首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pseudomonas sp. strain TW3 is able to oxidatively metabolize 4-nitrotoluene and toluene via a route analogous to the upper pathway of the TOL plasmids. We report the sequence and organization of five genes, ntnWCMAB*, which are very similar to and in the same order as the xyl operon of TOL plasmid pWW0 and present evidence that they encode enzymes which are expressed during growth on both 4-nitrotoluene and toluene and are responsible for their oxidation to 4-nitrobenzoate and benzoate, respectively. These genes encode an alcohol dehydrogenase homolog (ntnW), an NAD+-linked benzaldehyde dehydrogenase (ntnC), a two-gene toluene monooxygenase (ntnMA), and part of a benzyl alcohol dehydrogenase (ntnB*), which have 84 to 99% identity at the nucleotide and amino acid levels with the corresponding xylWCMAB genes. The xylB homolog on the TW3 genome (ntnB*) appears to be a pseudogene and is interrupted by a piece of DNA which destroys its functional open reading frame, implicating an additional and as-yet-unidentified benzyl alcohol dehydrogenase gene in this pathway. This conforms with the observation that the benzyl alcohol dehydrogenase expressed during growth on 4-nitrotoluene and toluene differs significantly from the XylB protein, requiring assay via dye-linked electron transfer rather than through a nicotinamide cofactor. The further catabolism of 4-nitrobenzoate and benzoate diverges in that the former enters the hydroxylaminobenzoate pathway as previously reported, while the latter is further metabolized via the β-ketoadipate pathway.  相似文献   

2.
TOL plasmid pWW0 specifies enzymes for the oxidative catabolism of toluene and xylenes. The upper pathway converts the aromatic hydrocarbons to aromatic carboxylic acids via corresponding alcohols and aldehydes and involves three enzymes: xylene oxygenase, benzyl alcohol dehydrogenase, and benzaldehyde dehydrogenase. The synthesis of these enzymes is positively regulated by the product of xylR. Determination of upper pathway enzyme levels in bacteria carrying Tn5 insertion mutant derivatives of plasmid pWW0-161 has shown that the genes for upper pathway enzymes are organized in an operon with the following order: promoter-xylC (benzaldehyde dehydrogenase gene[s])-xylA (xylene oxygenase gene[s])-xylB (benzyl alcohol dehydrogenase gene). Subcloning of the upper pathway genes in a lambda pL promoter-containing vector and analysis of their expression in Escherichia coli K-12 confirmed this order. Two distinct enzymes were found to attack benzyl alcohol, namely, xylene oxygenase and benzyl alcohol dehydrogenase; and their catalytic activities were additive in the conversion of benzyl alcohol to benzaldehyde. The fact that benzyl alcohol is both a product and a substrate of xylene oxygenase indicates that this enzyme has a relaxed substrate specificity.  相似文献   

3.
The TOL plasmid upper pathway operon encodes enzymes involved in the catabolism of aromatic hydrocarbons such as toluene and xylenes. The regulator of the gene pathway, the XylR protein, exhibits a very broad effector specificity, being able to recognize as effectors not only pathway substrates but also a wide variety of mono- and disubstituted methyl-, ethyl-, and chlorotoluenes, benzyl alcohols, and p-chlorobenzaldehyde. Benzyl alcohol dehydrogenase and benzaldehyde dehydrogenase, two upper pathway enzymes, exhibit very broad substrate specificities and transform unsubstituted substrates and m- and p-methyl-, m- and p-ethyl-, and m- and p-chloro-substituted benzyl alcohols and benzaldehydes, respectively, at a high rate. In contrast, toluene oxidase only oxidizes toluene, m- and p-xylene, m-ethyltoluene, and 1,2,4-trimethylbenzene [corrected], also at a high rate. A biological test showed that toluene oxidase attacks m- and p-chlorotoluene, albeit at a low rate. No evidence for the transformation of p-ethyltoluene by toluene oxidase has been found. Hence, toluene oxidase acts as the bottleneck step for the catabolism of p-ethyl- and m- and p-chlorotoluene through the TOL upper pathway. A mutant toluene oxidase able to transform p-ethyltoluene was isolated, and a mutant strain capable of fully degrading p-ethyltoluene was constructed with a modified TOL plasmid meta-cleavage pathway able to mineralize p-ethylbenzoate. By transfer of a TOL plasmid into Pseudomonas sp. strain B13, a clone able to slowly degrade m-chlorotoluene was also obtained.  相似文献   

