首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
表型可塑性变异的生态-发育机制及其进化意义   总被引:8,自引:0,他引:8  
表型可塑性赋予生物个体在不同环境条件下通过产生不同表型来维持其适合度的能力.研究结果显示多数可塑性变异的产生是基于对环境变异信号的响应、改变基因表达式样并调整发育轨迹的结果,表观遗传调控体系在基因选择性表达和可塑性变异的跨世代传递过程中发挥了重要作用.不同物种和种群对环境变化的敏感性、发生可塑性变异的能力以及可塑性反应模式不尽相同,预示着控制可塑性能力并独立于控制性状的可塑性基凶的存在,这些基因是直接响应环境信号并控制表型表达的调控基因.表型可塑性不仅是物种适应性进化的一个重要方面,也是选择进化的产物,物种的表型可塑性变异对其生态适应和进化模式有深远的影响.  相似文献   

2.
昆虫翅型分化的表型可塑性机制   总被引:1,自引:0,他引:1       下载免费PDF全文
王小艺  杨忠岐  魏可  唐艳龙 《生态学报》2015,35(12):3988-3999
翅多型现象在昆虫中广泛存在,是昆虫在飞行扩散和繁殖能力之间权衡的一种策略,对种群的环境适应性进化具有重要的意义。目前在植食性昆虫中研究较多,有关寄生蜂的翅型分化鲜见报道。综述了昆虫翅型分化的表型可塑性机制。遗传因素和环境因素均对昆虫翅的发育产生影响,基因型对翅型的决定具有显著作用,外界环境条件,包括温度、光周期、食物质量、自身密度、外源激素等因素对昆虫翅的发育也产生重要的调节作用,从而产生翅的非遗传多型性现象。此外,天敌的寄生或捕食作用可能会诱导某些昆虫的翅型产生隔代表型变化。对昆虫产生翅多型现象的生态学意义及其在生物进化过程中的作用进行了讨论,并探讨了寄生性昆虫翅型分化机制在生物防治上的可能应用途径。功能基因组学和表观遗传学的进一步发展可望为彻底揭示昆虫翅型分化机制提供新的机遇和技术手段。  相似文献   

3.
表型可塑性与外来植物的入侵能力   总被引:50,自引:4,他引:50  
外来植物的入侵能力与其性状之间的关系是入侵生态学中的基本问题之一。成功的入侵种常常能占据多样化的生境,并以广幅的环境耐受性为特征。遗传分化(包括生态型分化)和表型可塑性是广布性物种适应变化、异质性生境的两种不同但并不矛盾和排斥的策略。越来越多的实验证据表明,表型可塑性具有确定的遗传基础,本身是一种可以独立进化的性状。许多入侵种遗传多样性比较低,但同时又占据了广阔的地理分布区和多样化的生境,表型可塑性可能在这些物种的入侵成功和随后的扩散中起到了关键作用。本文首先介绍表型可塑性的含义,简述表型可塑性和生物适应的关系,然后从理论分析和实验证据两个方面论述了表型可塑性与外来植物入侵能力的相关性,最后针对进一步的研究工作进行了讨论。当然,并非所有入侵种的成功都能归因于表型可塑性,作者认为对于那些遗传多样性比较低同时又占据多样化生境的入侵种,表型可塑性和入侵能力的正相关可能是一条普遍法则,而非特例。  相似文献   

4.
在室内研究了种群密度、温度和食物供给3个环境因素对亚洲小车蝗Oedaleus asiaticus绿色-褐色表型可塑性的影响,确定亚洲小车蝗不同生态型个体的行为指标,并测定3个环境因素对行为指标的影响。结果表明:在所测定的环境因素中,种群密度对亚洲小车蝗3龄蝗蝻表型变化具有显著影响(P < 0.05)。在一定条件下,体色变化率随着密度的增加而增加,在密度为60头/0.25 m2时,3龄蝗蝻表型变化率最高,达到57.60%;在密度为80头/0.25 m2,体色变化率不再增加,反而趋于下降,体色变化率降到54.89%;在密度为100头/笼时,体色变化率降为51.20%。温度和食物供给对亚洲小车蝗表型变化也具有显著影响(P < 0.05)。当温度达到40℃,食物供给减少一半时,蝗虫个体体色变化率分别为12.00%和5.67%。在行为试验中,环境因素对不同型态的亚洲小车蝗的转向次数和跳跃次数存在显著影响(P < 0.05),散居型3龄蝗蝻每分钟的转向次数介于1.2~1.4之间,跳跃次数介于1.1~1.4之间;群居型3龄蝗蝻每分钟的转向次数介于1.6~1.8之间,跳跃次数介于1.6~1.8之间。因此,转向次数和跳跃次数可以作为亚洲小车蝗行为变化的判定指标。并且在所测试的环境因素中,随着种群密度的增加,3龄蝗蝻的转向次数和跳跃次数也随之增加。这些结果表明,亚洲小车蝗散居型和群居型间体色和行为的转变是多种环境因素共同作用的结果。  相似文献   

