皮原基, 形成二心皮或三心皮雌蕊, 雌蕊基部有1层环状花被原基。雄花序为柔荑状, 由多个小聚伞花序螺旋状排列组成。每个小花序原基分化出1枚初级苞片和一团小花序原基分生组织, 由小花序原基分生组织分化出3个花原基分区, 位于中央的花原基分区, 分化形成5-6枚雄蕊原基, 两侧的花原基分区, 分别分化形成3-4枚雄蕊原基, 雄蕊原基分化形成四药囊雄蕊。雄蕊原基纵裂, 但花丝纵裂没有达到基部。  相似文献   

4.
徐丹  刘全儒 《西北植物学报》2006,26(8):1534-1539
在体式显微镜系统观察的基础上,对唇形科鼠尾草属植物荔枝草(Salvia plebeiaR.Br.)的花发育过程进行了扫描电镜观察.发现荔枝草的轮伞花序由多数交互对生的聚伞花序单位组成,花器官发育形式为向心式",各部分花器官从外向内依次形成;共形成4个雄蕊原基,其中2个雄蕊原基在形成后不再发育,另2个雄蕊原基每个均发育出1可育药室和1不育药室,不育药室膨大连接,并在花成熟之前参与组成特殊杠杆结构;子房四深裂"的形成实际是由4个原基分别发育,而后相互靠拢而成.  相似文献   

5.
在扫描电镜下首次观察了桦木科鹅耳枥属千金榆花序和花的形态发生过程。千金榆雌花序由多个小聚伞花序螺旋状排列组成;每个小花序原基分化出1枚初级苞片和一团小花序原基分生组织,由小花序原基分生组织分化形成2个花原基和2个次级苞片;每个花原基分化出2个心皮原基,形成1个二心皮雌蕊;次级苞片远轴面发育快于近轴面,呈不均等的联合状;雌蕊基部有1层环状花被原基。雄花序为柔荑状,由多个小聚伞花序螺旋状排列组成;每个小花序原基分化出1枚初级苞片和一团小花序原基分生组织,由小花序原基分生组织分化出3个花原基分区,并分化形成3朵小花,小花无花被,位于两侧的小花分别有2枚雄蕊,位于中央的小花有4枚雄蕊,雄蕊共8枚,稀为10枚,该3朵小花为二歧聚伞状排列,其花基数应为2基数。  相似文献   

6.
榛属 (桦木科) 花序及花的形态发生   总被引:1,自引:0,他引:1  
在扫描电镜下观察了桦木科榛属榛、毛榛和滇榛的花序和花的形态发生过程。榛属雌花序由多个小聚伞花序螺旋状排列组成;每个小花序原基分化出1枚初级苞片和一团小花序原基分生组织,由小花序原基分生组织分化形成2个花原基;每个花原基分化出2个心皮原基,形成二心皮雌蕊;雌蕊基部有2层花被原基,内层花被原基环状,外层花被发生于花原基近轴面和远轴面,近轴面和远轴面的花被不均等分化,外层花被发生早于内层花被。雄花序为柔荑状,由多个小聚伞花序螺旋状排列组成。每个小花序原基分化出1枚初级苞片和一团小花序原基分生组织,由小花序原基分生组织分化出2枚次级苞片和4~6个雄蕊原基,形成4~6枚雄蕊,每个雄蕊具4个药囊,在雄蕊原基分化形成4药囊雄蕊过程中,出现雄蕊原基纵裂,并且花丝纵裂至基部。为进一步全面探讨桦木科属间系统演化关系提供了证据。  相似文献   

