首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
mTOR及其底物在HeLa细胞的细胞周期不同时相中的表达   总被引:6,自引:0,他引:6  
为探讨细胞生长的机制 ,用RT PCR、Western印迹及蛋白激酶活性测定等方法对同步化的HeLa细胞的细胞周期不同时相中mTOR(mammaliantargetofrapamycin) ,p70S6激酶 (p70S6K)的α1 、α2 、β1 、β2 不同亚型及起始因子 4E结合蛋白 1 (4EBP1 )的表达进行了检测 .RT PCR的结果表明 :在G1 、S1 、G2 、M1 、M2 几个细胞周期时相中 ,mTOR的mRNA表达无明显变化 .mTOR的底物P70S6K的亚型α1 、α2 、β1 、β2 在M期表达均有明显增加 .4EBP1的表达在M期明显减少 .免疫印迹的结果与RT PCR的一致 ,即M期p70S6K的α1 、α2 、均有增加 ,4EBP1在M期减少 .活性测定表明 ,G2 期、M期mTOR较其它期有明显增加 ,4EBP1在M期活性有所下降 .研究结果表明 :mTOR、p70S6K、4EBP1很可能在HeLa细胞的生长中起重要的调节作用  相似文献   

2.
Recent studies have suggested that growth factors and hormones play important roles in cell prolif-eration and differentiation during early embryonic development. In the present study, we examined the expression and localization of insulin in the mouse oocytes and one-cell stage embryos by quantitative ELISA, RT-PCR, Western blot and immunofluorescence. In the mouse oocytes and one-cell stage em-bryos, expression of insulin was uniformly distributed in the cytoplasm. We also examined the expres-sion, activity and localization of mTOR (mammalian target of rapamycin) and p70S6K. The expression of mTOR and p70S6K was not significantly different at the cell cycle of mouse one-cell stage embryos. mTOR and S6K were distributed evenly in the cytoplasm at G1, G2 and M phase phase, but at S phase, the distribution of mTOR and S6K was around the pronucleus. At different phases, the activity of mTOR fluctuated. We also used the PI3K specific inhibitor-Wortmannin to investigate the cleavage rate of eggs. The result showed that the rate obviously decreased. When the mTOR specific inhibitor Rapa-mycin was used, the first mitotic division of the mouse one-cell stage embryo was delayed. These re-sults suggested that insulin was expressed both in mouse oocytes and one-cell stage embryos, and may play functional roles in regulation of mouse early embryogenesis by activating the signal pathway of PI3K/PKB/mTOR/S6K.  相似文献   

3.
Ovarian cancer is one of the most common cancers among women. Recent studies demonstrated that the gene encoding the p110alpha catalytic subunit of phosphatidylinositol 3-kinase (PI3K) is frequently amplified in ovarian cancer cells. PI3K is involved in multiple cellular functions, including proliferation, differentiation, antiapoptosis, tumorigenesis, and angiogenesis. In this study, we demonstrate that the inhibition of PI3K activity by LY-294002 inhibited ovarian cancer cell proliferation and induced G(1) cell cycle arrest. This effect was accompanied by the decreased expression of G(1)-associated proteins, including cyclin D1, cyclin-dependent kinase (CDK) 4, CDC25A, and retinoblastoma phosphorylation at Ser(780), Ser(795), and Ser(807/811). Expression of CDK6 and beta-actin was not affected by LY-294002. Expression of the cyclin kinase inhibitor p16(INK4a) was induced by the PI3K inhibitor, whereas steady-state levels of p21(CIP1/WAF1) were decreased in the same experiment. The inhibition of PI3K activity also inhibited the phosphorylation of AKT and p70S6K1, but not extracellular regulated kinase 1/2. The G(1) cell cycle arrest induced by LY-294002 was restored by the expression of active forms of AKT and p70S6K1 in the cells. Our study shows that PI3K transmits a mitogenic signal through AKT and mammalian target of rapamycin (mTOR) to p70S6K1. The mTOR inhibitor rapamycin had similar inhibitory effects on G(1) cell cycle progression and on the expression of cyclin D1, CDK4, CDC25A, and retinoblastoma phosphorylation. These results indicate that PI3K mediates G(1) progression and cyclin expression through activation of an AKT/mTOR/p70S6K1 signaling pathway in the ovarian cancer cells.  相似文献   