4.
Benzyl alcohol dehydrogenase and benzaldehyde dehydrogenase, two enzymes of the xylene degradative pathway encoded by the plasmid TOL of a Gram-negative bacterium Pseudomonas putida, were purified and characterized. Benzyl alcohol dehydrogenase catalyses the oxidation of benzyl alcohol to benzaldehyde with the concomitant reduction of NAD+; the reaction is reversible. Benzaldehyde dehydrogenase catalyses the oxidation of benzaldehyde to benzoic acid with the concomitant reduction of NAD+; the reaction is irreversible. Benzyl alcohol dehydrogenase and benzaldehyde dehydrogenase also catalyse the oxidation of many substituted benzyl alcohols and benzaldehydes, respectively, though they were not capable of oxidizing aliphatic alcohols and aldehydes. The apparent Km value of benzyl alcohol dehydrogenase for benzyl alcohol was 220 microM, while that of benzaldehyde dehydrogenase for benzaldehyde was 460 microM. Neither enzyme contained a prosthetic group such as FAD or FMN, and both enzymes were inactivated by SH-blocking agents such as N-ethylmaleimide. Both enzymes were dimers of identical subunits; the monomer of benzyl alcohol dehydrogenase has a mass of 42 kDa whereas that of the monomer of benzaldehyde dehydrogenase was 57 kDa. Both enzymes transfer hydride to the pro-R side of the prochiral C4 of the pyridine ring of NAD+.  相似文献   

5.
Pseudomonas putida strain TW3 is able to metabolize 4-nitrotoluene via 4-nitrobenzoate (4NBen) and 3, 4-dihydroxybenzoic acid (protocatechuate [PCA]) to central metabolites. We have cloned, sequenced, and characterized a 6-kbp fragment of TW3 DNA which contains five genes, two of which encode the enzymes involved in the catabolism of 4NBen to PCA. In order, they encode a 4NBen reductase (PnbA) which is responsible for catalyzing the direct reduction of 4NBen to 4-hydroxylaminobenzoate with the oxidation of 2 mol of NADH per mol of 4NBen, a reductase-like enzyme (Orf1) which appears to have no function in the pathway, a regulator protein (PnbR) of the LysR family, a 4-hydroxylaminobenzoate lyase (PnbB) which catalyzes the conversion of 4-hydroxylaminobenzoate to PCA and ammonium, and a second lyase-like enzyme (Orf2) which is closely associated with pnbB but appears to have no function in the pathway. The central pnbR gene is transcribed in the opposite direction to the other four genes. These genes complete the characterization of the whole pathway of 4-nitrotoluene catabolism to the ring cleavage substrate PCA in P. putida strain TW3.  相似文献   

6.
Mutant derivatives of the TOL plasmid pWW0-161, containing Tn5 insertions in the xylS and xylR regulatory genes of the catabolic pathway, have been identified and characterized. The two genes are located together on a 1.5- to 3.0-kilobase segment of TOL, just downstream of genes of the enzymes of the meta-cleavage pathway. As predicted by a current model for regulation of the TOL catabolic pathway, benzyl alcohol dehydrogenase, a representative enzyme of the upper (hydrocarbon leads to carboxylic acid) pathway, was induced by m-methylbenzyl alcohol in xylS mutant bacteria but not in a xylR mutant, whereas catechol 2,3-oxygenase, a representative enzyme of the lower (meta-cleavage) pathway, was induced by m-toluate in a xylR mutant but not in the xylS mutants. Unexpectedly, however, catechol 2,3-oxygenase was not induced by m-methylbenzyl alcohol in xylS mutants but was induced by benzyl alcohol and benzoate. These results indicate that expression of the TOL plasmid-encoded catabolic pathway is regulated by at least three control elements, two of which (the products of the xylS and xylR genes) interact in the induction of the lower pathway by methylated hydrocarbons and alcohols and one of which responds only to nonmethylated substrates.  相似文献   

