首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Regulation of levels of specific Sertoli cell mRNAs by vitamin A   总被引:4,自引:0,他引:4  
  相似文献   

5.
13-cis-retinoic acid (13-cis-RA, isotretinoin) is used to treat severe recalcitrant acne. Other retinoids have adverse effects on bone. Recent studies of human patients treated with 13-cis-RA have had varying results, perhaps because of variability among patients and the lack of control groups. The effects of retinoids have been studied in rodents, but little information is available regarding the effects of clinically relevant retinoid doses as evaluated by use of bone densitometric techniques. We treated rats for 15 or 20 wk with 13-cis-RA, all-trans-RA, or soybean oil (control) by gavage. We used dual-energy X-ray absorptiometry, histomorphometry, and histologic evaluation to evaluate effects on bone. Spontaneous long bone fractures occurred in some rats treated with 15 mg/kg all-trans-RA daily. Bone mineral density, bone mineral content, bone diameter, and cortical thickness of the femur were reduced in rats treated daily with 10 or 15 mg/kg all-trans-RA or 30 mg/kg 13-cis-RA. The lumbar spine was not affected. Although the effects of 13-cis-RA were not as dramatic as those of all-trans-RA, further study of the effects of 13-cis-RA on long bones is warranted.  相似文献   

6.
Characterization of a new endogenous vitamin A metabolite   总被引:4,自引:0,他引:4  
Here, we describe the discovery of a new major endogenous vitamin A metabolite with particularly high hepatic concentrations. This metabolite was isolated from mouse livers and was characterized as 9-cis-4-oxo-13,14-dihydro-retinoic acid (RA) based on mass spectral, ultraviolet, and nuclear magnetic resonance analyses. It was also detected in one human liver. To gain further insight into endogenous retinoid metabolism, mice were fed over a period of 14 days ad libitum with diets enriched with different amounts of retinyl palmitate [15,000, 45,000 or 150,000 international units (IU)/kg diet]. Higher retinyl palmitate amounts in the diet resulted surprisingly in a dose-dependent decrease in all-trans-RA levels in serum, kidney, and brain, whereas levels of 9-cis-4-oxo-13,14-dihydro-RA, retinol, and retinyl esters were dose-dependently elevated in serum, kidney, and liver. 13-cis-RA levels could be detected in serum, liver, and kidney, but were unaffected by the dietary vitamin A status. 9-cis-RA levels were below the detection limit of 0.2 ng/ml serum or 0.4 ng/g tissue. This study indicates that the oxidation at C4 of the cyclohexenyl ring, isomerization of the C9/C10 double bond, and reduction of the C13/C14 double bond are major endogenous metabolic pathways of vitamin A.  相似文献   

7.
Retinol deficiency resulted in decreased mRNA levels for cellular retinol-binding protein (CRBP) in the lungs and the testes. The level of lung CRBP mRNA increased 2.3-fold one hour after oral administration of retinoic acid to retinol deficient rats. In contrast, testicular CRBP mRNA level was not influenced. Our data indicate that retinoic acid regulates CRBP mRNA level in the whole animal and this rapid effect suggests a role for CRBP in the mechanism of vitamin A action at genomic level.  相似文献   

8.
9.
Nagao K  Bannai M  Seki S  Mori M  Takahashi M 《Amino acids》2009,36(3):555-562
It is known that plasma serine and threonine concentrations are elevated in rats chronically fed an essential amino acid deficient diet, but the underlying mechanisms including related gene expressions or serine and threonine concentrations in liver remained to be elucidated. We fed rats lysine or valine deficient diet for 4 weeks and examined the mRNA expressions of serine synthesising (3-phosphoglycerate dehydrogenase, PHGDH) and serine/threonine degrading enzymes (serine dehydratase, SDS) in the liver. Dietary deficiency induced marked elevation of hepatic serine and threonine levels associated with enhancement of PHGDH mRNA expression and repression of SDS mRNA expression. Increases in plasma serine and threonine levels due to essential amino acid deficiency in diet were caused by marked increases in hepatic serine and threonine levels. Proteolytic responses to the amino acid deficiency may be lessened by storing amino radicals as serine and inducing anorexia through elevation of threonine.  相似文献   

