首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The interaction of Thermus thermophilus phenylalanyl-tRNA synthetase (PheRS) with the 3;-terminal nucleotide of tRNAPhe has been studied by affinity labeling to solve the problem arising from X-ray crystallographic study: the binding sites of phenylalanine and the 3;-terminal nucleotide base were revealed to be identical in the crystal structures of PheRS complexed with the substrates. tRNAPhe derivatives containing a photoreactive 4-thiouridine (tRNAPhe-s4U-76) or 6-thioguanosine residue (tRNAPhe-s6G-76) in the 3;-end have been prepared using terminal tRNA nucleotidyl transferase. Kinetic measurements of aminoacylation provide evidence for a functional role of base-specific interactions of the 3;-terminal adenosine in productive interaction of tRNAPhe with the enzyme: tRNAPhe-s4U-76 cannot be aminoacylated; the replacement of A-76 with s6G results in a 370-fold reduction of catalytic efficiency of aminoacylation mainly due to decreased Vmax value. Relative cross-linking of the s6G-substituted tRNA to the alpha-subunit (69% of the total yield of the cross-linked alpha- and beta-subunits) is two times higher as compared to the cross-linking of tRNAPhe-s4U-76. The dialdehyde derivative, tRNAPhe-Aox-76, with periodate-oxidized 3;-terminal ribose is cross-linked with the same selectivity to the alpha-subunit as tRNAPhe-s6G-76. The results suggest specific binding of the 3;-terminal nucleotide of tRNAPhe by the catalytic subunit of PheRS in the absence of other substrates. Comparative analysis of the cross-linked products in the absence and in the presence of small substrates revealed ATP and aminoacyl-adenylate to effect the interaction of the tRNAPhe acceptor end with PheRS. The correct positioning of the 3;-terminal nucleotide of tRNAPhe corresponding to the structure of the productive complex with PheRS is therefore promoted only in the presence of all three substrates.  相似文献   

2.
Binding of spermidine to transfer ribonucleic acid   总被引:1,自引:0,他引:1  
M E McMahon  V A Erdmann 《Biochemistry》1982,21(21):5280-5288
The binding of spermidine to yeast tRNAPhe and Escherichia coli tRNAGlu2 at low and high ionic strength was studied by equilibrium dialysis. Once corrected for the expected Donnan effect, the binding at low ionic strength obeys the simple relationship of equivalent binding sites, and cooperative binding of spermidine to tRNA could not be detected. At low ionic strength (0.013 M Na+ ion), tRNAPhe (yeast) has 13.9 +/- 2.3 strong spermidine binding sites per molecule with Kd = 1.39 X 10(-6) M and a few weak spermidine binding sites which were inaccessible to experimentation; tRNAGlu2 (E. coli) has 14.8 +/- 1.6 strong spermidine binding sites and 4.0 +/- 0.1 weak spermidine binding sites with Kd = 1.4 X 10(-6) M and Kd = 1.23 X 10(-4) M, respectively. At high ionic strength (0.12 M monovalent cation) and 0.01 M Mg2+, tRNAPhe (yeast) has approximately 13 strong spermidine binding sites with an apparent Kd = 3.4 X 10(-3) M while the dimeric complex tRNAPhe X tRNAGlu2 has 10.4 +/- 1.2 strong spermidine binding sites per monomer with an apparent Kd = 2.0 X 10(-3) M. In the presence of increasing Na+ ion or K+ ion concentration, spermidine binding data do not fit a model for competitive binding to tRNA by monovalent cations. Rather, analysis of binding data by the Debye-Hückel approximation results in a good fit of experimental data, indicating that monovalent cations form a counterion atmosphere about tRNA, thus decreasing electrostatic interactions. On the basis of equilibrium binding analyses, it is proposed that the binding of spermidine to tRNA occurs predominantly by electrostatic forces.  相似文献   

3.
Three tRNA genes have been isolated from a genomic library of Arabidopsis thaliana: a tRNASer (GCU), a tRNATyr (GUA) and a tRNAGlu (UUC) genes. These genes are located closely on the same DNA fragment. The tRNASer and the tRNAGlu genes have both 99% sequence similarity with their mitochondrial counterparts from higher plants indicating that these three tRNA genes are mitochondrial. The tRNATyr gene shows a particular high sequence similarity with the mitochondrial tRNAPhe pseudogene from maize, and both genes are flanked by a tRNASer gene in the upstream region. Extensive sequence comparisons of the Arabidopsis thaliana mitochondrial sequence containing the three tRNA genes and the corresponding region from maize and soybean mitochondria have shown evidence that the tRNA Tyr gene has been generated from a mitochondrial tRNAPhe gene. The conversion was accomplished by three genetic events: a 4 base-pair deletion, a mutation and a recombination, which led to the transformation of the acceptor stem and the anticodon.  相似文献   