7.
Pseudomonas putida (arvilla) mt-2 carries genes for the catabolism of toluene, m-xylene, and p-xylene on a transmissible plasmid, TOL. These compounds are degraded by oxidation of one of the methyl substituents via the corresponding alcohols and aldehydes to benzoate and m- and p-toluates, respectively, which are then further metabolised by the meta pathway, also coded for by the TOL plasmid. The specificities of the benzyl alcohol dehydrogenase and the benzaldehyde dehydrogenase for their three respective substrates are independent of the carbon source used for growth, suggesting that a single set of nonspecific enzymes is responsible for the dissimilation of the breakdown products of toluene and m- and p-xylene. Benzyl alcohol dehydrogenase and benzaldehyde dehydrogenase are coincidently and possible coordinately induced by toluene and the xylenes, and by the corresponding alcohols and aldehydes. They are not induced in cells grown on m-toluate but catechol 2,3-oxygenase can be induced by m-xylene.  相似文献   

8.
M Bartilson  V Shingler 《Gene》1989,85(1):233-238
Pseudomonas CF600 degrades phenol and some of its methylated derivatives via a plasmid-encoded catabolic pathway. The catechol 2,3-dioxygenase (C23O) enzyme of this pathway catalyses the conversion of catechol to 2-hydroxymuconic semialdehyde. We have determined the nucleotide (nt) sequence of the dmpB structural gene for this enzyme, and expressed and identified its polypeptide product in Escherichia coli. The xylE gene of TOL plasmid pWWO and the nahH gene of plasmid NAH7 encode analogous C23O enzymes. Comparison of these three genes shows homology of 78-81% on the nt level and 83-87% homology on the amino acid level.  相似文献   

9.
The involvement of two primary alcohol dehydrogenases, BDH and BOH, in butane utilization in Pseudomonas butanovora (ATCC 43655) was demonstrated. The genes coding for BOH and BDH were isolated and characterized. The deduced amino acid sequence of BOH suggests a 67-kDa alcohol dehydrogenase containing pyrroloquinoline quinone (PQQ) as cofactor and in the periplasm (29-residue leader sequence). The deduced amino acid sequence of BDH is consistent with a 70.9-kDa, soluble, periplasmic (37-residue leader sequence) alcohol dehydrogenase containing PQQ and heme c as cofactors. BOH and BDH mRNAs were induced whenever the cell's 1-butanol oxidation activity was induced. When induced with butane, the gene for BOH was expressed earlier than the gene for BDH. Insertional disruption of bdh or boh affected adversely, but did not eliminate, butane utilization by P. butanovora. The P. butanovora mutant with both genes boh and bdh inactivated was unable to grow on butane or 1-butanol. These cells, when grown in citrate and incubated in butane, developed butane oxidation capability and accumulated 1-butanol. The enzyme activity of BOH was characterized in cell extracts of the P. butanovora strain with bdh disrupted. Unlike BDH, BOH oxidized 2-butanol. The results support the involvement of two distinct NAD(+)-independent, PQQ-containing alcohol dehydrogenases, BOH (a quinoprotein) and BDH (a quinohemoprotein), in the butane oxidation pathway of P. butanovora.  相似文献   