4.
Ovarian cancer is the leading cause of death from gynecological malignancy for women. The amplification of the PI3K catalytic subunit (p110) and the lost function of PTEN are frequently detected in ovarian cancer cells. PI3K plays an important role in tumorigenesis. To specifically inhibit PI3K activity in ovarian cancer cells, we constructed small interfering RNA (siRNA) against p110. The expression of p110 siRNA significantly decreased cell migration, invasion, and proliferation compared to the siSCR control cells. The expression of p110 siRNA induced CDK inhibitor p27KIP1 levels, and decreased levels of cyclin D1, CDK4, and phosphorylated retinoblastoma protein. PI3K transmits the mytogenic signal through AKT. AKT has three isoforms in the cells: AKT1, AKT2 and AKT3. We found that inhibition of AKT1 is sufficient to affect cell migration, invasion, and proliferation. Expression of AKT1 siRNA had a similar effect as p110 siRNA in the cells. We showed the roles of specific PI3K and AKT isoforms in the cells, which are important to understanding the mechanism of PI3K/AKT signaling in ovarian cancer cells. Both p110 and AKT1 siRNA-expressing cells decreased the activation of p70S6K1. Inhibition of p70S6K1 activity by its siRNA also decreased cell migration, invasion, and proliferation associated with the induction of p27KIP1 levels, and with the inhibition of cell cycle-associated proteins including cyclin D1, CDK2, and phosphorylated retinoblastoma protein. This study demonstrates the important role of the PI3K/AKT/mTOR/p70S6K1 pathway in cell proliferation, migration, and invasion in ovarian cancer cells by using siRNA-mediated gene silencing as a reverse genetic method.  相似文献   

5.
Significant discoveries have recently contributed to our knowledge of intracellular growth factor and nutrient signaling via mTOR (mammalian target of rapamycin). This signaling pathway is essential in cellular metabolism and cell survival by enhancing protein translation through phosphorylation of 4EBP-1 and p70S6K. Growth factors like insulin-like growth factor-I induce mTOR to prevent cell death during cellular stress. Agents targeting mTOR are of major interest as anticancer agents. We show here, using human breast cancer cells, that certain types of stress activate mTOR leading to 4E-BP1 and p70S6K phosphorylation. UV treatment increased phosphorylation of the translation inhibitor eIF2alpha, suggesting a potential mechanism for UV activation of Akt and mTOR. c-Myc, a survival protein regulated by cap-dependent protein translation, increased with IGF-I treatment, but this response was not inhibited by rapamycin. Additionally, UV treatment potently increased c-Myc degradation, which was reduced by co-treatment with the proteasomal inhibitor, MG-132. Together, these data suggest that protein translation does not strongly mediate cell survival in these models. In contrast, the phosphorylation status of retinoblastoma protein (pRB) was mediated by mTOR through its inhibitory effects on phosphatase activity. This effect was most notable during DNA damage and rapamycin treatment. Hypophosphorylated pRB was susceptible to inactivation by caspase-mediated cleavage, resulting in cell death. Reduction of pRB expression inhibited IGF-I survival effects. Our data support an important role of phosphatases and pRB in IGF-I/mTOR-mediated cell survival. These studies provide new directions in optimizing anticancer efficacy of mTOR inhibitors when used in combination with DNA-damaging agents.  相似文献   

6.
Ten isoforms of c-jun N-terminal kinase (JNK) have been described that arise by differential mRNA splicing of three genes. In that the relative expression and function of these different JNK proteins in human monocytic cells is not known, we have examined the JNK isoforms in THP-1 monocyte/macrophage cells. Differentiation of THP-1 cells by exposure to 10(-8) M PMA for 42-48 h enhances cellular responses to LPS, including enhanced activation of total JNK activity and increased phosphorylation of p54 JNK as well as p46 JNK. Examination of JNK proteins on Western blots reveals a predominance of p46 JNK1 and p54 JNK2 proteins. Clearing of lysates by immunoprecipitation of JNK1(99% effective) removes 46% of the JNK enzymatic activity (p < 0.01), whereas clearing of JNK1 plus JNK2 (70% effective) depletes the sample of 72% of the JNK activity (p < 0.01). Further analysis, undertaken with real-time RT-PCR, revealed that 98% of the JNK messages code for three isoforms: JNK1beta1, JNK2alpha1, and JNK2alpha2. The p54 JNK that is phosphorylated in LPS-stimulated, PMA-differentiated THP-1 cells is most likely JNK2alpha2 because 97% of the p54 JNK-encoding messages code for JNK2alpha2. By analogous reasoning, the p46 JNKs that are not heavily phosphorylated, but account for approximately half of the N-terminal c-jun kinase enzymatic activity, are most likely either JNK1beta1 or JNK2alpha1 because they account for 98% of the messages that can code for 46kDa JNKS:  相似文献   

