首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
4-Arsono-2-nitrofluorobenzene reacts selectively at the anion binding site of bovine pancreatic ribonuclease A. The major derivative is the inactive 41-(4-arsono-2-nitrophenyl) ribonuclease A (45% yield). Additional products are 1-alpha-(4-arsono-2-nitrophenyl) ribonuclease A (11% yield) which is enzymatically active and the disubstituted, inactive 1,41-bis-(4-arsono-2-nitrophenyl) ribonuclease A (25% yield). 2' (3')-O-Bromoacetyluridine reacts with 41-(4-arsono-2-nitrophenyl) ribonuclease A exclusively at the histidine-12 residue at a rate which is approximately one-fourth the rate observed with the unmodified enzyme. Saturation kinetics are observed and the dissociation constant for the protein-inhibitor complex is 0.096 +/- 0.023 M. The first-order unimolecular decomposition constant for complex breakdown is 8.9 +/- 2.9 X 10(-4) s-1. 2'-Bromoacetamido-2'-deoxyuridine reacts with 41-(4-arsono-2-nitrophenyl) ribonuclease A 25 times more slowly than 2'(3')-O-bromoacetyluridine. Bromoacetate reacts with 41-(4-arsono-2-nitrophenyl) ribonuclease A predominantly at the histidine-119 residue at a rate 45 times less than that found for the unmodified enzyme. The results of the alkylation studies imply that the dianionic arsonate does not occupy the phosphate binding site in the enzyme but is sufficiently proximate to account for a decrease in bromoacetate binding as well as a reduction in the nucleophilic reactivity of histidine-12 and -119. All these effects may be accounted for in terms of a local electrostatic perturbation of the active site region by the arsononitrophenyl group.  相似文献   

2.
The amino groups of ribonuclease A (RNase-A) have been methylated with formaldehyde and borohydride to provide observable resonances for proton magnetic resonance (PMR) studies. Although enzymatic activity is lost, PMR difference spectroscopy and PMR studies of thermal denaturation show native conformation is largely preserved in methylated RNase-A. Resonances corresponding to the NH2-terminal alpha-amino and 10 xi-amino N-methyl groups are titrated at 220 MHz to obtain pK values. After correction for the effects of methylation, using values previously derived from model compound studies, a pK of 6.6 is found for the alpha-amino group, a pK of 8.6 for the xi-amino group of lysine-41 and pK values ranging from 10.6 to 11.2 for the other lysine xi-amino groups. Interactions between lysine-7 and lysine-41 or between the alpha-amino and xi-amino groups of lysine-1 have been proposed to account for deviations from simple titration behaviour. The correct continuities for the titration curves of the histidine H-2 proton resonances have been confirmed by selective deuteration of the H-2 protons. Titration curves for the H-2 proton resonances of histidine-12 and histidine-119 of methylated RNase-A show deviations from the titration curves for the native enzyme, indicating some alteration of the active-site conformation. In the presence of phosphate, titration curves for the H-2 proton resonances of histidine-12 and histidine-119 of methylated RNase-A indicate binding of phosphate at the active site, but these curves continue to show deviations from the titration behaviour of native RNase-A. The titration curve for the N-methyl resonance of lysine-41 is perturbed considerably by the presence of phosphate, which indicates a possible catalytic role for lysine-41.  相似文献   

3.
M Pincus  L L Thi  R P Carty 《Biochemistry》1975,14(16):3653-3661
2'(3')-O-Bromoacetyluridine reacts rapidly and selectively with bovine pancreatic ribonuclease A at pH 5.5 and 25 degrees. Under conditions of high molar ratios of nucleoside derivative to enzyme, the only derivative is N-3-carboxymethylhistidine-12 ribonuclease A. The reaction occurs almost exclusively with the histidine-12 residue at the active site inactivation of the enzyme is accompanied by the stoichiometric disappearance of unmodified ribonuclease A and appearance of the product, N-3-carboxymethylhistidine-12 ribonuclease A. Kinetic studies indicate a mechanism involving saturation of the enzyme by the nucleoside derivative. The inhibitor constant, Kb, is 0.087 M and k3 is 35.1 times 10(-4) sec minus 1. The reaction of 2'(3')-O-bromoacetyluridine with the enzyme occurs at a rate approximately 3100 times greater than that corresponding to the reaction with L-histidine. The alkylation reaction is inhibited competitively by uridine with a Ki of 0.013 M. 2'(3')-O-Bromoacetyluridine inactivates ribonuclease A 4.5 times faster than bromoacetic acid and the specificity for alkylation of active-site histidine residues is different. 2'(3')-O-Bromoacetyluridine reacts 1000 times more rapidly with ribonuclease A than iodoacetamide. The contribution of nucleoside binding to the overall rate of alkylation is discussed.  相似文献   