10.
Two psychrotolerant toluene-degrading Pseudomonas spp. were isolated from JP8 jet-fuel-contaminated soils, Scott Base, Antarctica. Isolates metabolized meta-toluate as sole carbon source at temperatures ranging from 6 to 30 degrees C. Large plasmids (>64kb) were isolated from both isolates. Sequence analysis of PCR products amplified using xylB (the gene encoding benzyl alcohol dehydrogenase) primers revealed that isolates 7/167 and 8/46 were 100% and 92% homologous, respectively, to the xylB gene of the meta-cleavage toluene degradative pathway encoded by the TOL plasmid (pWWO) of Pseudomonas putida mt-2. Assays of cell-free extracts of 7/167 and 8/46 demonstrated activity of catechol 2,3-dioxygenase, benzyl alcohol dehydrogenase, and benzaldehyde dehydrogenase, indicating that the isolates use the meta-cleavage pathway enzymes of toluene degradation typical of TOL type plasmids. As both isolates are able to grow at 6 degrees C ex situ it is feasible that they would be able to metabolize toluene in the Antarctic soils from where they were originally isolated.  相似文献   

11.
12.
We have been working to develop an enzymatic assay for the alcohol 2-methyl-3-buten-2-ol (232-MB), which is produced and emitted by certain pines. To this end we have isolated the soil bacterium Pseudomonas putida MB-1, which uses 232-MB as a sole carbon source. Strain MB-1 contains inducible 3-methyl-2-buten-1-ol (321-MB) and 3-methyl-2-buten-1-al dehydrogenases, suggesting that 232-MB is metabolized by isomerization to 321-MB followed by oxidation. 321-MB dehydrogenase was purified to near-homogeneity and found to be a tetramer (151 kDa) with a subunit mass of 37,700 Da. It catalyzes NAD+-dependent, reversible oxidation of 321-MB to 3-methyl-2-buten-1-al. The optimum pH for the oxidation reaction was 10.0, while that for the reduction reaction was 5.4. 321-MB dehydrogenase oxidized a wide variety of aliphatic and aromatic alcohols but exhibited the highest catalytic specificity with allylic or benzylic substrates, including 321-MB, 3-chloro-2-buten-1-ol, and 3-aminobenzyl alcohol. The N-terminal sequence of the enzyme contained a region of 64% identity with the TOL plasmid-encoded benzyl alcohol dehydrogenase of P. putida. The latter enzyme and the chromosomally encoded benzyl alcohol dehydrogenase of Acinetobacter calcoaceticus were also found to catalyze 321-MB oxidation. These findings suggest that 321-MB dehydrogenase and other bacterial benzyl alcohol dehydrogenases are broad-specificity allylic and benzylic alcohol dehydrogenases that, in conjunction with a 232-MB isomerase, might be useful in an enzyme-linked assay for 232-MB.  相似文献   

13.
The NADP(+)-preferring glucose dehydrogenase from thermoacidophilic archaeon Thermoplasma acidophilum has been characterized, and its crystal structure has been determined (Structure, 2:385-393, 1994). Its sequence and structure are not homologous to bacterial NAD(P)(+)-dependent glucose dehydrogenases, and its molecular weight is also quite defferent. On the other hand, three functionally unknown genes with homologies to bacterial NAD(P)(+)-dependent glucose dehydrogenases have been sequenced as part of the T. acidophilum genome project (gene names: Ta0191, Ta0747, and Ta0754 respectively). We expressed two genes of three, Ta0191 and Ta0754, in Escherichia coli, and purified the gene products to homogeneity. Dehydrogenase activities were thereby detected from the purified proteins. The Ta0754 gene product exhibited aldohexose dehydrogenase activity, and the Ta0191 gene product exhibited weak 2-deoxyglucose dehydrogenase activity. No aldohexose dehydrogenase gene has been isolated, while the enzyme was reported in 1968. This is the first report of the gene and primary structure. The purified Ta0754 gene product, designated AldT, was characterized. The enzyme AldT effectively catalyzed the oxidation of various aldohexoses, especially D-mannose. Lower activities on D-2-deoxyglucose, D-xylose, D-glucose, and D-fucose were detected although no activities were shown on other aldohexoses or additional sugars. As a cofactor, NAD(+) was much more suitable for the activity than NADP(+). The NAD(+)-preferring dehydrogenase most effectively reacting to D-mannose is for the first time. AldT was most active at pH 10 and above 70 degrees C, and completely stable up to 60 degrees C after incubation for 15 min. Other enzymatic properties were also investigated.  相似文献   