7.
Tubular cell HIV-infection has been reported to manifest in the form of cellular hypertrophy and apoptosis. In the present study, we evaluated the role of mammalian target of rapamycin (mTOR) pathway in the HIV induction of tubular cell protein synthesis. Mouse proximal tubular epithelial cells (MPTECs) were transduced with either gag/pol-deleted NL4-3 (HIV/MPTEC) or empty vector (Vector/MPTEC). HIV/MPTEC showed enhanced DNA synthesis when compared with Vector/MPTECs by BRDU labeling studies. HIV/MPTECs also showed enhanced production of β-laminin and fibronection in addition to increased protein content per cell. In in vivo studies, renal cortical sections from HIV transgenic mice and HIVAN patients showed enhanced tubular cell phosphorylation of mTOR. Analysis of mTOR revealed increased expression of phospho (p)-mTOR in HIV/MPTECs when compared to vector/MPTECs. Further downstream analysis of mTOR pathway revealed enhanced phosphorylation of p70S6 kinase and associated diminished phosphorylation of eEF2 (eukaryotic translation elongation factor 2) in HIV/MPTECs; moreover, HIV/MPTECs displayed enhanced phosphorylation of eIF4B (eukaryotic translation initiation factor 4B) and 4EBP-1 (eukaryotic 4E binding protein). To confirm our hypothesis, we evaluated the effect of rapamycin on HIV-induced tubular cell downstream signaling. Rapamycin not only attenuated phosphorylation of p70S6 kinase and associated down stream signaling in HIV/MPTECs but also inhibited HIV-1 induced tubular cell protein synthesis. These findings suggest that mTOR pathway is activated in HIV-induced enhanced tubular cell protein synthesis and contributes to tubular cell hypertrophy.  相似文献   

8.
The PI3K/Akt/mTOR signaling pathway is critical for cellular growth and survival in skeletal muscle, and is activated in response to growth factors such as insulin-like growth factor-I (IGF-I). We found that in C2C12 myoblasts, deficiency of PI3K p110 catalytic subunits or Akt isoforms had distinct effects on phosphorylation of mTOR and p70S6K. siRNA-mediated knockdown of PI3K p110α, p110β, and simultaneous knockdown of p110α and p110β resulted in increased basal and IGF-I-stimulated phosphorylation of mTOR S2448 and p70S6K T389; however, phosphorylation of S6 was reduced in p110β-deficient cells, possibly due to reductions in total S6 protein. We found that IGF-I-stimulated Akt1 activity was enhanced in Akt2- or Akt3-deficient cells, and that knockdown of individual Akt isoforms increased mTOR/p70S6K activation in an isoform-specific fashion. Conversely, levels of IGF-I-stimulated p70S6K phosphorylation in cells simultaneously deficient in both Akt1 and Akt3 were increased beyond those seen with loss of any single Akt isoform, suggesting an alternate, Akt-independent mechanism that activates mTOR/p70S6K. Our results collectively suggest that mTOR/p70S6K is activated in a PI3K/Akt-dependent manner, but that in the absence of p110α or Akt, alternate pathway(s) may mediate activation of mTOR/p70S6K in C2C12 myoblasts.  相似文献   