4.
The proton magnetic resonance spectrum at 300 MHz of the histidine residues in a semisynthetic derivative of bovine pancreatic ribonuclease (RNase A) has been determined. The derivative RNase 1-118 . 111-124 was prepared by enzymically removing six residues from the COOH terminus of the protein (positions 119-124) and then complementing the inactive RNase 1-118 with a chemically synthesized peptide containing the COOH-terminal 14 residues of ribonuclease (RNase 111-124) [Lin, M.C., Gutte, B., Moore, S., & Merrifield, R.B. (1970) J. Biol. Chem. 245, 5169-5170]. Comparison of the line positions of the C(2)-1H resonances of these residues and of their pH dependence with those reported by other workers has allowed assignment of the resonances to individual residues, as well as the determination of individual pK values for histidine-12, histidine-105, and histidine-119. The assignment of histidine-119 was confirmed by the use of a selectively deuterated derivative. The titration behavior of all four histidine residues is indistinguishable from that observed by others for bovine pancreatic ribonuclease A. Partial dissociation of the noncovalent semisynthetic complex was evident at 30 degrees C, pH 4.0, 0.3 M NaCl; pertinent spectra were analyzed to provide an estimate of the association constant between the component chains under these conditions of 1.9 X 10(3) M-1.  相似文献   

5.
A proton nuclear magnetic resonance study of the four histidine residues of thermally unfolded ribonuclease A has provided evidence that two of the residues are in regions of residual structure, whereas the other two are freely exposed to solvent. Histidine-48 and, tentatively, histidine-105 occupy an environment at 69 degrees characterized by residual structure and display a pK value of 5.75 and a spin-lattice relaxation time of about 0.8 sec at pH 5.5. Histidine-12 and, tentatively, histidine-119 are in an environment at 69 degrees which is freely accessible to solvent and show a pK value of 5.96 and a spin-lattice relaxation time of about 1.1 sec at pH 5.5.  相似文献   

6.
Four new bromoacetamido pyrimidine nucleosides have been synthesized and are affinity labels for the active site of bovine pancreatic ribonuclease A (RNase A). All bind reversibly to the enzyme and react covalently with it, resulting in inactivation. The binding constants Kb and the first-order decomposition rate constants k3 have been determined for each derivative. They are the following: 3'-(bromoacetamido)-3'-deoxyuridine, Kb = 0.062 M, k3 = 3.3 X 10(-4) s-1; 2'-(bromoacetamido)-2'-deoxyxylofuranosyluracil, Kb = 0.18 M, k3 = 1700 X 10(-4) s-1; 3'-(bromoacetamido)-3'-deoxyarabinofuranosyluracil, Kb = 0.038 M, k3 = 6.6 X 10(-4) s-1; and 3'-(bromoacetamido)-3'-deoxythymidine, Kb = 0.094 M, k3 = 2.7 X 10(-4) s-1. 3'-(Bromoacetamido)-3'-deoxyuridine reacts exclusively with the histidine-119 residue, giving 70% of a monoalkylated product substituted at N-1, 14% of a monoalkylated derivative substituted at N-3, and 16% of a dialkylated species substituted at both N-1 and N-3. Both 2'-(bromoacetamido)-2'-deoxyxylofuranosyluracil and 3'-(bromoacetamido)-3'-deoxyarabinofuranosyluracil react with absolute specificity at N-3 of the histidine-12 residue. 3'-(Bromoacetamido)-3'-deoxythymidine alkylates histidines-12 and -119. The major product formed in 57% yield is substituted at N-3 of histidine-12. A monoalkylated derivative, 8% yield, is substituted at N-1 of histidine-119. A disubstituted species is formed in 14% yield and is alkylated at both N-3 of histidine-12 and N-1 of histidine-119. A specific interaction of the "down" 2'-OH group, unique to 3'-(bromoacetamido)-3'-deoxyuridine, serves to orient the 3'-bromoacetamido residue close to the imidazole ring of histidine-119. The 2'-OH group of 3',5'-dinucleoside phosphate substrates may serve a similar role in the catalytic mechanism, allowing histidine-119 to protonate the leaving group in the transphosphorylation step. (Bromoacetamido)nucleosides are bound in the active site of RNase A in a variety of distinct conformations which are responsible for the different specificities and alkylation rates.  相似文献   