10.
11.
12.
Rat liver 3-hydroxy-3-methylglutaryl coenzyme A reductase exhibits a diurnal rhythm of activity which coincides with a diurnal rhythm of reductase protein and reductase mRNA levels. This diurnal rhythm of reductase activity, polypeptide mass, and mRNA exists in rats fed a normal diet (unsupplemented rat chow) and in rats fed a diet supplemented with cholestyramine plus or minus mevinolin. Levels of reductase protein were determined by 8 M urea/sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunoblotting. Reductase mRNA was measured by in vitro translation or blot hybridization of liver RNA. Functional reductase mRNA levels in rats fed a normal diet were approximately 10-fold higher during the middle of the dark cycle than during the middle of the light cycle. Maximum induction of functional reductase mRNA was observed in rats fed cholestyramine and mevinolin. This latter level was 157-fold higher than the level measured at the diurnal low point in rats fed a normal diet. Blot hybridization of liver RNA showed two predominant mRNAs of 4.6 and 4.2 kilobase pairs and a minor species at 6.9 kilobase pairs. These mRNAs exhibited a diurnal rhythm for rats on all three diets and reached peak levels during the 12-h dark period. These data indicate that the diurnal rhythm of reductase mass and activity is closely paralleled by the level of its mRNA.  相似文献   

13.
14.
A study was conducted to determine the levels of cellular retinol-binding protein (CRBP) mRNA and protein in various tissues of the rat, to explore relationship between CRBP mRNA and protein levels in different tissues, and to examine the effects of changes in retinol nutritional status on the tissue distribution and levels of CRBP mRNA. Previous studies have shown that tissue CRBP protein levels are reduced in totally retinoid-deficient rats, but are otherwise minimally affected by changes in retinoid status. Three groups of male rats were compared: normal controls, retinoid-deficient, and retinol-repleted deficient rats. CRBP mRNA levels were measured by RNase protection assay and CRBP protein levels by radioimmunoassay in seven tissues. High levels of both CRBP mRNA and CRBP protein were found in the proximal epididymis, kidney, and liver; lower levels were seen in lung, testis, spleen, and small intestine. Tissue CRBP mRNA and protein levels were highly correlated (P less than 0.01) with each other. Retinoid deficiency did not alter the levels of CRBP mRNA found in the proximal epididymis, kidney, and liver. In contrast, CRBP mRNA levels in the lung, testis, spleen, and small intestine were reduced substantially in retinoid-deficient rats, to values that were only 23% to 50% of the corresponding values in the tissues of control rats. After oral repletion with retinol (4-18 h earlier), CRBP mRNA levels for these latter four tissues were found to have risen to control or near-control levels. The suggestion is raised that retinol repletion may have directly induced the expression of the CRBP gene in these particular tissues.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Although omega-3 (n-3) fatty acids negatively regulate triglyceride biosynthesis, the mechanisms mediating this effect are poorly understood, and emerging evidence suggests that stearoyl-CoA desaturase (Scd1) is required for de novo triglyceride biosynthesis. To investigate this mechanism, we determined the effects of perinatal n-3 deficiency and postnatal repletion on rat liver Scd1 mRNA expression and activity indices (liver 16:1/16:0 and 18:1/18:0 ratios), and determined relationships with postprandial (non-fasting) plasma triglyceride levels. Rats were fed conventional diets with or without the n-3 fatty acid precursor α-linolenic acid (ALA, 18:3n-3) during perinatal development (E0-P100), and a subset of rats fed the ALA- diet were switched to the ALA+ diet post-weaning (P21-P100, repletion). Compared with controls, rats fed the ALA- diet exhibited significantly lower liver long-chain n-3 fatty acid compositions and elevations in monounsaturated fatty acid composition, both of which were normalized in repleted rats. Liver Scd1 mRNA expression and activity indices (16:1/16:0 and 18:1/18:0 ratios) were significantly greater in n-3 deficient rats compared with controls and repleted rats. Among all rats, liver Scd1 mRNA expression was positively correlated with liver 18:1/18:0 and 16:1/16:0 ratios. Plasma triglyceride levels, but not glucose or insulin levels, were significantly greater in n-3 deficient rats compared with controls and repleted rats. Liver Scd1 mRNA expression and activity indices were positively correlated with plasma triglyceride levels. These preclinical findings demonstrate that n-3 fatty acid status is an important determinant of liver Scd1 mRNA expression and activity, and suggest that down-regulation of Scd1 is a mechanism by which n-3 fatty acids repress constitutive triglyceride biosynthesis.  相似文献   