9.
10.
Prostate cancer is one of the most common cancers among men. Recent studies demonstrated that PI3K signaling is an important intracellular mediator which is involved in multiple cellular functions including proliferation, differentiation, anti-apoptosis, tumorigenesis, and angiogenesis. In the present study, we demonstrate that the inhibition of PI3K activity by LY294002, inhibited prostate cancer cell proliferation and induced the G(1) cell cycle arrest. This effect was accompanied by the decreased expression of G(1)-associated proteins including cyclin D1, CDK4, and Rb phosphorylation at Ser780, Ser795, and Ser807/811, whereas expression of CDK6 and beta-actin was not affected by LY294002. The expression of cyclin kinase inhibitor, p21(CIP1/WAF1), was induced by LY294002, while levels of p16(INK4) were decreased in the same experiment. The inhibition of PI3K activity also inhibited the phosphorylation and p70(S6K), but not MAPK. PI3K regulates cell cycle through AKT, mTOR to p70(S6K). The mTOR inhibitor rapamycin has similar inhibitory effects on G(1) cell cycle progression and expression of cyclin D1, CDK4, and Rb phosphorylation. These results suggest that PI3K mediates G(1) cell cycle progression and cyclin expression through the activation of AKT/mTOR/p70(S6K) signaling pathway in the prostate cancer cells.  相似文献   

11.
We have demonstrated that T3 increases the expression of ZAKI-4alpha, an endogenous calcineurin inhibitor. In this study we characterized a T3-dependent signaling cascade leading to ZAKI-4alpha expression in human skin fibroblasts. We found that T3-dependent increase in ZAKI-4alpha was greatly attenuated by rapamycin, a specific inhibitor of a protein kinase, mammalian target of rapamycin (mTOR), suggesting the requirement of mTOR activation by T3. Indeed, T3 activated mTOR rapidly through S2448 phosphorylation, leading to the phosphorylation of p70(S6K), a substrate of mTOR. This mTOR activation is mediated through phosphatidylinositol 3-kinase (PI3K)-Akt/protein kinase B (PKB) signaling cascade because T3 induced Akt/PKB phosphorylation more rapidly than that of mTOR, and these T3-dependent phosphorylations were blocked by both PI3K inhibitors and by expression of a dominant negative PI3K (Deltap85alpha). Furthermore, the association between thyroid hormone receptor beta1 (TRbeta1) and PI3K-regulatory subunit p85alpha, and the inhibition of T3-induced PI3K activation and mTOR phosphorylation by a dominant negative TR (G345R) demonstrated the involvement of TR in this T3 action. The liganded TR induces the activation of PI3K and Akt/PKB, leading to the nuclear translocation of the latter, which subsequently phosphorylates nuclear mTOR. The rapid activation of PI3K-Akt/PKB-mTOR-p70(S6K) cascade by T3 provides a new molecular mechanism for thyroid hormone action.  相似文献   

12.

Background

The present study examines the hypothesis that Akt (protein kinase B)/mTOR (mammalian target of rapamycin) signaling is increased in hypertrophic and decreased in atrophic denervated muscle. Protein expression and phosphorylation of Akt1, Akt2, glycogen synthase kinase-3beta (GSK-3beta), eukaryotic initiation factor 4E binding protein 1 (4EBP1), 70?kD ribosomal protein S6 kinase (p70S6K1) and ribosomal protein S6 (rpS6) were examined in six-days denervated mouse anterior tibial (atrophic) and hemidiaphragm (hypertrophic) muscles.

Results

In denervated hypertrophic muscle expression of total Akt1, Akt2, GSK-3beta, p70S6K1 and rpS6 proteins increased 2?C10 fold whereas total 4EBP1 protein remained unaltered. In denervated atrophic muscle Akt1 and Akt2 total protein increased 2?C16 fold. A small increase in expression of total rpS6 protein was also observed with no apparent changes in levels of total GSK-3beta, 4EBP1 or p70S6K1 proteins. The level of phosphorylated proteins increased 3?C13 fold for all the proteins in hypertrophic denervated muscle. No significant changes in phosphorylated Akt1 or GSK-3beta were detected in atrophic denervated muscle. The phosphorylation levels of Akt2, 4EBP1, p70S6K1 and rpS6 were increased 2?C18 fold in atrophic denervated muscle.