7.
榛属(桦木科)花序及花的形态发生   总被引:1,自引:0,他引:1  
在扫描电镜下观察了桦木科榛属榛、毛榛和滇榛的花序和花的形态发生过程。榛属雌花序由多个小聚伞花序螺旋状排列组成;每个小花序原基分化出1枚初级苞片和一团小花序原基分生组织,由小花序原基分生组织分化形成2个花原基;每个花原基分化出2个心皮原基,形成二心皮雌蕊;雌蕊基部有2层花被原基,内层花被原基环状,外层花被发生于花原基近轴面和远轴面,近轴面和远轴面的花被不均等分化,外层花被发生早于内层花被。雄花序为柔荑状,由多个小聚伞花序螺旋状排列组成。每个小花序原基分化出1枚初级苞片和一团小花序原基分生组织,由小花序原基分生组织分化出2枚次级苞片和4。6个雄蕊原基,形成4—6枚雄蕊,每个雄蕊具4个药囊,在雄蕊原基分化形成4药囊雄蕊过程中.出现雄蕊原基纵裂。并且花丝纵裂至基部。为进一步全面探讨桦木科属间系统演化关系提供了证据。  相似文献   

8.
桤木属花序和花的形态发生   总被引:1,自引:0,他引:1  
在扫描电镜下首次观察了桦木科Betulaceae桤木属Alnus花序和花的形态发生过程,为桦木科属级鉴定提供了微形态学依据.实验材料为东北桤木A.mandshurica和辽东桤木A.sibirica,其雌花序均为柔荑状,由多个小聚伞花序螺旋状排列组成:每个小花序外具1枚初级苞片、2枚次级苞片、2枚三级苞片,内有2朵花.每个花具1个二心皮合生雌蕊,雌蕊具二叉分枝的长柱状花柱.每个小花序的2个二心皮合生雌蕊的定位方式为相互垂直.东北桤木的雌花序由芽鳞包被越冬,而辽东桤木的雌花序裸露越冬.东北桤木和辽东桤木的雄花序亦为柔荑状,由多个小聚伞花序螺旋状排列组成.每个小花序外被1枚初级苞片、2枚次级苞片、2枚三级苞片,内有3朵花.先形成的2枚次级苞片和后形成的2枚三级苞片均来源于小花序原基.3个花原基中.位于中间的比两侧的分化要早.每个花具4枚被片和4枚雄蕊,每个雄蕊具4个药囊.花的被片比雄蕊发育得早,均由花原基发育而成.东北桤木和辽东桤木的雄花序均裸露越冬.  相似文献   

9.
掌叶木的花器官发生及其系统学意义   总被引:7,自引:0,他引:7  
利用扫描电子显微镜和光学显微镜观察了掌叶木的花器官发生过程。观察结果表明: 花序原基最先发生, 然后形成两个大小不一的花原基; 萼片原基的发生不同步, 螺旋状向心发生; 4-5枚花瓣原基以接近轮状方式近同时发生; 不存在花瓣-雄蕊复合原基; 7-8枚雄蕊原基为近同时发生, 其生长较花瓣原基快; 心皮原基最后发生, 3枚心皮原基为同时发生。花为单性花。在雌花中, 子房膨大而雄蕊退化。在雄花中, 雄蕊正常发育, 子房退化。讨论了掌叶木花器官发生和发育的系统学意义。  相似文献   

10.
利用SV11立体显微镜和JSM-6360LV型扫描电镜观察‘桂味'荔枝花器官的发生和发育过程.结果表明:花序原基最先发生,然后形成数个大小不等的单花原基;4个萼片原基的发生不同步,其中一侧对位先发生;6~10枚雄蕊原基以轮状方式几乎同时发生;心皮原基最后发生,2~3枚(稀4枚)心皮原基同时出现,随后进行侧向生长,逐渐合拢形成子房.雌花中,花柱、柱头分化明显,雄蕊退化.雄花中,花丝细长,花药饱满,雌蕊退化或发育不完全.两性花中,雌雄蕊发育完全.花粉粒近球形,具3孔沟,表面为条纹状纹饰.  相似文献   