5.
焦振彬  罗毅波 《生物多样性》2021,29(8):1073-3852
石斛属(Dendrobium)种类繁多, 属内物种具有丰富的表型多样性。霍山石斛(D. huoshanense)为我国特有物种, 其与河南石斛(D. henanense)和细茎石斛(D. moniliforme)以及铁皮石斛(D. catenatum)等近缘种表型相似, 在分类处理中存在争议。这种争议很大程度上与植物普遍存在的表型可塑性和代际共存有关。为探究环境和代际间遗传因素对霍山石斛表型性状的影响以及霍山石斛与近缘种的物种边界问题, 本研究观测了安徽省霍山县霍山石斛(野生、林间和温室F1代、林间和温室F2代)、野生河南石斛、细茎石斛和铁皮石斛, 共计16个群体2,279株植株的假鳞茎茎长等12个表型性状; 在种内层面, 首次借鉴生态学同质园实验和遗传学代际间性状比较的方法, 对霍山石斛群体表型性状进行差异显著性检验和95%置信区间比较以及主成分和变异系数等统计学分析。在种间层面, 对霍山石斛与河南石斛和铁皮石斛等近缘种群体表型性状进行比较和分析。结果表明, 环境因素对霍山石斛假鳞茎茎长和假鳞茎直径等具有显著的影响, 代际间遗传因素对霍山石斛假鳞茎直径具有显著的影响。霍山石斛与铁皮石斛和细茎石斛等近缘种群体在假鳞茎茎长、假鳞茎直径、花瓣长和花瓣宽等表型性状方面均存在显著性差异和间隔, 但与河南石斛仅在假鳞茎表型性状方面有显著性差异。我们的研究明确了环境和代际间遗传因素对霍山石斛表型性状的影响程度, 为霍山石斛与近缘种等争议物种的分类和鉴定提供了表型证据。  相似文献   

6.
该研究以欧李为材料,探讨了干旱胁迫对欧李表型可塑性的影响。结果表明:(1)随着干旱胁迫的加剧,欧李根生物量、枝叶生物量、植株总生物量积累、根冠比和根冠比胁迫指数均呈现先升高后降低的趋势,在T1处理下达到最大值,并显著高于其他处理(α=0.05)。(2)随土壤含水量的降低,欧李根的生物量分配指数呈现先增加后降低的趋势,叶生物量与之相反,在T1处理下根的生物量分配指数最大,枝叶的最小(α=0.05)。(3)在水分供应为60%~80%时,欧李的株高、冠幅、基径、二级分枝数、主根长、主根直径及侧根数量均达到最大值(α=0.05),对一级分枝数的生长没有显著影响。(4)随着水分胁迫的加剧,叶片长从T2处理开始下降,叶片宽、单片叶面积及比叶面积均呈现先增加后减少的趋势(α=0.05)。综上可得,欧李通过调整形态特性和各器官生物量积累及其分配对不同干旱胁迫条件产生了较强的可塑性。  相似文献   

7.
蚜虫种群遗传多样性的影响因素及分子基础   总被引:3,自引:0,他引:3  
蔡青年  胡熳华  王宇  谷平 《昆虫知识》2004,41(4):285-290
蚜虫是一个复杂的类群 ,不同种群之间常常表现遗传多样性 ,特别是同种蚜虫的不同种群 ,这种多样性与环境因素 (寄主植物、地理气候条件等 )的影响密切相关 ,而且蚜虫种群多样性无论在细胞学水平 ,还是分子生物学水平均表现明显的遗传分化。该文在分析了蚜虫种群遗传多样性影响因素的基础上 ,从蚜虫核型变化、核DNA和线粒体DNA遗传分化和多样性方面总结了导致蚜虫种群遗传多样性的内在分子基础 ,并讨论了研究蚜虫种群遗传多样性的重要意义和前景  相似文献   