Conclusions

The results are consistent with increased Akt/mTOR signaling in hypertrophic skeletal muscle. Decreased levels of phosphorylated Akt (S473/S474) were not observed in denervated atrophic muscle and results downstream of mTOR indicate increased protein synthesis in denervated atrophic anterior tibial muscle as well as in denervated hypertrophic hemidiaphragm muscle. Increased protein degradation, rather than decreased protein synthesis, is likely to be responsible for the loss of muscle mass in denervated atrophic muscles.  相似文献   

13.
The signals generated by the IFNgamma receptor to initiate mRNA translation and generation of protein products that mediate IFNgamma responses are largely unknown. In the present study, we provide evidence for the existence of an IFNgamma-dependent signaling cascade activated downstream of the phosphatidylinositol (PI) 3'-kinase, involving the mammalian target of rapamycin (mTOR) and the p70 S6 kinase. Our data demonstrate that p70 S6K is rapidly phosphorylated and activated during engagement of the IFNgamma receptor in sensitive cell lines. Such activation of p70 S6 kinase is blocked by pharmacological inhibitors of the PI 3' kinase and mTOR, and is abrogated in double-knockout mouse embryonic fibroblasts for the alpha and beta isoforms of the p85 regulatory subunit of the PI 3'-kinase. The IFNgamma-activated p70 S6 kinase subsequently phosphorylates the 40S S6 ribosomal protein on serines 235/236, to regulate IFNgamma-dependent mRNA translation. In addition to phosphorylation of 40S ribosomal protein, IFNgamma also induces phosphorylation of the 4E-BP1 repressor of mRNA translation on threonines 37/46, threonine 70, and serine 65, sites whose phosphorylation is required for the inactivation of 4E-BP1 and its dissociation from the eukaryotic initiation factor-4E (eIF4E) complex. Thus, engagement of the PI 3'-kinase and mTOR by the IFNgamma receptor results in the generation of two distinct signals that play roles in the initiation of mRNA translation, suggesting an important role for this pathway in IFNgamma signaling.  相似文献   

14.
Complement component C3, the central player in the complement cascade and the pro-inflammatory cytokine IL-1β is expressed by activated glial cells and may contribute to neurodegeneration. This study examines the regulation of the expression of C3 by IL-1β in astroglial cells focusing on the role of the upstream kinase MKK6, p38-α MAPK, and C/EBP-β isoforms (LAP1, LAP2, or LIP) in astroglial cells. Activation of human astroglial cell line, U373 with IL-1β, led to the induction of C3 mRNA and protein expression as determined by real-time RT-PCR and Western blot analysis, respectively. This induction was suppressed by the pharmacological inhibitor of p38 MAPK (i.e., SB202190-HCl), suggesting the involvement of p38 MAPK in C3 gene expression. IL-1β also induced C3 promoter activity in U373 cells in a MAP kinase- and C/EBP-β-dependent manner. Cotransfection of C3 luciferase reporter construct with constitutively active form of the upstream kinase in the MAP kinase cascade, that is, MKK6 (the immediate upstream activator of p38 kinase) resulted in marked stimulation of the promoter activity, whereas overexpression of a dominant negative forms of MKK6 and p38α MAPK inhibited C3 promoter activity. Furthermore, a mutant form of C/EBP-β, LAP(T235A) showed reduction in IL-1β-mediated C3 promoter activation. These results suggest that the p38α, MAPK, and MKK6 play prominent roles in IL-1β and C/EBP-β-mediated C3 gene expression in astrocytes.  相似文献   

