首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In crude extracts of T2L phage-infected Escherichia coli cells an enzyme activity was found that produced poly(A) from ATP as substrate. Purification of the extract led to the isolation of two enzymes, a polynucleotide phosphorylase and an ATPase. The polynucleotide phosphorylase possessed the same properties as the well-known enzyme from uninfected cells and its molecular weight was about 265 000. The ATPase was purified to over 90% purity; its molecular weight was estimated to be about 165 000 with three subunits of 55 000. The characterization of this enzyme showed that it was different from any ATPase known so far. Mg2+ cannot be replaced by Ca2+, as it can from the membrane-bound ATPases. The only product yielded by the enzyme was ADP; it was very specific for ATP, other ribonucleotide triphosphates being practically unaffected. The rate of ATP splitting was found to be very high, the turnover number being 2.51 X 10(4) min-1 at 37 degrees C. Even at 0 degree C the enzyme was still active. The optimal assay conditions for ATPase turned out to be very similar to those of polynucleotide phosphorylase. Thus the combination of the two enzymes very efficiently produced poly(A) from ATP. In this combination the polynucleotide phosphorylase was the rate-limiting enzyme, since its turnover number was about 40 times lower than that of the ATPase. The evaluation of a variety of properties of the poly(A)-synthesizing constituent found in the crude extracts led us to conclude that this activity arises from the combined action of ATPase and polynucleotide phosphorylase, and is not due to a poly(A) polymerase.  相似文献   

2.
3.
4.
We report here the presence of two enzymatic activities associated with highly purified preparations of polynucleotide phosphorylase from Micrococcus luteus. The first, a nuclease activity, which is not separated from the phosphorylase on hydroxylapatite, may be due to substitution of H2O for phosphate in the phosphorolysis reaction. The second activity, a deoxyadenylate kinase, the bulk of which is not resolved from the phosphorylase using gel filtration, sucrose density gradient centrifugation, DEAE-Sephadex, or hydroxylapatite chromatography, may represent a new activity of polynucleotide phosphorylase or be due to an enzyme which is tightly bound to the phosphorylase. Several properties of the kinase are described and its possible significance with respect to the overall enzyme mechanism is discussed.  相似文献   

5.
Mutants having low levels of polynucleotide phosphorylase activity grow poorly at 45 C. All revertants isolated for their ability to grow better at that temperature also regained higher levels of polynucleotide phosphorylase and the ability to be induced for tryptophanase. Thus, a physiological role is implied for the enzyme polynculeotide phosphorylase.  相似文献   

6.
1. An improved method for the purification of Clostridium perfringens polynucleotide phosphorylase (nucleoside diphosphate-polyribonucleotide nucleotidyltransferase, EC 2.7.7.8) is described. The product was stable and was highly stimulated by polylysine or polyornithine. 2. It migrated as a single enzyme during sucrose-density-gradient centrifugation, and no separation of polymerization and phosphorolytic activities was observed. 3. Trypsin digestion caused a rapid, preferential loss of the polylysine- or polyornithine-stimulated activity, which was prevented by low concentrations of polyornithine. 4. The protection by polyornithine was not specific. 5. It is concluded that charge effects on the clostridial polynucleotide phosphorylase itself are primarily responsible for the stimulation of this enzyme by polylysine or polyornithine.  相似文献   

7.
1. Polynucleotide phosphorylase was purified 200-fold from Halobacterium cutirubrum. 2. It is membrane-associated and can be solubilized by sonication. 3. The purified enzyme requires a high ionic strength for both stability and activity. 4. It is Mn(2+)-dependent, has all three typical polynucleotide phosphorylase activities and is specific for nucleoside diphosphates. 5. The enzyme is of low molecular weight.  相似文献   

8.
It is already known that modification of E. coli polynucleotide phosphorylase by endogenous proteolysis induces drastic changes in both phosphorolysis and polymerisation reactions. The structural parameters of the proteolysed polynucleotide phosphorylase are described. The phosphorolysis of polynucleotide, which is quite progressive for the native enzyme, is shown to be only partially progressive for the degraded enzyme, owing to the loss of polymer attachment sites.  相似文献   