7.
3-SLHis-105-RNase A is an active derivative of ribonuclease A (RNase A) spin-labeled at the 3 position of the imidazole ring of histidine-105. The spin-labeled enzyme has been modified by urea denaturation, reduction, reduction-carboxymethylation, performic acid oxidation, and digestion with proteolytic enzymes in order to monitor changes in the geometry of the protein by changes in the electron paramagnetic resonance (EPR) spectrum of the nitroxide spin-label probe. The results of these experiments indicate that the spin-label attached to histidine-105 of RNase A is sensitive to modifications affecting the conformational integrity of the molecule and to the reconstituting effects of various active-center ligands.  相似文献   

8.
Pentavalent organo-vanadates have been used extensively to mimic the transition state of phosphoryl group transfer reactions. Here, decavanadate (V(10)O(28)6-) is shown to be an inhibitor of catalysis by bovine pancreatic ribonuclease A (RNase A). Isothermal titration calorimetry shows that the Kd for the RNase A decavanadate complex is 1.4 microM. This value is consistent with kinetic measurements of the inhibition of enzymatic catalysis. The interaction between RNase A and decavanadate has a coulombic component, as the affinity for decavanadate is diminished by NaCl and binding is weaker to variant enzymes in which one (K41A RNase A) or three (K7A/R10A/K66A RNase A) of the cationic residues near the active site have been replaced with alanine. Decavanadate is thus the first oxometalate to be identified as an inhibitor of catalysis by a ribonuclease. Surprisingly, decavanadate binds to RNase A with an affinity similar to that of the pentavalent organo-vanadate, uridine 2',3'-cyclic vanadate.  相似文献   

9.
J L Markley 《Biochemistry》1975,14(16):3546-3554
The deuterium exchange kinetics of the C(2) protons of the four histidine residues of native bovine pancreatic ribonuclease A have been followed at pH 6.5 and 8.0 by proton magnetic resonance spectroscopy (1H NMR). Comparison of the order of exchange of the histidine peaks with tritium exchange rates into individual histidine residues [Ohe, M., Matsuo, H., Sakiyama, F., and Narita, K. (1974), J. Biochem. (Tokyo) 75, 1197] supports the previous assignment of histidine NMR peaks H(1) and H(4) to histidine-105 and histidine-48 but requires reassignment of peaks H(2) and H(3) to histidine-119 and histidine-12, respectively. Ribonuclease A samples having differentially deuterated histidines have been used to verify the existence of crossover points in the histidine proton magnetic resonance titration curves and to observe the discontinuous titration curve of histidine-48. Proton magnetic resonance peaks have been assigned to the C(4) protons of the four histidine residues of ribonuclease A on the basis of their unit proton areas and by matching their titration shifts with the more readily visible C(2)-H peaks of the histidines. The pK' values derived from the C(4)-H data agree, within experimental limits, with those derived from C(2)-H data. The C(4)-H peaks were assigned to histidine-12, -48, -105, and -119 of ribonuclease A on the basis of their pH dependence, pK' values, shifts of their pK' values in the presence of inhibitor cytidine 3'-phosphate, and by comparison with the assignments of the histidine C(2)-H peaks above.  相似文献   