15.
16.
Raptor-rictor axis in TGFbeta-induced protein synthesis   总被引:1,自引:0,他引:1  
Transforming growth factor-beta (TGFbeta) stimulates pathological renal cell hypertrophy for which increased protein synthesis is critical. The mechanism of TGFbeta-induced protein synthesis is not known, but PI 3 kinase-dependent Akt kinase activity is necessary. We investigated the contribution of downstream effectors of Akt in TGFbeta-stimulated protein synthesis. TGFbeta increased inactivating phosphorylation of Akt substrate tuberin in a PI 3 kinase/Akt dependent manner, resulting in activation of mTOR kinase. mTOR activity increased phosphorylation of S6 kinase and the translation repressor 4EBP-1, which were sensitive to inhibition of both PI 3 kinase and Akt. mTOR inhibitor rapamycin and a dominant negative mutant of mTOR suppressed TGFbeta-induced phosphorylation of S6 kinase and 4EBP-1. PI 3 kinase/Akt and mTOR regulated dissociation of 4EBP-1 from eIF4E to make the latter available for binding to eIF4G. mTOR and 4EBP-1 modulated TGFbeta-induced protein synthesis. mTOR is present in two multi protein complexes, mTORC1 and mTORC2. Raptor and rictor are part of mTORC1 and mTORC2, respectively. shRNA-mediated downregulation of raptor inhibited TGFbeta-stimulated mTOR kinase activity, resulting in inhibition of phosphorylation of S6 kinase and 4EBP-1. Raptor shRNA also prevented protein synthesis in response to TGFbeta. Downregulation of rictor inhibited serine 473 phosphorylation of Akt without any effect on phosphorylation of its substrate, tuberin. Furthermore, rictor shRNA increased phosphorylation of S6 kinase and 4EBP-1 in TGFbeta-independent manner, resulting in increased protein synthesis. Thus mTORC1 function is essential for TGFbeta-induced protein synthesis. Our data also provide novel evidence that rictor negatively regulates TORC1 activity to control basal protein synthesis, thus conferring tight control on cellular hypertrophy.  相似文献   

17.
18.
Colorectal cancer (CRC) is commonly known as one of the most prominent reasons for cancer-related death in China. Ras homolog enriched in brain (RHEB) and the mammalian target activity of rapamycin (mTOR) signaling pathway were found correlated with CRC, but their specific interaction in CRC was still to be investigated. Therefore, we explored whether RHEB gene silencing affected the cell proliferation, differentiation, and apoptosis by directly targeting the mTOR signaling pathway in cells previously harvested from CRC patients. A microarray analysis was subsequently conducted to investigate the relationship between RHEB and mTOR. Eighty-three adjacent normal tissues and CRC tissues were selected. Immunohistochemistry was carried out to detect the positive expression rates of RHEB and Ki-67 in the CRC tissues. Cells were then transfected with different siRNAs to investigate the potential effects RHEB would have on CRC progression. The expressions of RHEB, 4EBP1, ribosomal protein S6 kinase (p70S6K), proliferating cell nuclear antigen (PCNA), B cell lymphoma 2 (bcl-2), and bcl-2-associated X protein (bax) were determined and then the cell cycle, cell proliferation, and apoptotic rate were also measured. We identified RHEB and mTOR as upregulated genes in CRC. Cells treated with RHEB silencing showed a decreased extent of mTOR, p70S6K, 4EBP1 phosphorylation and expression of RHEB, Ki-67, mTOR, p70S6K, 4EBP1, bcl-2, and PCNA as well as decreased activity of cell proliferation and differentiation; although, the expression of bax was evidently higher. Collectively, our data propose the idea that RHEB gene silencing might repress cell proliferation and differentiation while accelerating apoptosis via inactivating the mTOR signaling pathway.  相似文献   

19.
20.
PHLPP belongs to a novel family of protein phosphatases that serve as negative regulators of Akt. There are two isoforms, PHLPP1 and PHLPP2, identified in this family. Our previous studies indicated a tumor suppressor role of both PHLPP isoforms in colon cancer. Here we report that the expression of PHLPP is controlled by mTOR-dependent protein translation in colon and breast cancer cells. Treating cells with rapamycin or knockdown of mTOR using RNAi results in a marked decrease of PHLPP protein expression. In contrast, stable knockdown of TSC2, a negative regulator of mTOR activity, increases PHLPP expression. The rapamycin-mediated down-regulation of PHLPP is blocked by expression of a rapamycin-insensitive mutant of p70S6K. In addition, depletion of 4E-BP1 expression by RNAi results in an increase of PHLPP expression and resistance to rapamycin-induced down-regulation. Moreover, inhibition of mTOR activity by amino acid or glucose starvation reduces PHLPP expression in cells. Functionally, we show that rapamycin-mediated inhibition of PHLPP expression contributes to rapamycin resistance in colon cancer cells. Thus, our studies identify a compensatory feedback regulation in which the activation of Akt is inhibited by up-regulation of PHLPP through mTOR, and this mTOR-dependent expression of PHLPP subsequently determines the rapamycin sensitivity of cancer cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号