首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cassava brown streak disease (CBSD) is arguably the most dangerous current threat to cassava, which is Africa's most important food security crop. CBSD is caused by two RNA viruses: Cassava brown streak virus (CBSV) and Ugandan cassava brown streak virus (UCBSV). The roles of the whitefly Bemisia tabaci (Gennadius) and farmer practices in the spread of CBSD were investigated in a set of field and laboratory experiments. The virus was acquired and transmitted by B. tabaci within a short time (5–10 min each for virus acquisition and inoculation), and was retained for up to 48 hr. Highest virus transmission (60%) was achieved using 20–25 suspected viruliferous whiteflies per plant that were given acquisition and inoculation periods of 24 and 48 hr, respectively. Experiments mimicking the agronomic practices of cassava leaf picking or the use of contaminated tools for making cassava stem cuttings did not show the transmission of CBSV or UCBSV. Screenhouse and field experiments in Tanzania showed that the spread of CBSD next to spreader rows was high, and that the rate of spread decreased with increasing distance from the source of inoculum. The disease spread in the field up to a maximum of 17 m in a cropping season. These results collectively confirm that CBSV and UCBSV are transmitted by B. tabaci semipersistently, but for only short distances in the field. This implies that spread over longer distances is due to movements of infected stem cuttings used for planting material. These findings have important implications for developing appropriate management strategies for CBSD.  相似文献   

2.
Cassava brown streak disease (CBSD) has emerged as a major threat to cassava (Manihot esculenta) in eastern and southern Africa. CBSD was first reported in Malawi in the 1950s, but little data on the distribution and epidemiology of the disease are available. A diagnostic survey was therefore conducted in Malawi to determine the distribution, incidence and diversity of viruses causing the disease, and to characterize its effects on local cassava cultivars. Diagnostic tests confirmed the presence of cassava brown streak viruses (CBSVs) in 90% of leaf samples from symptomatic plants. Average CBSD foliar severity was 2.5, although this varied significantly between districts. Both Cassava brown streak virus (CBSV) and Ugandan cassava brown streak virus (UCBSV) (genus Ipomovirus, family Potyviridae) were detected from sampled plants. UCBSV was widespread, whereas CBSV was detected only in the two most northerly districts. The average abundance of the whitefly vector (Bemisia tabaci) was 0.4 per plant, a low value that was partly attributable to the fact that the survey was conducted during the cool part of the year known to be unfavourable for B. tabaci whiteflies. Spearman's correlation analyses showed a positive correlation between CBSD foliar incidence and CBSD severity and between CBSD severity and CBSD stem incidence. Of the 31 cassava varieties encountered, 20–20 was most severely affected, whilst Mtutumusi was completely unaffected. Although data from this study do not indicate a significant CBSD deterioration in Malawi, strengthened management efforts are required to reduce the current impact of the disease.  相似文献   

3.
Cassava brown streak disease (CBSD) is a major constraint on cassava yields in East and Central Africa and threatens production in West Africa. CBSD is caused by two species of positive‐sense RNA viruses belonging to the family Potyviridae, genus Ipomovirus: Cassava brown streak virus (CBSV) and Ugandan cassava brown streak virus (UCBSV). Diseases caused by the family Potyviridae require the interaction of viral genome‐linked protein (VPg) and host eukaryotic translation initiation factor 4E (eIF4E) isoforms. Cassava encodes five eIF4E proteins: eIF4E, eIF(iso)4E‐1, eIF(iso)4E‐2, novel cap‐binding protein‐1 (nCBP‐1), and nCBP‐2. Protein–protein interaction experiments consistently found that VPg proteins associate with cassava nCBPs. CRISPR/Cas9‐mediated genome editing was employed to generate ncbp‐1, ncbp‐2, and ncbp‐1/ncbp‐2 mutants in cassava cultivar 60444. Challenge with CBSV showed that ncbp‐1/ncbp‐2 mutants displayed delayed and attenuated CBSD aerial symptoms, as well as reduced severity and incidence of storage root necrosis. Suppressed disease symptoms were correlated with reduced virus titre in storage roots relative to wild‐type controls. Our results demonstrate the ability to modify multiple genes simultaneously in cassava to achieve tolerance to CBSD. Future studies will investigate the contribution of remaining eIF4E isoforms on CBSD and translate this knowledge into an optimized strategy for protecting cassava from disease.  相似文献   