11.
Initiation of floral primordia begins in Agalinis densiflora with production of two lateral adaxial calyx lobe primordia followed by a midadaxial primordium, and then primordia of two abaxial calyx lobes. Initiation of three abaxial corolla lobe primordia is succeeded by that of two stamen pairs and then by primordia of two adaxial corolla lobes. The primordium of the abaxial carpel appears before the adaxial one. Except for the calyx, initiation of primordia proceeds unidirectionally from the abaxial to the adaxial side of the floral apex. Zygomorphy in the calyx, corolla, and androecium is evident during initiation of primordia and is accentuated during organogenesis. The calyx undergoes comparatively rapid organogenesis, but the inner three floral series undergo a protracted period of organogenesis. The perianth series reach maturation prior to meiosis in the anthers. Maturation of the androecium and gynoecium are postmeiotic events.  相似文献   

12.
The formation of capitulum inflorescence with two different types of floret is an interesting issue in floral biology and evolution. Here we studied the inflorescence, floral ontogeny and development of the everlasting herb, Xeranthemum squarrosum, using epi‐illumination microscopy. The small vegetative apex enlarged and produced involucral bracts with helical phyllotaxy, which subtended floret primordia in the innermost whorl. Initiation of floret primordia was followed by an acropetal sequence, except for pistillate peripheral florets. The origin of receptacular bracts was unusual, as they derived from the floral primordia rather than the receptacular surface. The order of whorl initiation in both disc and pistillate flowers included corolla, androecium and finally calyx, together with the gynoecium. The inception of sepals and stamens occurred in unidirectional order starting from the abaxial side, whereas petals incepted unidirectionally from the adaxial or abaxial side. Substantial differences were observed in flower structure and the development between pistillate and perfect florets. Pistillate florets presented a zygomorphic floral primordium, tetramerous corolla and androecium and two sepal lobes. In these florets, two sepal lobes and four stamen primordia stopped growing, and the ovary developed neither an ovule nor a typical stigma. The results suggest that peripheral pistillate florets in X. squarrosum, which has a bilabiate corolla, could be considered as an intermediate state between ancestral bilabiate florets and the derived ray florets.  相似文献   

13.
In Tetracentron sinense of the basal eudicot family Trochodendraceae, the flower primordium, together with the much retarded floral subtending bract primordium appear to form a common primordium. The four tepals and the four stamens are initiated in four distinct alternating pairs, the first tepal pair is in transverse position. The four carpels arise in a whorl and alternate with the stamens. This developmental pattern supports the interpretation of the flower as dimerous in the perianth and androecium, but tetramerous in the gynoecium. There is a relatively long temporal gap between the initiation of the stamens and the carpels. The carpel primordia are then squeezed into the narrow gaps between the four stamens. In contrast to Trochodendron, the residual floral apex after carpel formation is inconspicuous. In their distinct developmental dimery including four tepals and four stamens, flowers of Tetracentron are reminiscent of other, related basal eudicots, such as Buxaceae and Proteaceae.  相似文献   

14.
In this study, we evaluated the floral ontogeny of Swartzia dipetala, which has peculiar floral features compared with other legumes, such as an entire calyx in the floral bud, a corolla with one or two petals, a dimorphic and polyandrous androecium and a bicarpellate gynoecium. We provide new information on the function of pollen in both stamen morphs and whether both carpels of a flower are able to form fruit. Floral buds, flowers and fruits were processed for observation under light, scanning and transmission electron microscopy and for quantitative analyses. The entire calyx results from the initiation, elongation and fusion of three sepal primordia. A unique petal primordium (or rarely two) is produced on the adaxial side of a ring meristem, which is formed after the initiation of the calyx. The polyandrous and dimorphic androecium also originates from the activity of the ring meristem. It produces three larger stamen primordia on the abaxial side and numerous smaller stamen primordia on the adaxial side. These two types of stamens bear morphologically similar ripening pollen grains. However, prior to the dehiscence of thecae and presentation of pollen in the anther, only the pollen grains of the larger stamens contain amyloplasts. Two carpel primordia are initiated as distinct protuberances, alternating with the larger stamens, in a slightly inner position in the floral meristem, constituting the bicarpellate gynoecium. Both carpels are able to form fruit, although only one fruit is generally produced in a flower. The increase in gynoecium merism probably results in an increase in the surface deposition of pollen grains and consequently in the chance of pollination. This is the first study to thoroughly investigate organogenesis and the ability of the carpel to form fruit in a bicarpellate flower from a member of Fabaceae, in addition to the pollen ultrastructure in the heteromorphic stamens associated with the ‘division of labour’ sensu Darwin. © 2013 The Linnean Society of London, Botanical Journal of the Linnean Society, 2013, 173 , 303–320.  相似文献   