10.
1. Bison ribonuclease was isolated from pancreas glands of Bison bison by acid extraction, (NH(4))(2)SO(4) fractionation, affinity chromatography on Sepharose-5'-(4-aminophenylphosphoryl)uridine 2',3'-phosphate and ion-exchange chromatography on Bio-Rex-70. 2. The selectivity of the affinity column towards bison ribonuclease in heterogeneous protein solutions was greatly improved by employing piperazine buffers at pH5.3, which decreased non-specific interactions of other proteins. Rapid desorption from the affinity column was obtained with sodium phosphate buffer (pH3). 3. Bison ribonuclease has a total amino acid content very similar to ox ribonuclease. Inactivation of bison ribonuclease with iodoacetic acid leads to the formation of 0.62 residues of pi-carboxymethylhistidine and 0.36 residues of tau-carboxymethylhistidine. The amino acid composition of peptides isolated from diagonal peptide ;maps' and also of peptides isolated after pH1.6 and 2.4 two-dimensional high-voltage electrophoresis of a digest of bison ribonuclease labelled with pyridoxal 5-phosphate indicates that there is complete homology between ox and bison ribonucleases. 4. The Schiff-base attachment site of pyridoxal 5-phosphate was identified as lysine-41 by NaBH(4) reduction followed by peptide isolation.  相似文献   

11.
12.
J L Markley 《Biochemistry》1975,14(16):554-561
The microenvironment of histidine-48 of bovine pancreatic ribonuclease A was investigated by proton magnetic resonance spectroscopy (1H NMR) using partially deuterated enzyme in which resolution of the C(2)-H resonance of histidine-48 was simplified. The NMR titration curves at 100 and 250 MHz of histidine-48 of ribonuclease A are discontinuous both for the enzyme alone in 0.3 M chloride and for its complex with cytidine 3'-phosphate. This suggests that titration of histidine-48 occurs only as the result of a slow conformational transition. The sum of the peaks corresponding to histidine-48 in the acid-stable and base-stable forms of the enzyme is less than one proton in the transition region, which indicates that there exists at least one intermediate conformational form of the enzyme. The transition from the acid-stable form to an intermediate form has a pHmid of 5.6, and the transition from an intermediate form to the base-stable form has a pHmid of 6.9. In ribonuclease S and in ribonuclease A in the presence of 0.3 M acetate, the titration curve of histidine-48 is continuous, and the area of the peak is uniform throughout the titration. Proton NMR difference spectra at 100 and 250 MHz reveal a pH-induced conformational change with a pHmid of 5.7 that affects the chemical shift of a single tyrosine residue. This conformational transition is absent in ribonuclease S and is altered in ribonuclease A by the presence of either acetate or cytidine 3'-monophosphate. It is postulated that the same conformational transition is responsible for both the tyrosine perturbation and the disappearance of the histidine-48 peak observed in the acid-stable form of the enzyme. It is proposed that the perturbed tyrosine is tyrosine-25. The transition with pHmid 5.6 is attributed to dissociation of aspartic acid-14, and the transition with pHmid 6.9 is assigned to dissociation of histidine-48. A peak in the aromatic region that moves upfield on addition of the competitive inhibitor cytidine 3'-monophosphate is assigned to a tyrosine, and evidence is presented that this tyrosine is tyrosine-25. Inhibitor binding appears to induce a conformational change in the histidine-48/tyrosine-25 region which is remote from the active site.  相似文献   