4.
Cassava brown streak disease (CBSD) and cassava mosaic disease (CMD) are currently two major viral diseases that severely reduce cassava production in large areas of Sub-Saharan Africa. Natural resistance has so far only been reported for CMD in cassava. CBSD is caused by two virus species, Cassava brown streak virus (CBSV) and Ugandan cassava brown streak virus (UCBSV). A sequence of the CBSV coat protein (CP) highly conserved between the two virus species was used to demonstrate that a CBSV-CP hairpin construct sufficed to generate immunity against both viral species in the cassava model cultivar (cv. 60444). Most of the transgenic lines showed high levels of resistance under increasing viral loads using a stringent top-grafting method of inoculation. No viral replication was observed in the resistant transgenic lines and they remained free of typical CBSD root symptoms 7 month post-infection. To generate transgenic cassava lines combining resistance to both CBSD and CMD the hairpin construct was transferred to a CMD-resistant farmer-preferred Nigerian landrace TME 7 (Oko-Iyawo). An adapted protocol allowed the efficient Agrobacterium-based transformation of TME 7 and the regeneration of transgenic lines with high levels of CBSV-CP hairpin-derived small RNAs. All transgenic TME 7 lines were immune to both CBSV and UCBSV infections. Further evaluation of the transgenic TME 7 lines revealed that CBSD resistance was maintained when plants were co-inoculated with East African cassava mosaic virus (EACMV), a geminivirus causing CMD. The innovative combination of natural and engineered virus resistance in farmer-preferred landraces will be particularly important to reducing the increasing impact of cassava viral diseases in Africa.  相似文献   

5.
6.
Cassava brown streak disease (CBSD) is a leading cause of cassava losses in East and Central Africa, and is currently having a severe impact on food security. The disease is caused by two viruses within the Potyviridae family: Cassava brown streak virus (CBSV) and Ugandan cassava brown streak virus (UCBSV), which both encode atypical Ham1 proteins with highly conserved inosine triphosphate (ITP) pyrophosphohydrolase (ITPase) domains. ITPase proteins are widely encoded by plant, animal, and archaea. They selectively hydrolyse mutagenic nucleotide triphosphates to prevent their incorporation into nucleic acid and thereby function to reduce mutation rates. It has previously been hypothesized that U/CBSVs encode Ham1 proteins with ITPase activity to reduce viral mutation rates during infection. In this study, we investigate the potential roles of U/CBSV Ham1 proteins. We show that both CBSV and UCBSV Ham1 proteins have ITPase activities through in vitro enzyme assays. Deep-sequencing experiments found no evidence of the U/CBSV Ham1 proteins providing mutagenic protection during infections of Nicotiana hosts. Manipulations of the CBSV_Tanza infectious clone were performed, including a Ham1 deletion, ITPase point mutations, and UCBSV Ham1 chimera. Unlike severely necrotic wild-type CBSV_Tanza infections, infections of Nicotiana benthamiana with the manipulated CBSV infectious clones do not develop necrosis, indicating that that the CBSV Ham1 is a necrosis determinant. We propose that the presence of U/CBSV Ham1 proteins with highly conserved ITPase motifs indicates that they serve highly selectable functions during infections of cassava and may represent a euphorbia host adaptation that could be targeted in antiviral strategies.  相似文献   