8.
以中国分布最广、形态变异复杂且分类上存在争议的木蓝属植物河北木蓝(Indigofera bungeana Walp.)为研究对象,运用GIS技术从较大尺度上(17省28县29个居群)进行叶表型可塑性分析,利用表型可塑性指数和变异系数对叶表型可塑性进行评价,并对叶表型性状与环境因子的相关性进行分析.结果显示:河北木蓝叶表...  相似文献   

9.
熊韫琦  赵彩云 《生态学杂志》2020,(11):3853-3864
生物入侵是导致生物多样性丧失的第二大因素,掌握入侵机制可提高外来入侵物种防控管理能力。表型可塑性被认为是外来植物成功入侵的重要机制之一,具有确定的遗传基础。近30年来表型可塑性的研究发展迅猛,野外调查与移植实验相结合,宏观生态与分子生态交叉等多种方法被用来探索外来植物成功入侵的表型可塑性机制。本文从表型可塑性概念、研究发展历程及其在外来植物入侵中的作用等方面进行了综述,并对今后外来入侵植物表型可塑性的研究方向进行了展望。表型可塑性的生态作用是目前研究的关注重点,表型可塑性增强了外来入侵植物的适应性和入侵能力,与遗传分化一起共同促进了外来植物的成功入侵。未来多学科相结合的综合研究方法将成为表型可塑性研究发展趋势,气候变化、土地利用等因素与入侵植物表型可塑性相结合,以及运用基因组学和分子生物学等方法,定量分析比较个体、种群或物种间的表型可塑性是未来研究外来植物入侵机制的方向之一。  相似文献   

10.
通过栽培实验研究了高、中、低不同养分水平对外来入侵种互花米草(Spartina alterniflora)表型可塑性的影响。结果表明:随着养分含量的增加,互花米草分枝强度不断增加,低养分处理与中、高养分处理间差异显著;间隔子长度随着养分含量的增加而增加,但分枝角度不受养分含量的影响;互花米草生物量分配格局显著受养分水平的影响,随着养分的降低,互花米草对地上部分(茎和叶)的生物量投资减小,而对地下部分(根和根茎)的生物量投资增加。这些结果说明,养分水平对互花米草的克隆生长有显著影响,互花米草对不同的养分条件表现出较强的可塑性。  相似文献   

11.
    
Invasive species often evolve rapidly in response to the novel biotic and abiotic conditions in their introduced range. Such adaptive evolutionary changes might play an important role in the success of some invasive species. Here, we investigated whether introduced European populations of the South African ragwort Senecio inaequidens (Asteraceae) have genetically diverged from native populations. We carried out a greenhouse experiment where 12 South African and 11 European populations were for several months grown at two levels of nutrient availability, as well as in the presence or absence of a generalist insect herbivore. We found that, in contrast to a current hypothesis, plants from introduced populations had a significantly lower reproductive output, but higher allocation to root biomass, and they were more tolerant to insect herbivory. Moreover, introduced populations were less genetically variable, but displayed greater plasticity in response to fertilization. Finally, introduced populations were phenotypically most similar to a subset of native populations from mountainous regions in southern Africa. Taking into account the species' likely history of introduction, our data support the idea that the invasion success of Senecio inaequidens in Central Europe is based on selective introduction of specific preadapted and plastic genotypes rather than on adaptive evolution in the introduced range.  相似文献   

12.
Existing insight suggests that maternal effects have a substantial impact on evolution, yet these predictions assume that maternal effects themselves are evolutionarily constant. Hence, it is poorly understood how natural selection shapes maternal effects in different ecological circumstances. To overcome this, the current study derives an evolutionary model of maternal effects in a quantitative genetics context. In constant environments, we show that maternal effects evolve to slight negative values that result in a reduction of the phenotypic variance (canalization). By contrast, in populations experiencing abrupt change, maternal effects transiently evolve to positive values for many generations, facilitating the transmission of beneficial maternal phenotypes to offspring. In periodically fluctuating environments, maternal effects evolve according to the autocorrelation between maternal and offspring environments, favoring positive maternal effects when change is slow, and negative maternal effects when change is rapid. Generally, the strongest maternal effects occur for traits that experience very strong selection and for which plasticity is severely constrained. By contrast, for traits experiencing weak selection, phenotypic plasticity enhances the evolutionary scope of maternal effects, although maternal effects attain much smaller values throughout. As weak selection is common, finding substantial maternal influences on offspring phenotypes may be more challenging than anticipated.  相似文献   