13.
Amino acid sequence of the nonsecretory ribonuclease of human urine   总被引:7,自引:0,他引:7  
The amino acid sequence of a nonsecretory ribonuclease isolated from human urine was determined except for the identity of the residue at position 7. Sequence information indicates that the ribonucleases of human liver and spleen and an eosinophil-derived neurotoxin are identical or very closely related gene products. The sequence is identical at about 30% of the amino acid positions with those of all of the secreted mammalian ribonucleases for which information is available. Identical residues include active-site residues histidine-12, histidine-119, and lysine-41, other residues known to be important for substrate binding and catalytic activity, and all eight half-cystine residues common to these enzymes. Major differences include a deletion of six residues in the (so-called) S-peptide loop, insertions of two, and nine residues, respectively, in three other external loops of the molecule, and an addition of three residues at the amino terminus. The sequence shows the human nonsecretory ribonuclease to belong to the same ribonuclease superfamily as the mammalian secretory ribonucleases, turtle pancreatic ribonuclease, and human angiogenin. Sequence data suggest that a gene duplication occurred in an ancient vertebrate ancestor; one branch led to the nonsecretory ribonuclease, while the other branch led to a second duplication, with one line leading to the secretory ribonucleases (in mammals) and the second line leading to pancreatic ribonuclease in turtle and an angiogenic factor in mammals (human angiogenin). The nonsecretory ribonuclease has five short carbohydrate chains attached via asparagine residues at the surface of the molecule; these chains may have been shortened by exoglycosidase action.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Ribonuclease A has been guanidinated at the lysine residues and the nona-guanidinated and deca-guanidinated (fully substituted) products separated. In confirmation of an earlier report by Glick and Barnard (1970), it has been shown by chemical procedures that the former derivative is not reacted at lysine-41. Guanidination of lysine-41 to produce the fully substituted product causes loss of enzymic activity without any apparent change of conformation, as tested by conformational comparisons (using proton magnetic resonance spectroscopy) including (a) difference spectroscopy, evidence for the involvement of lysine-41 in a catalytic role in the enzyme. Dimethylation of lysine-41 of nona-guanidinated ribonuclease A produces sharp proton resonances which shifts as the dimethylamino group is titrated and allow the determination of an apparent pK of 8.8 for unsubstituted lysine-41.  相似文献   

15.
The two adjacent active site histidine residues of bovine pancreatic ribonuclease A (histidine-12 and -119) yield proton magnetic resonance titration curves having Hill coefficients significantly less than unity (0.7 and 0.8, respectively). Three models postulating interactions with other titrating groups in the molecule have been used to approximate these anomalous experimental titration curves. Very good agreement with the data was obtained with models postulating mutual electrostatic interaction between histidine-12 and -119. The additional low pH perturbation of the chemical shift of the C(2)-H peak (but not the C(4)-H peak) of histidine-12 is attributed to a local conformational change with a pHmid of about 3.5.  相似文献   

16.
1. When ribonuclease T1 [EC 3.1.4.8] (0.125% solution) was treated with a 760-fold molar excess of iodoacetamide at pH 8.0 and 37 degrees, about 90% of the original activity was lost in 24 hr. The half-life of the activity was about 8 hr. The binding ability for 3'-GMP was lost simultaneously. Changes were detected only in histidine and the amino-terminal alanine residues upon amino acid analyses of the inactivated protein and its chymotryptic peptides. The inactivation occurred almost in parallel with the loss of two histidine residues in the enzyme. The pH dependences of the rate of inactivation and that of loss of histidine residues were similar and indicated the implication of a histidine residue or residues with pKa 7.5 to 8 in this reaction. 3'-GMP and guanosine showed some protective effect against loss of activity and of histidine residues. The reactivity of histidine residues was also reduced by prior modification of glutamic acid-58 with iodoacetate, of lysine-41 with maleic or cis-aconitic anhydride or 2,4,6-trinitrobenzenesulfonate or of arginine-77 with ninhydrin. 2. Analyses of the chymotryptic peptides from oxidized samples of the iodoacetamide-inactivated enzyme showed that histidine-92 and histidine-40 reacted with iodoacetamide most rapidly and at similar rates, whereas histidine-27 was least reactive. Alkylation of histidine-92 was markedly slowed down when the Glu58-carboxymethylated enzyme was treated with iodoacetamide. On the other hand, alkylation of histidine-40 was slowed down most in the presence of 3'-GMP. These results suggest that histidine-92 and histidine-40 are involved in the catalytic action, probably forming part of the catalytic site and part of the binding site, respectively, and that histidine-27 is partially buried in the enzyme molecule or interacts strongly with some other residue, thus becoming relatively unreactive.  相似文献   