16.
17.
A novel retinoic acid (RA)-inducible cytochrome P450 (P450 RAI or CYP26), previously cloned from human, zebra fish, and mouse, functions in the metabolism of all-trans-RA to polar metabolites including 4-hydroxy-RA and 4-oxo-RA. To further study CYP26 in the rat model, we first cloned rat CYP26 cDNA. The nucleotide sequence predicts a 497-amino-acid protein whose sequence is 95% identical to mouse and 91% homologous to human CYP26. Animal studies showed that CYP26 mRNA expression is very low (0.01+/-0.008;P<0.05) in vitamin-A-deficient rats compared to pair-fed vitamin-A-sufficient rats (defined as 1.0). In a kinetic study, vitamin-A-deficient rats were treated with approximately 100 microg of all-trans-RA and liver was collected after 3-72 h for analysis of CYP26 mRNA by quantitative real-time PCR. Liver CYP26 mRNA increased to nearly 10-fold above control after 3 h (P<0.01), reaching a peak of about 2000-fold greater around 10 h (P<0.001) and then decreased rapidly. The CYP26 dose response to RA was nearly linear (R(2)=0.9638). Additionally, significant regulation of CYP26 gene expression was observed in the vitamin-A-deficient, control, and RA-treated condition in lung, testis, and small intestine. We conclude that CYP26 mRNA expression is dynamically regulated in vivo by diet and RA in hepatic and extrahepatic tissues. The long-term down-regulation of CYP26 in retinoid deficiency may be critical for conserving RA, while the acute up-regulation of CYP26 may be important for preventing a deleterious overshoot of RA derived from either dietary or exogenous sources.  相似文献   

18.
The effects of feeding retinoic acid for 2 and 6 days on the metabolism of labeled retinol in tissues of rats maintained on a vitamin A deficient diet was studied. The metabolites of retinol were analyzed by high performance liquid chromatography. Feeding retinoic acid for 2 days significantly reduced the blood retinol and retinyl ester levels without affecting the vitamin A content of the liver. In intestine and testis the content of labeled retinoic acid was decreased significantly by dietary retinoic acid. Addition of retinoic acid to the diet for 6 days resulted, in addition to decreased blood retinol and retinyl ester values, in an increase in the retinyl ester values in the liver. The accumulation of retinyl ester in the retinoic acid fed rat liver was accompanied by an absence of labeled retinoic acid. Kidney tissue was found to contain the highest levels of labeled retinoic acid, retinol, and retinyl esters; dietary retinoic acid did not alter the concentrations of these retinoids in the kidney during the experimental period. Since kidney retained more vitamin A when the liver vitamin A was low and also dietary retinoic acid did not affect the concentrations of radioactive retinoic acid in the kidney, it is suggested that the kidney may play a major role in the production of retinoic acid from retinol in the body.  相似文献   

19.
The fatty acid composition of microsomal lipids and the activities of delta 9- and delta 6-desaturases in liver microsomes of rats fed diets supplemented with beta-carotene and two levels of 13-cis-retinoic acid were studied. Four groups of male, weanling rats were fed semipurified diets containing 0 or 100 mg beta-carotene per kg diet, and 20 or 100 mg 13-cis-retinoic acid per kg diet. After 11 weeks of feeding, the rats were killed, liver microsomes were prepared and assayed for delta 9-desaturase and delta 6-desaturase activities. The activity of delta 9-desaturase was lower in liver microsomes of rats fed beta-carotene-supplemented diet or the diet supplemented with the higher level of 13-cis-retinoic acid. Microsomal delta 6-desaturase activity was, however, higher in liver of rats fed 13-cis retinoic acid; there was no effect of beta-carotene on delta 6-desaturase activity. The fatty acid compositional data on total lipids of liver microsomes were consistent with the diet-induced changes in fatty acid desaturases. Phospholipid composition of liver microsomes was also altered as a result of feeding beta-carotene or 13-cis-retinoic acid-containing diets. The proportions of phosphatidylethanolamine were generally higher, whereas those of phosphatidylcholine were lower in the experimental groups as compared with the control.  相似文献   

20.
It has been proposed that bile acid suppression of CYP7A1 gene expression is mediated through a gut-liver signaling pathway fibroblast growth factor (FGF)15/19-fibroblast growth factor receptor 4 which is initiated by activation of farnesoid X receptor in the ileum but not in the liver. This study evaluated whether FGF15/19 protein levels in the portal blood reflected changes in FGF15/19 mRNA in the ileum. Studies were conducted in Sprague Dawley rats and New Zealand white rabbits fed regular chow (controls), supplemented with cholesterol (Ch) or cholic acid (CA). After feeding CA, ileal FGF15 mRNA increased 8.5-fold in rats and FGF19 rose 16-fold in rabbits associated with 62 and 75% reduction of CYP7A1 mRNA, respectively. Neither FGF15 nor FGF19 protein levels changed in the portal blood to correspond with the marked increase of FGF15/19 mRNA levels in the ileum or inhibited CYP7A1 expression in the liver. Further, in Ch-fed rats, CYP7A1 mRNA increased 1.9-fold (P < 0.001) although FGF15 mRNA levels in the ileum and portal blood FGF15 protein levels were not decreased. In Ch-fed rabbits, although FGF19 mRNA levels in the ileum and liver did not increase significantly, CYP7A1 mRNA declined 49% (P < 0.05). We were unable to find corresponding changes of FGF15/19 protein levels in the portal blood in rats and rabbits where the mRNA levels of FGF15/19 in the ileum and CYP7A1 in the liver change significantly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号