15.
Hepworth SR  Klenz JE  Haughn GW 《Planta》2006,223(4):769-778
The UNUSUAL FLORAL ORGANS (UFO) gene of Arabidopsis encodes an F-box protein required for the determination of floral-organ and floral-meristem identity. Mutation of UFO leads to dramatic changes in floral-organ type which are well-characterized whereas inflorescence defects are more subtle and less understood. These defects include an increase in the number of secondary inflorescences, nodes that alternate between forming flowers and secondary inflorescences, and nodes in which a single flower is subtended by a bract. Here, we show how inflorescence defects correlate with the abnormal development of floral primordia and establish a temporal requirement for UFO in this process. At the inflorescence apex of ufo mutants, newly formed primordia are initially bract-like. Expression of the floral-meristem identity genes LFY and AP1 are confined to a relatively small adaxial region of these primordia with expression of the bract-identity marker FIL observed in cells that comprise the balance of the primordia. Proliferation of cells in the adaxial region of these early primordia is delayed by several nodes such that primordia appear “chimeric” at several nodes, having visible floral and bract components. However, by late stage 2 of floral development, growth of the bract generally ceases and is overtaken by development of the floral primordium. This abnormal pattern of floral meristem development is not rescued by expression of UFO from the AP1 promoter, indicating that UFO is required prior to AP1 activation for normal development of floral primordia. We propose that UFO and LFY are jointly required in the inflorescence meristem to both promote floral meristem development and inhibit, in a non-cell autonomous manner, growth of the bract.Shelley R. Hepworth and Jennifer E. Klenz contributed equally to this work.  相似文献   

16.
The paired flowers of all species of the Marantaceae studied, except Monotagma plurispicatum, are produced through the division of an apical meristem with a tunica-corpus structure. The solitary flowers of M. plurispicatum develop from a similar meristem which does not bifurcate. The paired flowers of Canna indica are produced in the axil of a florescence bract through the formation of a bract and an axillary flower on the side of the primordium which gives rise to the largest flower of the pair. The sequence of organ initiation for both families is: calyx, corolla and inner androecial whorl, outer androecial whorl, gynoecium. The sequence of sepal formation is opposite in the two families. In the Cannaceae it leads directly into the spiral created by the formation of the other organs, while in the Marantaceae the sequence of sepal formation follows a spiral opposite to that of the other floral organs. The members of the corolla and inner androecial whorl separate from common primordia. In general these common primordia separate into a petal and an inner androecial member through the initiation of two growth centers, at the same level, in the dorsal and ventral flanks of the primordium. In Ischnosiphon elegans and Pleiostachya pruinosa the stamen is initiated at a lower position than the petal in the ventral flank of the common primordium. A similar pattern of initiation is described for the callose staminode in Marantochloa purpurea and Canna indica. This pattern is interpreted as a variation on the more generalized pattern of inner androecial formation found in the other genera.  相似文献   

17.
Flowers of Tupidanthus show an extreme case of floral polymery among asterids. Floral development and gynoecium structure have been examined. The floral meristem has a complex folded shape. The tiny calyx is initiated as a continuous ring primordium. The corolla is initiated as a lobed ring and develops into a calyptra. All stamen primordia appear simultaneously as a single whorl. The carpels, also in a single whorl, tend to alternate with the stamens. Some Schefflera species related to Tupidanthus are also studied. The flower of Tupidanthus is interpreted as a result of fasciation. Further investigation should determine whether mutation(s) in gene(s) of the CLAVATA family are responsible for the fasciation here. The significance of Tupidanthus for understanding spatial pattern formation in flowers of Araliaceae, and both functional and developmental constraints in angiosperm flowers with a single polymerous carpel whorl are discussed.  相似文献   