7.
Cassava (Manihot esculenta) is a major food staple in sub-Saharan Africa, which is severely affected by cassava brown streak disease (CBSD). The aim of this study was to identify resistance for CBSD as well as to understand the mechanism of putative resistance for providing effective control for the disease. Three cassava varieties; Kaleso, Kiroba and Albert were inoculated with cassava brown streak viruses by grafting and also using the natural insect vector the whitefly, Bemisia tabaci. Kaleso expressed mild or no disease symptoms and supported low concentrations of viruses, which is a characteristic of resistant plants. In comparison, Kiroba expressed severe leaf but milder root symptoms, while Albert was susceptible with severe symptoms both on leaves and roots. Real-time PCR was used to estimate virus concentrations in cassava varieties. Virus quantities were higher in Kiroba and Albert compared to Kaleso. The Illumina RNA-sequencing was used to further understand the genetic basis of resistance. More than 700 genes were uniquely overexpressed in Kaleso in response to virus infection compared to Albert. Surprisingly, none of them were similar to known resistant gene orthologs. Some of the overexpressed genes, however, belonged to the hormone signalling pathways and secondary metabolites, both of which are linked to plant resistance. These genes should be further characterised before confirming their role in resistance to CBSD.  相似文献   

8.
9.
In sub-Saharan Africa cassava growing areas, two members of the Bemisia tabaci species complex termed sub-Saharan Africa 1 (SSA1) and SSA2 have been reported as the prevalent whiteflies associated with the spread of viruses that cause cassava mosaic disease (CMD) and cassava brown streak disease (CBSD) pandemics. At the peak of CMD pandemic in the late 1990s, SSA2 was the prevalent whitefly, although its numbers have diminished over the last two decades with the resurgence of SSA1 whiteflies. Three SSA1 subgroups (SG1 to SG3) are the predominant whiteflies in East Africa and vary in distribution and biological properties. Mating compatibility between SSA1 subgroups and SSA2 whiteflies was reported as the possible driver for the resurgence of SSA1 whiteflies. In this study, a combination of both phylogenomic methods and reciprocal crossing experiments were applied to determine species status of SSA1 subgroups and SSA2 whitefly populations. Phylogenomic analyses conducted with 26 548 205 bp whole genome single nucleotide polymorphisms (SNPs) and the full mitogenomes clustered SSA1 subgroups together and separate from SSA2 species. Mating incompatibility between SSA1 subgroups and SSA2 further demonstrated their distinctiveness from each other. Phylogenomic analyses conducted with SNPs and mitogenomes also revealed different genetic relationships among SSA1 subgroups. The former clustered SSA1-SG1 and SSA1-SG2 together but separate from SSA1-SG3, while the latter clustered SSA1-SG2 and SSA1-SG3 together but separate from SSA1-SG1. Mating compatibility was observed between SSA1-SG1 and SSA1-SG2, while incompatibility occurred between SSA1-SG1 and SSA1-SG3, and SSA1-SG2 and SSA1-SG3. Mating results among SSA1 subgroups were coherent with phylogenomics results based on SNPs but not the full mitogenomes. Furthermore, this study revealed that the secondary endosymbiont—Wolbachia—did not mediate reproductive success in the crossing assays carried out. Overall, using genome wide SNPs together with reciprocal crossings assays, this study established accurate genetic relationships among cassava-colonizing populations, illustrating that SSA1 and SSA2 are distinct species while at least two species occur within SSA1 species.  相似文献   