14.
The cytoplasmic coenzyme NAD(+)-dependent alcohol (methanol) dehydrogenase (MDH) employed by Bacillus methanolicus during growth on C(1)-C(4) primary alcohols is a decameric protein with 1 Zn(2+)-ion and 1-2 Mg(2+)-ions plus a tightly bound NAD(H) cofactor per subunit (a nicotinoprotein). Mg(2+)-ions are essential for binding of NAD(H) cofactor in MDH protein expressed in Escherichia coli. The low coenzyme NAD(+)-dependent activity of MDH with C(1)-C(4) primary alcohols is strongly stimulated by a second B. methanolicus protein (ACT), provided that MDH contains NAD(H) cofactor and Mg(2+)-ions are present in the assay mixture. Characterization of the act gene revealed the presence of the highly conserved amino acid sequence motif typical of Nudix hydrolase proteins in the deduced ACT amino acid sequence. The act gene was successfully expressed in E. coli allowing purification and characterization of active ACT protein. MDH activation by ACT involved hydrolytic removal of the nicotinamide mononucleotide NMN(H) moiety of the NAD(H) cofactor of MDH, changing its Ping-Pong type of reaction mechanism into a ternary complex reaction mechanism. Increased cellular NADH/NAD(+) ratios may reduce the ACT-mediated activation of MDH, thus preventing accumulation of toxic aldehydes. This represents a novel mechanism for alcohol dehydrogenase activity regulation.  相似文献   

15.
16.
Biodegradation of 4-nitrotoluene by Pseudomonas sp. strain 4NT.   总被引:7,自引:2,他引:5       下载免费PDF全文
A strain of Pseudomonas spp. was isolated from nitrobenzene-contaminated soil on 4-nitrotoluene as the sole source of carbon, nitrogen, and energy. The organism also grew on 4-nitrobenzaldehyde, and 4-nitrobenzoate. 4-Nitrobenzoate and ammonia were detected in the culture fluid of glucose-grown cells after induction with 4-nitrotoluene. Washed suspensions of 4-nitrotoluene- or 4-nitrobenzoate-grown cells oxidized 4-nitrotoluene, 4-nitrobenzaldehyde, 4-nitrobenzyl alcohol, and protocatechuate. Extracts from induced cells contained 4-nitrobenzaldehyde dehydrogenase, 4-nitrobenzyl alcohol dehydrogenase, and protocatechuate 4,5-dioxygenase activities. Under anaerobic conditions, cell extracts converted 4-nitrobenzoate or 4-hydroxylaminobenzoate to protocatechuate. Conversion of 4-nitrobenzoate to protocatechuate required NADPH. These results indicate that 4-nitrotoluene was degraded by an initial oxidation of the methyl group to form 4-nitrobenzyl alcohol, which was converted to 4-nitrobenzoate via 4-nitrobenzaldehyde. The 4-nitrobenzoate was reduced to 4-hydroxylaminobenzoate, which was converted to protocatechuate. A protocatechuate 4,5-dioxygenase catalyzed meta-ring fission of the protocatechuate. The detection of 4-nitrobenzaldehyde and 4-nitrobenzyl alcohol dehydrogenase and 4-nitrotoluene oxygenase activities in 4-nitrobenzoate-grown cells suggests that 4-nitrobenzoate is an inducer of the 4-nitrotoluene degradative pathway.  相似文献   