17.
Several studies have shown that divalent anion binding to ribonuclease A (RNase A) contributes to RNase A folding and stability. However, there are conflicting reports about whether chloride binds to or stabilizes RNase A. Two broad-zone experimental approaches, membrane-confined electrophoresis and analytical ultracentrifugation, were used to examine the electrostatic and electrohydrodynamic characteristics of aqueous solutions of bovine RNase A in the presence of 100 mM KCl and 10 mM Bis-Tris propane over a pH range of 6.00-8.00. The results of data analysis using a Debye-Huckel-Henry model, compared with expectations based on pK(A) values, are consistent with the binding of two chlorides by RNase A. The decreased protein valence resulting from anion binding contributes 2-3 kJ/mol to protein stabilization. This work demonstrates the utility of first-principle valence determinations to detect protein solution properties that might otherwise remain undetected.  相似文献   

18.
A method for nonspecifically labeling essentially all exposed residues of a protein is described. A reactive aryl nitrene is generated from N-(4-azido-2-nitrophenyl)-2-aminoethylsulfonate (NAP-Taurine), within 500 mus by flash photolysis in the presence of protein. The reactive nitrene is inserted in about 2 ms into those carbon-hydrogen bonds of the protein that are exposed to the solvent. The method is applied here to ribonuclease A to demonstrate the different degree of labeling of the native and denatured protein. On the basis of amino acid analysis, it appears that residues of the native protein that are buried in the interior of the molecule (as judged from the x-ray structure) do not react with the nitrene. However, when these residues (even nonreactive ones such as valine and proline) are exposed by denaturation of the protein, they do react with the nitrene. It is shown that native ribonuclease A retains 90% of its enzymatic activity when flashed in the absence of NAP-Taurine. This small loss in activity arises from the disruption of a limited portion of the native enzyme structure, as judged by circular dichroism, ultraviolet, and Raman spectra. The site of this limited disruption may be a portion of the enzyme surface near the Cys-26-Cys-84 disulfide bond. The utility of this surface labeling technique for studying the pathways of protein folding or unfolding is discussed.  相似文献   

19.
Ferrate ion, a powerful oxidant which is an analog of orthophosphate ion, has previously shown some promise as a site-specific probe of enzymes which interact with phosphate compounds. In order to explore the general applicability of this reagent, it has been tested against ribonuclease A, an enzyme whose structure and active center have been well described. Treatment with a molar ratio of ferrate to enzyme of less than 20 leads to a loss of 87% of the activity. The known competitive inhibitors, 2'-cytidylic acid, inorganic pyrophosphate, and orthophosphate all protect the enzyme from inactivation. Inactivation is accompanied by a loss of the capacity to bind 2'-cytidylic acid. Ferrate inactivation at pH 5.0 is accompanied by the modification of only one amino acid. The amino acid which was identified by amino acid and sequence analyses of peptide fragments obtained by cyanogen bromide treatment and selective proteolysis proved to be histidine-119, whose essential role at the active center has long been established.  相似文献   

20.
The chemical modification of bovine pancreatic ribonuclease A by 6-chloropurine riboside was studied to obtain information about the role of the purine nucleoside moiety of the ribonucleic acid in the enzyme-substrate interaction. The residues involved in the reaction were identified, after performic acid oxidation and trypsin digestion, by reverse-phase HPLC peptide mapping. The labeled peptides were detected by following the absorbance at 254 nm, and amino acid analyses of these peptides showed that the reaction had taken place with the amino groups of Lys-1, -37, -41, and -91. The specificity of the reaction was unaffected by changing the ligand:protein molar ratio. Partial separation of the reaction products was accomplished by means of chromatography on CM-Sepharose: four labeled fractions corresponding to mono- and bisubstituted derivatives were found. One of the monosubstituted fractions (fraction E) contained a homogeneous protein with the nucleoside bound to the alpha-amino group of Lys-1 whereas the other (fraction D) was a mixture of derivatives labeled in the epsilon-amino group of Lys-1, -37, -41, and -91. Kinetic studies of these two monosubstituted fractions were performed with cytidine 2',3'-phosphate and ribonucleic acid as substrates. These derivatives showed a noncompetitive inhibition-like behavior with respect to RNase A. Results support the existence of several RNase A regions with affinity for purine nucleosides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号