10.
Cassava brown streak disease (CBSD) is emerging as one of the most important viral diseases of cassava (Manihot esculenta) and is considered today as the biggest threat to cassava cultivation in East Africa. The disease is caused by isolates of at least two phylogenetically distinct species of single-stranded RNA viruses belonging to the family Potyviridae, genus Ipomovirus. The two species are present predominantly in the coastal lowland [Cassava brown streak virus (CBSV); Tanzania and Mozambique] and highland [Cassava brown streak Uganda virus (CBSUV); Lake Victoria Basin, Uganda, Kenya and Malawi] in East Africa. In this study, we demonstrate that CBSD can be efficiently controlled using RNA interference (RNAi). Three RNAi constructs targeting the highland species were generated, consisting of the full-length (FL; 894 nucleotides), 397-nucleotide N-terminal and 491-nucleotide C-terminal portions of the coat protein (CP) gene of a Ugandan isolate of CBSUV (CBSUV-[UG:Nam:04]), and expressed constitutively in Nicotiana benthamiana. After challenge with CBSUV-[UG:Nam:04], plants homozygous for FL-CP showed the highest resistance, followed by the N-terminal and C-terminal lines with similar resistance. In the case of FL, approximately 85% of the transgenic plant lines produced were completely resistant. Some transgenic lines were also challenged with six distinct isolates representing both species: CBSV and CBSUV. In addition to nearly complete resistance to the homologous virus, two FL plant lines showed 100% resistance and two C-terminal lines expressed 50-100% resistance, whereas the N-terminal lines succumbed to the nonhomologous CBSV isolates. Northern blotting revealed a positive correlation between the level of transgene-specific small interfering RNAs detected in transgenic plants and the level of virus resistance. This is the first demonstration of RNAi-mediated resistance to CBSD and protection across very distant isolates (more than 25% in nucleotide sequence) belonging to two different species: Cassava brown streak virus and Cassava brown streak Uganda virus.  相似文献   

11.
12.
13.
Field monitoring revealed that the infection ratio of the bacterial symbiont Cardinium in the whitefly (Bemisia tabaci MED) was relatively low in northern China. However, the role of this symbiont and the symbiont–whitefly–host plant interaction mechanism are poorly understood. We investigated the influence of Cardinium on the competitiveness of the host whitefly and the physiological interaction between the host plants and host whiteflies. Cardinium-infected whiteflies were displaced by uninfected whiteflies after 5 generations, which showed that Cardinium infection reduced whitefly competitiveness. The defense response genes of cotton significantly decreased under infestation by infected whiteflies compared to uninfected whiteflies. The expression of detoxification metabolism genes, especially the uridine 5ʹ-diphospho-glucuronyltransferase and P450 genes, in infected whiteflies significantly decreased. These results demonstrated that Cardinium could inhibit the defense response of the host plant and decrease the detoxification metabolism ability of the host whitefly. The reduced competitiveness of infected whiteflies may be associated with the inhibition of the whitefly detoxification metabolism by Cardinium, resulting in the reduced performance of infected whiteflies. However, Cardinium infection can suppress plant defenses, which may benefit both infected and uninfected whiteflies when they coexist. This research illustrates the symbiont–whitefly–host plant interaction mechanism and the population dynamics of the whitefly.  相似文献   

14.
All Bemisia tabaci individuals harbour an obligate bacterial symbiont (Portiera aleyrodidarum), and many also harbour non‐essential facultative symbionts. The association of symbiotic bacteria with the various genetic groups of B. tabaci remains unknown for East Africa. This study aimed to assess any association between the various whitefly genetic groups and the endosymbionts they harbour; to investigate if a unique endosymbiont is associated with super‐abundant whiteflies, and to provide baseline information on endosymbionts of whiteflies for a part of East Africa. Whiteflies collected during surveys in Tanzania were genotyped and screened for the presence of the obligate and six secondary symbionts (SS): Rickettsia (R), Hamiltonella (H), Arsenophonus (A), Wolbachia (W), Cardinium (C) and Fritschea (F). The results revealed the presence of Mediterranean (MED), East Africa 1 (EA1), Indian Ocean (IO) and Sub‐Saharan Africa 1 (SSA1) genetic groups of Bemisia tabaci, with SSA1 further clustered into four sub‐groups: SSA1‐SG1, SSA1‐SG2, SSA1‐SG1/2 and SSA1‐SG3. F was completely absent from all of the whiteflies tested while R was always found in double or multiple infections. In general, no particular symbiont appeared to be associated with the super‐abundant SSA1‐SG1 B. tabaci, although A or AC infections were common among infected individuals. The most striking feature of these super‐abundant whiteflies, dominating cassava mosaic disease pandemic areas, was the high prevalence of individuals uninfected by any of the six SS tested. This study of the endosymbionts of B. tabaci in East Africa showed contrasting patterns of infection in crop and weed hosts.  相似文献   