17.
18.
NAD(+)-dependent isocitrate dehydrogenase from Saccharomyces cerevisiae is composed of two nonidentical subunits, designated IDH1 and IDH2. The gene encoding IDH2 was previously cloned and sequenced (Cupp, J.R., and McAlister-Henn, L. (1991) J. Biol. Chem. 266, 22199-22205), and in this paper we describe the isolation of a yeast genomic clone containing the IDH1 gene. A fragment of the IDH1 gene was amplified by the polymerase chain reaction method utilizing degenerate oligonucleotides based on tryptic peptide sequences of the purified subunit; this fragment was used to isolate a full length IDH1 clone. The nucleotide sequence of the IDH1 coding region was determined and encodes a 360-residue polypeptide including an 11-residue mitochondrial targeting presequence. Amino acid sequence comparison between IDH1 and IDH2 reveals a 42% sequence identity, and both IDH1 and IDH2 show approximately 32% identity to Escherichia coli NAD(P)(+)-dependent isocitrate dehydrogenase. To examine the function of the IDH1 subunit and to determine the metabolic role of NAD(+)-dependent isocitrate dehydrogenase the IDH1 gene was disrupted in a wild type haploid yeast strain and in a haploid strain lacking IDH2. The IDH1 disruption strains expressed no detectable IDH1 as determined by Western blot analysis, and these strains were found to lack NAD(+)-dependent isocitrate dehydrogenase activity indicating that IDH1 is essential for a functional enzyme. Over-expression of IDH1 in a strain containing IDH2 restored wild type activity but did not result in increased levels of activity, suggesting that both IDH1 and IDH2 are required for a functional enzyme. Growth phenotype analysis of the IDH1 disruption strains revealed that they grew at a reduced rate on the nonfermentable carbon sources examined (glycerol, lactate, and acetate), consistent with NAD(+)-dependent isocitrate dehydrogenase performing a critical role in oxidative function of the citric acid cycle. In addition, the IDH1 disruption strains grew at wild type rates in the absence of glutamate, indicating that these strains are not glutamate auxotrophs.  相似文献   

19.
20.
A psychrophilic bacterium, Cytophaga sp. strain KUC-1, that abundantly produces a NAD(+)-dependent L-threonine dehydrogenase was isolated from Antarctic seawater, and the enzyme was purified. The molecular weight of the enzyme was estimated to be 139,000, and that of the subunit was determined to be 35,000. The enzyme is a homotetramer. Atomic absorption analysis showed that the enzyme contains no metals. In these respects, the Cytophaga enzyme is distinct from other L-threonine dehydrogenases that have thus far been studied. L-Threonine and DL-threo-3-hydroxynorvaline were the substrates, and NAD(+) and some of its analogs served as coenzymes. The enzyme showed maximum activity at pH 9.5 and at 45 degrees C. The kinetic parameters of the enzyme are highly influenced by temperatures. The K(m) for L-threonine was lowest at 20 degrees C. Dead-end inhibition studies with pyruvate and adenosine-5'-diphosphoribose showed that the enzyme reaction proceeds via the ordered Bi Bi mechanism in which NAD(+) binds to an enzyme prior to L-threonine and 2-amino-3-oxobutyrate is released from the enzyme prior to NADH. The enzyme gene was cloned into Escherichia coli, and its nucleotides were sequenced. The enzyme gene contains an open reading frame of 939 bp encoding a protein of 312 amino acid residues. The amino acid sequence of the enzyme showed a significant similarity to that of UDP-glucose 4-epimerase from Staphylococcus aureus and belongs to the short-chain dehydrogenase-reductase superfamily. In contrast, L-threonine dehydrogenase from E. coli belongs to the medium-chain alcohol dehydrogenase family, and its amino acid sequence is not at all similar to that of the Cytophaga enzyme. L-Threonine dehydrogenase is significantly similar to an epimerase, which was shown for the first time. The amino acid residues playing an important role in the catalysis of the E. coli and human UDP-glucose 4-epimerases are highly conserved in the Cytophaga enzyme, except for the residues participating in the substrate binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号