13.
  总被引:2,自引:0,他引:2  
Several models of speciation suggest that in species that are phenotypically plastic, selection can act on phenotypic variation that is environmentally induced in the earliest stages of divergence. One trait that could be subject to this process is foraging behaviour, where discrete foraging strategies are common. One species which is highly plastic in the expression of phenotype, the Arctic charr, Salvelinus alpinus (L.), is characterized by discrete variation in the anatomy of the head and mouthparts. These traits have been shown to have a functional significance, but the expression of which is thought to be at least partly phenotypically plastic. Here we test the hypothesis that foraging behaviour may regulate the anatomy of the head and mouthparts in Arctic charr. In a dyad experiment, size‐matched pairs of fish from a mixed family group were fed a diet of either Mysis (a hard‐bodied shrimp) or Chironomid larvae. Nine morphometric measures of head dimensions that describe wild trophic morphs were measured at the start of the experiment and 24 weeks later. Principal component scores of size‐corrected morphometric measures showed highly significant differences between fish exposed to the two diets. Univariate ANOVA analysis of the head morphometric variables showed that fish fed on Chironomids developed longer, wider jaws, longer heads and a larger eye for a given body length than did those fish fed upon Mysis. We conclude that foraging anatomy in Arctic charr is phenotypically plastic and that variation in foraging behaviour that results in feeding specialization in the wild could induce variation in head anatomy. This in turn could reinforce foraging specialization. Very rapid epigenetic divergence into distinct feeding morphs (as demonstrated here) would allow selection to act at more than one mode and thus could promote rapid evolutionary divergence, initially prior to genetic segregation, in species which are highly plastic. © 2003 The Linnean Society of London, Biological Journal of the Linnean Society , 2003, 78 , 43–49.  相似文献   

14.
    
A major goal of evolutionary science is to understand how biological diversity is generated and altered. Despite considerable advances, we still have limited insight into how phenotypic variation arises and is sorted by natural selection. Here we argue that an integrated view, which merges ecology, evolution and developmental biology (eco evo devo) on an equal footing, is needed to understand the multifaceted role of the environment in simultaneously determining the development of the phenotype and the nature of the selective environment, and how organisms in turn affect the environment through eco evo and eco devo feedbacks. To illustrate the usefulness of an integrated eco evo devo perspective, we connect it with the theory of resource polymorphism (i.e. the phenotypic and genetic diversification that occurs in response to variation in available resources). In so doing, we highlight fishes from recently glaciated freshwater systems as exceptionally well‐suited model systems for testing predictions of an eco evo devo framework in studies of diversification. Studies on these fishes show that intraspecific diversity can evolve rapidly, and that this process is jointly facilitated by (i) the availability of diverse environments promoting divergent natural selection; (ii) dynamic developmental processes sensitive to environmental and genetic signals; and (iii) eco evo and eco devo feedbacks influencing the selective and developmental environments of the phenotype. We highlight empirical examples and present a conceptual model for the generation of resource polymorphism – emphasizing eco evo devo, and identify current gaps in knowledge.  相似文献   

15.
16.
    
F ST and RST estimates for Arctic charr from six microsatelite markers collected from two neighbouring Scottish lakes, Loch Maree and Loch Stack, confirm the presence of two distinct genetic groupings representing separate populations within each lake. In both lakes, there was also a clear body size dimorphism, with large and small body size forms that segregated according to genetic grouping. There was evidence of only subtle foraging ecology differences between morphs, with the small body size morph in both lakes being more generalist in its foraging in the summer (consuming mostly plankton but also some macrobenthos) than the large body size morph, which specialized on planktonic prey. Trophic morphology (head and mouth shape) did not differ significantly between morphs (although the small sample size for Maree makes this a preliminary finding). Cluster analysis of the microsatelite data and the presence of private alleles showed that morphologically similar forms in different lakes were not genetically similar, as would be expected under a multiple invasion hypothesis. Thus, the data do not support a hypothesis of a dual invasion of both lakes by two common ancestors but instead suggest an independent origin of the two forms in each lake. Thus parallel sympatric divergence as a result of common selection pressures in both lakes is the most parsimonious explanation of the evolutionary origin of these polymorphisms. © 2008 The Linnean Society of London, Biological Journal of the Linnean Society, 2008, 95 , 748–757.  相似文献   

17.
    