4.
The molecular mechanism of thermal unfolding of E. coli tRNAGlu, tRNAfMet and tRNAPhe (in 0.02M Tris-HC1, pH 7.5. 10 MM Mg C12) has been examined by the spin-labeling technique. The rate of tumbling of the spin label has been measured as a function of temperature for ten different selectively spin-labeled tRNAs. Only spin labels at position s4U-8 were able to probe the tertiary structure. Evidences are presented which support the hypothesis that the thermal denaturation of the three species of tRNAs studied is sequential. The unfolding process occurs in three discrete stages. The first step (30 degrees-32 degrees) could either be assigned to a localized reorganization of the cold-denatured structure or to a "transient" melting, followed by the simultaneous disruption of the tertiary structure and part of the hU helix. This transition is observed even in the absence of magnesium. The second step (50 degrees-54 degrees) involves the melting of the anticodon and miniloop regions. The last step occurs above 65 degrees where the t psi c and amino acid acceptor stems, forming one continuous double helix, melt. A simple dynamic model is considered for tRNA function in protein biosynthesis.  相似文献   

5.
Two selectively spin-labeled Cbz-Phe-tRNAsPhe, one at position s4U8 and the other at position U33, have been used to study the dynamics of tRNA-ribosome interaction in the presence of poly(U) and factors washable from ribosomes. Upon binding to the ribosome, the correlation time of the spin label at position s4U8 decreases markedly while the same parameter for the label in the anticodon increases. The presence of poly(U) is not a prerequisite condition for the EPR spectral changes observed but larger variation occurs in the presence of factors washable from ribosomes. No variation in the correlation time is observed if uncharged spin-labeled tRNAPhe (on the s4U8 residue) is used in these experiments. Most of the ribosome-bound spin-labeled Cbz-Phe-tRNAPhe are puromycin-reactive, and consequently, the observed effect is manifested mainly at the ribosomal P site. These observations seem to suggest that the interaction between the N-blocked aminoacyl residue on the tRNA and the ribosome results in a conformational change on the tRNA, possibly involving tertiary interactions in a region close to s4U8. The role that the amino acid at the 3'-end can possibly play on this structural change is discussed.  相似文献   

6.
ESR-spectrometry without modulation of the magnetic field was used for registering the EST spectral line shape (with shape distortion about 0.1 percent) of spin-labeled Escherichia coli tRNAPhe. The analysis of line shape of two different spin-labels in position 8 (S4U) revealed that tRNAPhe in solution always exists as a mixture of at least two conformers, the equilibria between conformers being dependent on pH, concentration of magnesium and the biological state of tRNA (deacylated, aminoacyl- or peptidyl-tRNA). There are no large structural rearrangements upon aminoacylation or peptidylation of tRNA, the observed small changes of spectral line shape are due to the changes in conformational equilibria.  相似文献   

7.
The transport of phenylalanine by the general aromatic transport system in spheroplasts of Escherichia coli 9723 has been found to be stimulated by exogenous tRNA. Neither periodate-treated tRNA nor phenylalanine-charged tRNA stimulated, and the latter inhibited, phenylalanine uptake. Among preparations of specific tRNAs, tRNAPhe and tRNATyr were effective in stimulating the uptake of phenylalanine and tyrosine, respectively, and tRNAGlu and tRNAVal gave no detectable stimulation of phenylalanine or tyrosine transport. The preparation of tRNATyr was 10 times as active as unfractionated tRNA and gave as much as 167% stimulation of tyrosine transport. Correspondingly, the preparation of tRNAPhe was at least 3.5 times as active as the unfractionated tRNA and 2.5 times as active as the preparation of tRNATyr in stimulation of phenylalanine transport. Preliminary results in fractionation of the active component of tRNA for stimulating phenylalanine uptake show that the major activity resides in minor isoacceptor(s) tRNAPhe rather than the major component tRNAPhe, and the slight activity of preparations of tRNATyr is probably due to a contamination of the active tRNAPhe. Other preliminary results indicate that this type of stimulation occurs with uptake of other amino acids and their tRNA.  相似文献   