18.
The structure and ontogeny of the foliage leaves, bracts, bracteoles, calyx and corolla ofPharbitis nil were investigated, with special reference to the development of the lamina and the procambium. Reproductive organs used are those of a terminal inflorescence and axillary flowers induced by a single 16 hr dark period given to the seedling. The foliage leaf consists of the petiole and the broad lamina. Bracts show various forms and structures, which fluctuate from a lower leafy bract to an upper scaly one in a terminal inflorescence. The sepal is scaly. The corolla is funnel-shaped, and composed of five wedge-shaped petals. In the lamina of the foliage leaf primordium, marginal growth is followed by active growth by the plate meristem, and procambial strands of lateral veins differentiate from the residual meristem. The primordium of the lowest bract of the terminal inflorescence has already been initiated before the dark period, and develops into the bract, the residual meristem disappearing after the treatment. The leafy bract shows marginal growth and growth by the plate meristem similar to that of the foliage leaf, but of short duration. The activity of marginal growth of the scaly bract and the sepal decreases rapidly and procambial strands of lateral veins differentiate acropetally from highly vacuolated cells. The activity of marginal growth of the petal decreases gradually, and derivatives of the marginal meristem divide as a plate meristem. The corolla tube is initiated by co-operation of interprimordial growth and marginal growth of petal primordia.  相似文献   

19.
InMazus pumilus, all the floral appendages are initiated in acropetal sequence in the second cell layer (except stamens) of the floral primordium by periclinal divisions. The actinomorphic calyx tube is formed due to zonal growth. The zygomorphy in corolla is evident from the inception of petal primordia which arise sequentially as independent units in order of one anterior, a pair of anterio-lateral followed by a pair of posterio-lateral. Later these primordia exhibit differential growth because of which zygomorphy becomes more pronounced. The upper corolla tube is formed by interprimordial growth and lower corolla tube by zonal growth. Stamens are initiated in the third layer of the floral apex. Unlike sepals and petals, in the development of stamens (4) underlying cells of corpus also contribute. Posterior stamen is absent. The stamens become epipetalous because of interprimordial and zonal growth in the common region below the bases of petals as well as stamens. The two carpel primordia arise as crescent shaped structures which become continuous due to interprimordial growth. The ovary is formed by a ring of zonal meristem. The style develops later between stigma and ovary because of intercalary growth. The residual apex grows vertically along with the ovary and forms the septum of the ovary. All the floral appendages exhibit similar pattern of histogenesis and early growth suggesting thereby the appendicular nature of these appendages.  相似文献   

20.
The inflorescence of Houttuynia cordata produces 45–70 sessile bracteate flowers in acropetal succession. The inflorescence apical meristem has a mantle-core configuration and produces “common” or uncommitted primordia, each of which bifurcates to form a floral apex above, a bract primordium below. This pattern of organogenesis is similar to that in another saururaceous plant, Saururus cernuus. Exceptions to this unusual development, however, occur in H. cordata at the beginning of inflorescence activity when four to eight petaloid bract primordia are initiated before the initiation of floral apices in their axils. “Common” primordia also are lacking toward the cessation of inflorescence apical activity in H. cordata when primordia become bracts which may precede the initiation of an axillary floral apex. Many of these last-formed bracts are sterile. The inflorescence terminates with maturation of the meristem as an apical residuum. No terminal flowers or terminal gynoecia were found, although subterminal gynoecia or flowers in subterminal position may overtop the actual apex and obscure it. Individual flowers have a tricarpellate syncarpous gynoecium and three stamens adnate to the carpels; petals and sepals are lacking. The order of succession of organs is: two lateral stamens, median stamen, two lateral carpels, median carpel. The three carpel primordia almost immediately are elevated as part of a gynoecial ring by zonal growth of the receptacle below the attachment of the carpels. The same growth elevates the stamen bases so that they appear adnate to the carpels. The trimerous condition in Houttuynia is the result of paired or solitary initiations rather than trimerous whorls. Symmetry is bilateral and zygomorphic rather than radial. No evidence of spiral arrangement in the flower was found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号