15.
Cover Caption     
《Insect Science》2019,26(1):NA-NA
The whitefly, Bemisia tabaci, is an important agricultural pest in tropical and subtropical zones. Whiteflies cause extensive damage to tomato, cotton and cassava particularly through direct feeding and transmission of plant viruses. Heat shock proteins (HSP) are essential molecular chaperones and play important roles in the stress responses of insects. To better understand the function of HSP proteins in whiteflies, a comprehensive genomic approaches and RNAi technology were applied (see pages 44–57). Photo provided by Xiao‐Wei Wang and Li‐Xin Qian.  相似文献   

16.
Phytoseiids are known to attack whiteflies, but it is an open question whether they can be used for biological control of these pest insects. Preselection experiments in the laboratory showed that two out of five phytoseiid species tested, Euseius scutalis and Typhlodromips swirskii, stood out in terms of their ability to develop and reproduce on a diet of Bemisia tabaci immatures. In this paper, we show that both predators are able to suppress whitefly populations on isolated cucumber plants in a greenhouse. Predatory mites were released 2 weeks in advance of the release of B. tabaci. To enable their survival and promote their population growth, they were provided weekly with alternative food, that is, Typha sp. pollen. A few weeks after whitefly introduction, the numbers of adult whiteflies on plants with predators were consistently lower than on plants without predators, where B. tabaci populations grew exponentially. After 9 weeks, this amounted to a 16- to 21-fold difference in adult whitefly population size. This shows that the two phytoseiid species are promising biocontrol agents of B. tabaci on greenhouse cucumber. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
The whitefly Bemisia tabaci cryptic species complex contains some important agricultural pest and virus vectors. Members of the complex have become serious pests in South Africa (SA) because of their feeding habit and their ability to transmit begomovirus species. Despite their economic importance, studies on the biology and distribution of B. tabaci in SA are limited. To this end, a survey was made to investigate the diversity and distribution of B. tabaci cryptic species in eight geographical locations (provinces) in SA, between 2002 and 2009, using the mitochondrial cytochrome oxidase I (mtCOI) sequences. Phylogenetic analysis revealed the presence of members from two endemic sub‐Saharan Africa (SSAF) subclades coexisting with two introduced putative species. The SSAF‐1 subclade includes cassava host‐adapted B. tabaci populations, whereas the whiteflies collected from cassava and non‐cassava hosts formed a distinct subclade, referred to as SSAF‐5, and represent a new subclade among previously recognized southern Africa clades. Two introduced cryptic species, belonging to the Mediterranean and Middle East–Asia minor 1 clades, were identified and include the B and Q types. The B type showed the widest distribution, being present in five of the eight provinces explored in SA, infesting several host plants and predominating over the indigenous haplotypes. This is the first report of the occurrence of the exotic Q type in SA alongside the more widely distributed B type. Furthermore, mtCOI PCR‐RFLP was developed for the SA context to allow rapid discrimination between the B, Q and SSAF putative species. The capacity to manage pests and disease effectively relies on knowledge of the identity of the agents causing the damage. Therefore, this study contributes to the understanding of South African B. tabaci species diversity, information needed for the development of knowledge‐based disease management practices.  相似文献   