8.
9.
Codon-anticodon interaction at the ribosomal E site   总被引:3,自引:0,他引:3  
The question of whether or not the tRNA at the third ribosomal binding site specific for deacylated tRNA (E site) undergoes codon-anticodon interaction was analyzed as follows. Poly(U)-programmed ribosomes each carrying two [14C]tRNAPhe molecules were subjected to a chasing experiment using various tRNA species. At 0 degree C Ac[3H]Phe-tRNAPhe did not trigger any chasing whereas deacylated cognate tRNAPhe provoked a strong effect; non-cognate tRNALys was totally ineffective. This indicates that the second [14C]tRNAPhe cannot be present at the A site but rather at the E site (confirming previous observations). In the presence of poly(U) or poly(A) ribosomes bound the cognate tRNA practically exclusively as second deacylated tRNA, i.e. [14C]tRNAPhe and [14C]tRNALys, respectively. Thus, the second deacylated tRNA binds in a codon-dependent manner. [14C]tRNALys at the P site and Ac[3H]Lys-tRNALys at the A site of poly(A)-primed ribosomes were translocated to the E and P sites, respectively, by means of elongation factor G. The E site-bound [14C]tRNALys could be significantly chased by cognate tRNALys but not by non-cognate tRNAPhe, indicating the coded nature of the E site binding. Additional evidence is presented that the ribosome accommodates two adjacent codon-anticodon interactions at either A and P or P and E sites.  相似文献   

10.
11.
The N1 imino units in Escherichia coli tRNAfMet, tRNAGlu, tRNAPhe, and tRNATyr were studied by 1H-15N NMR using three different techniques to suppress signals of protons not attached to 15N. Two of the procedures, Fourier internuclear difference spectroscopy and two-dimensional forbidden echo spectroscopy permitted 1H and 15N chemical shifts to be measured simultaneously at 1H sensitivity. The tRNAs were labeled by fermentation of the uracil auxotroph S phi 187 on a minimal medium containing [1-15N]uracil. 1H and 15N resonances were detected for all of the N1 psi imino units except psi 13 at the end of the dihydrouridine stem in tRNAGlu. Chemical shifts for imino units in the tRNAs were compared with "intrinsic" values in model systems. The comparisons show that the A X psi pairs at the base of the anticodon stem in E. coli tRNAPhe and tRNATyr have psi in an anti conformation. The N1 protons of psi in other locations, including psi 32 in the anticodon loop of tRNAPhe, form internal hydrogen bonds to bridging water molecules or 2'-hydroxyl groups in nearby ribose units. These interactions permit psi to stabilize the tertiary structure of a tRNA beyond what is provided by the U it replaces.  相似文献   

12.
Fluorescent labeling of tRNAs for dynamics experiments   总被引:2,自引:2,他引:0       下载免费PDF全文
  相似文献   

13.
The effect of manganese on both the low field (10--15 ppm) and the high field (o--3 ppm) NMR spectra of unfractionated tRNA and yeast tRNAPhe has been investigated. Trace amounts of Mn2+ cause selective broadening of resonances which are assigned to specific tertiary interactions. The order in which resonances broaden is the same as the order in which they are stabilized by the addition of magnesium, namely s4U8 - A14, U33 and A58 - T54. From this we conclude that three of the strong binding sites probably are the same for both Mn2+ and Mg2+, and that these sites are located close to the tertiary interactions which are stabilized by the strongly bound metals. The broadening data, taken in conjunction with published X-ray data on yeast tRNAPhe, permit us to suggest some plausible locations for the strong binding sites.  相似文献   

14.
15.
Affinity labelling has been employed to localize the substrate-binding sites on the enzyme subunits of phenylalanyl-tRNA synthetase (L-phenylalanine:tRNAPhe-ligase, EC 6.1.1.20) of Escherichia coli MRE-600 (alpha 2 beta 2-type). N-Chlorambucilylphenylalanyl-tRNA, N-bromoacetylphenylalanyl-tRNA, tRNAPhe containing an azido group at the eighth position of the molecule (S4U), tRNAPhe containing azido groups at different points of the molecule, p-azidoanilidate of phenylalanine, adenosine 5'-trimethaphosphate and N-bromoacetyl-L-phenylalaninyladenylate were used in experiments. It has been shown that tRNA-binding sites are formed on heavy beta-subunits of the enzyme. Phenylalanyl-tRNA is also localized on beta-subunits, while the aminoacyl moiety of aminoacyl-tRNA is localized near the contact region of subunits. The phenylalanine-binding site is located on light alpha-subunits of the enzyme. Adenosine 5'-trimethaphosphate and the analogue of phenylalanyladenylate modify both types of enzyme subunits. In our opinion, the catalytic center of tRNA aminoacylation is formed in the contact region of subunits, and the aminoacyl moiety is transferred into tRNA (from the alpha- into beta-subunit in the region of their contact).  相似文献   

16.
The complexes of N-AcPhe-tRNAPhe (or non-aminoacylated tRNAPhe) from yeast with 70S ribosomes from E. coli have been studied fluorimetrically utilizing wybutine, the fluorophore naturally occurring next to the 3' side of the anticodon, as a probe for conformational changes of the anticodon loop. The fluorescence parameters are very similar for tRNA bound to both ribosomal sites, thus excluding an appreciable conformational change of the anticodon loop upon translocation. The spectral change observed upon binding of tRNAPhe to the P site even in the absence of poly(U) is similar to the one brought about by binding of poly(U) alone to the tRNA. This effect may be due to a hydrophobic binding site of the anticodon loop or to a conformational change of the loop induced by binding interactions of various tRNA sites including the anticodon.  相似文献   