Many organisms exhibit phenotypic plasticity; producing alternate phenotypes depending on the environment. Individuals can be plastic (intragenerational or direct plasticity), wherein individuals of the same genotype produce different phenotypes in response to the environments they experience. Alternatively, an individual's phenotype may be under the control of its parents, usually the mother (transgenerational or indirect plasticity), so that mother's genotype determines the phenotype produced by a given genotype of her offspring. Under what conditions does plasticity evolve to have intragenerational as opposed to transgenerational genetic control? To explore this question, we present a population genetic model for the evolution of transgenerational and intragenerational plasticity. We hypothesize that the capacity for plasticity incurs a fitness cost, which is borne either by the individual developing the plastic phenotype or by its mother. We also hypothesize that individuals are imperfect predictors of future environments and their capacity for plasticity can lead them occasionally to make a low‐fitness phenotype for a particular environment. When the cost, benefit and error parameters are equal, we show that there is no evolutionary advantage to intragenerational over transgenerational plasticity, although the rate of evolution of transgenerational plasticity is half the rate for intragenerational plasticity, as predicted by theory on indirect genetic effects. We find that transgenerational plasticity evolves when mothers are better predictors of future environments than offspring or when the fitness cost of the capacity for plasticity is more readily borne by a mother than by her developing offspring. We discuss different natural systems with either direct intragenerational plasticity or indirect transgenerational plasticity and find a pattern qualitatively in accord with the predictions of our model.  相似文献   

18.
    
Transgenerational effects are broader than only parental relationships. Despite mounting evidence that multigenerational effects alter phenotypic and life‐history traits, our understanding of how they combine to determine fitness is not well developed because of the added complexity necessary to study them. Here, we derive a quantitative genetic model of adaptation to an extraordinary new environment by an additive genetic component, phenotypic plasticity, maternal and grandmaternal effects. We show how, at equilibrium, negative maternal and negative grandmaternal effects maximize expected population mean fitness. We define negative transgenerational effects as those that have a negative effect on trait expression in the subsequent generation, that is, they slow, or potentially reverse, the expected evolutionary dynamic. When maternal effects are positive, negative grandmaternal effects are preferred. As expected under Mendelian inheritance, the grandmaternal effects have a lower impact on fitness than the maternal effects, but this dual inheritance model predicts a more complex relationship between maternal and grandmaternal effects to constrain phenotypic variance and so maximize expected population mean fitness in the offspring.  相似文献   

19.
    
Organisms can respond to fluctuating environments by phenotypic plasticity and rapid evolution, both occurring on similar timescales to the environmental fluctuations. Because each adaptation mechanism has been independently studied, the effects of different adaptation mechanisms on ecological dynamics are not well understood. Here, using mathematical modeling, we compared the advantages of phenotypic plasticity and rapid evolution under conditions where the environment fluctuated between two states on various timescales. The results indicate that the advantages of phenotypic plasticity under environmental fluctuations on different timescales depend on the cost and the speed of plasticity. Both the speed of plastic adaptation and the cost of plasticity affect competition results, while the quantitative effects of them vary depending on the timescales. When the environment fluctuates on short timescales, the two populations with evolution and plasticity coexist, although the population with evolution is dominant. On moderate timescales, the two populations also coexist; however, the population with plasticity becomes dominant. On long timescales, whether the population with phenotypic plasticity or evolution is more advantageous depended on the cost of plasticity. Moreover, our results indicate that the mechanisms resulting in the dominance of the plastic population over the population with evolution are different depending on the timescales of environmental fluctuations. Therefore, the timescales of environmental fluctuations deserve more attention if we are to better understand the detailed competition results underlying phenotypic variation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号