18.
Transmissions of plant viruses between individuals of their vector insects through mating are rare events. Recently, three begomoviruses were found to be transmitted between males and females of the whitefly Bemisia tabaci through mating, and two viruses were shown to be transmitted transovarially to progeny. However, results between reports were not consistent. Here we examined the horizontal and vertical transmission of Tomato yellow leaf curl virus (TYLCV) and Tomato yellow leaf curl China virus (TYLCCNV) by the B and Q biotypes of B. tabaci, using virus isolates and whitefly colonies established recently in China. Both TYLCV DNA and TYLCCNV DNA were shown to be transmitted horizontally and vertically by each of the two biotypes of the whitefly, but frequency of transmission was usually low. In transovarial transmission, virus DNA was detected in eggs and nymphs but not in the adults of the first generation progeny, except in the combination of TYLCV and Q biotype whitefly where 2–3% of the offspring adults contained the virus DNA. We also showed that the first generation adults, which developed from eggs of viruliferous whiteflies, were not infective to plants. These results demonstrated that for the viruses and whiteflies tested here low frequency of horizontal and vertical transmission can be expected but these two modes of transmission are unlikely to have much epidemiological relevance in the field.  相似文献   

19.
The whitefly, Bemisia afer (Hemiptera; Aleyrodidae), is emerging as a major agricultural pest. The current identification methods based on adult and pupal morphology are laborious and unreliable. A diagnostic polymerase chain reaction (PCR) protocol was developed for the first time in this study to discriminate B. afer from other whitefly species. Primers specific to mitochondrial cytochrome oxidase 1 gene (mtCOI) were designed to amplify a band of approx 650 bp. The PCR products were sequenced from B. afer samples collected from Malawi, Tanzania, Uganda, Zanzibar, and the United Kingdom. Phylogenetic analyses of mtCOI sequences and those of reference B. afer sequences clustered the African B. afer separately from the UK and Chinese populations and from other whitefly species. The African cluster was divided into two clades by parsimony and neighbor-joining methods. This indicates the existence of at least two genotypic clusters of B. afer, which are diverged by 0.8 to 3.2% nucleotide (nt) identities. Analysis of molecular variance indicated that these differences were the result of within population variation but were insufficient to identify discrete populations. Among the whitefly species used in the analysis, B. afer was equally dissimilar to Bemisia tabaci and Bemisia tuberculata (21.3–26.2% nt identities). As is the case for B. tabaci, these data show that mtCOI sequences are informative also for identifying B. afer variants, which lack distinguishing morphological features.  相似文献   

20.
Two whitefly biotypes of Bemisia tabaci, from either the Eastern or Western Hemisphere, respectively, were compared with respect to their competency to ingest and their efficiency to transmit the New World begomovirus, Chino del tomate virus (CdTV). The AZ A biotype of B.tabaci originates from the arid southwestern USA and northwestern Mexico, while the B biotype has an origin in the Middle East or Northern Africa. The ability of these two vector biotypes to ingest and subsequently to transmit CdTV were evaluated for an acquisition‐access period (AAP) that ranged from 0 to 72 h, followed by a 48 h inoculation‐access period (IAP). Individual adult whiteflies were monitored for CdTV ingestion using polymerase chain reaction (PCR) to detect the viral coat protein gene (AV1 ORF), and transmission efficiency (frequency) was determined by allowing potentially viruliferous whiteflies access to tomato seedlings following each experimental AAP. PCR results for individual adult whiteflies indicated that CdTV was ingested from infected tomato plants by both biotypes 93% of the time. Transmission frequencies by both vector biotypes increased with longer AAPs. However, the AZ A biotype transmitted CdTV 50% of the time, compared to only 27% for the B biotype. Evidence that virus was ingested with equal competency by the A and B biotypes confirmed that both vectors were capable of ingesting CdTV from tomato at the same frequency, even when the AAP was 0.5 h. Consequently, either the acquisition and/or transmission stages of the pathway, rather than ingestion competency, were responsible for differences in vector‐mediated transmissibility. Detection frequency of CdTV, after 48 h AAP, by PCR in single females of AZ B biotype was significantly higher than males.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号