17.
In order to identify ribosomal components involved in the peptidyl-tRNA binding site on the ribosome, tRNAPhe molecules were prepared in which cytidine residues had been chemically converted into 4-thiouridine (S4U). This nucleoside is photoactive at 335 nm and able to form covalent bonds with nearby nucleophilic groups. The thiolated AcPhe-tRNAPhe was bound to the ribosomal P site in the presence of poly(U) as verified by puromycin reactivity. Direct irradiation of the AcPhe-[s4U]tRNAPhe poly(U) 70-S ribosome complex induced crosslinking of the tRNA molecule exclusively to 30-S subunits. Analysis of the covalent complex revealed that AcPhe-[s4U]tRNAPhe was specifically crosslinked to protein S10.  相似文献   

18.
We have investigated the specificity of the enzyme tRNA (wobble guanosine 2'-O-)methyltransferase which catalyses the maturation of guanosine-34 of eukaryotic tRNAPhe to the 2'-O-methyl derivative Gm-34. This study was done by micro-injection into Xenopus laevis oocytes of restructured yeast tRNAPhe in which the anticodon GmAA and the 3' adjacent nucleotide 'Y' were substituted by various tetranucleotides. The results indicate that the enzyme is cytoplasmic; the chemical nature of the bases of the anticodon and its 3' adjacent nucleotide is not critical for the methylation of G-34; the size of the anticodon loop is however important; structural features beyond the anticodon loop are involved in the specific recognition of the tRNA by the enzyme since Escherichia coli tRNAPhe and four chimeric yeast tRNAs carrying the GAA anticodon are not substrates; unexpectedly, the 2'-O-methylation is not restricted to G-34 since C-34, U-34 and A-34 in restructured yeast tRNAPhe also became methylated. It seems probable that the tRNA (wobble guanosine 2'-O-)methyltransferase is not specific for the type of nucleotide-34 in eukaryotic tRNAPhe; however the existence in the oocyte of several methylation enzymes specific for each nucleotide-34 has not yet been ruled out.  相似文献   

19.
Yeast tRNAPhe was photoreacted with [3H]8-methoxypsoralen and the product was digested with ribonuclease T1, ribonuclease A or a combination of the two or cleaved with sodium borohydride/aniline. The oligonucleotides from these digestions were analyzed by polyacrylamide gel electrophoresis or high-pressure liquid chromatography and the psoralen-containing fragments were identified. The results indicate that one major and two minor photoreaction sites for 8-methoxypsoralen exist in yeast tRNAPhe. The major site (containing about 55% of the label) was determined as U50 in the T psi arm of the tRNA molecule while the minor sites were assigned to U59 (30% of the label) and C70 (15%) respectively. Our results suggest that psoralens may be used as photoprobes for studying conformational changes in tRNA molecules.  相似文献   

20.
E I Hyde  B R Reid 《Biochemistry》1985,24(16):4315-4325
The effects of magnesium, spermine, and temperature on the conformation of Escherichia coli tRNAPhe have been examined by proton and phosphorus nuclear magnetic resonance spectroscopy. In the low-field proton NMR spectra we have characterized two slowly interconverting conformations of this tRNA at low magnesium ion concentrations. The relative proportion of the conformers is ion dependent but not ion specific. Magnesium affects protons in all the stems of tRNA while spermine effects are localized near the s4U-8-A-14 and G-15-C-48 tertiary bonds. The effects seen in the proton NMR spectra are compared and correlated with those observed in the phosphorus spectra to give assignments of some of the resolved signals from the phosphate groups. The phosphorus spectra are compared with those of yeast tRNAPhe [Gorenstein, D. G., Goldfield, E. M., Chen, R., Kovar, K., & Luxon, B. A. (1981) Biochemistry 20, 2141; Salemink, P. J. M., Reijerse, E. J., Mollevanger, L., & Hilbers, C. W. (1981) Eur. J. Biochem. 115, 635], and the ion effects are discussed with reference to the magnesium and spermine sites found in the crystal structures of yeast tRNAPhe [Holbrook, S. R., Sussman, J. L., Warrant, R. W., Church, G. M., & Kim, S.-H. (1977) Nucleic Acids Res. 4, 2811; Quigley, G. J., Teeter, M. M., & Rich, A. (1978) Proc. Natl. Acad. Sci. U.S.A. 75, 64; Jack, A., Ladner, J. E., Rhodes, D., Brown, R. S., & Klug, A. (1977) J. Mol. Biol. 111, 315].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号