9.
Three polynucleotide phosphorylase mutations, isolated in heavily mutagenized Escherichia coli strains Q7, Q13, and Q27, were characterized after their transfer by P1 transduction to nearly isogenic strains which lack ribonuclease I. Each strain has a different altered form of polynucleotide phosphorylase. One enzyme exhibited sharply reduced activity under all conditions tested. A second had reduced activity which was stimulated by Mn(++). The third enzyme was thermolabile and could be >95% inactivated in vivo at 44 C and pH 6 if the cells were prevented from growing; during growth under these and other conditions, the full enzyme level was maintained. The strains showed no differences from the wild type in their growth rates, their adjustments to changes in media and temperature, or their recoveries from starvation.  相似文献   

10.
A Guissani 《Biochimie》1978,60(8):755-765
This report describes structural studies on purified polynucleotide phosphorylase from C. perfringens. A method is described for the purification of the enzyme which yields a product equivalent in activity to the native polynucleotide phosphorylase from E. coli. These studies revealed a molecular heterogeneity arising from successive stages of proteolysis, to which this enzyme is especially sensitive; unusally, the enzyme is obtained as a mixture of variable proportions of the native and proteolysed forms. We found in all cases a trimeric basic structure composed of the native (alpha) or proteolysed (lapha) or proteolysed (alpha', alpha") catalytic sub-units, However, the enzyme is rather easily dissociated into its sub-units, a phenomenon which seems to accompany proteolysis (Table). Under the action of either endogenous proteases or trypsin, two enzymatic forms are obtained: their quaternary structures seem analogous, but they differ in their catalytic properties from each other and from the initial enzyme. With some care at each step of purification, the polynucleotide phosphorylase of E. coli can be obtained exclusively in its native form. The greater susceptibility to proteolysis of the enzyme from C. perfrigens and the relationship between such degradation and quaternary structure seem to be at the origin of the peculiar behavior of this polynucleotide phosphorylase.  相似文献   

11.
1. Treatment of Micrococcus lysodeikticus polynucleotide phosphorylase (nucleoside diphosphate-polynucleotide nucleotidyltransferase) with trypsin causes a preferential loss of its cytidine diphosphate and uridine diphosphate polymerization activities. 2. The phosphorolytic activity of the enzyme towards polycytidylic acid is unaffected in conditions in which the cytidine diphosphate-polymerization activity without added primer is virtually abolished. 3. The treated enzyme retains its altered pattern of activities when purified fivefold by gel filtration. 4. The effect on the cytidine diphosphate-polymerization activity is due, in part, to a large increase in primer requirement as a result of proteolysis, and is qualitatively independent of the state of purity of the polynucleotide phosphorylase. 5. The enzyme is protected from trypsin degradation by nucleic acids, polynucleotides and nucleoside disphosphates. 6. A similar, but less marked differential effect, is caused by alpha-chymotrypsin.  相似文献   

12.
13.
Native Escherichia coli polynucleotide phosphorylase can be retained on blue-dextran--Sepharose. The bound enzyme cannot be displaced by its mononucleotide substrates such as ADP, UDP, CDP, GDP and IDP, but it is easily eluted by its polymeric substrates. Under identical conditions, lactate dehydrogenase, bound on blue-dextran--Sepharose, is not eluted by poly(I) but can be specifically displaced by NADH. On the other hand, the trypsinized polynucleotide phosphorylase, known to be an active enzyme which has lost its polynucleotide site, does not bind to the affinity column. The native polynucleotide phosphorylase can also be tightly bound to poly(U)--agarose and displaced from it only by high salt concentration. The trypsinized enzyme is not bound at all on poly(I)--AGAROSe. Moreover, the native enzyme linked on blue-dextran--Sepharose, remains active indicating a free access of nucleoside diphosphates to the active center. These results taken together show that the dye ligand is not inserted onto the mononucleotide binding site and suggest rather that it binds to the polynucleotide binding region. The implications of this study and the application of blue-dextran--Sepharose affinity chromatography to other proteins having affinity for nucleic acids are discussed.  相似文献   

14.
15.
16.
Mutations which largely inactivate polynucleotide phosphorylase and which render RNase II thermolabile exert two effects on the metabolism of the two nested mRNAs which encode ribosomal protein S20. (i) The lifetime of both mRNA species is extended 2.5-fold at 38 degrees C in a strain harboring both mutations. (ii) A relatively stable truncated fragment of these mRNAs accumulates to significant levels in strains lacking polynucleotide phosphorylase. The truncated RNA (Po RNA) is 147 to 148 residues long and is coterminal with the 3' ends of intact S20 mRNAs. Its 5' end appears to be generated by endonucleolytic cleavage to the 5' side of a G residue in the sequence AACCGAUC. The data are consistent with the hypothesis that S20 mRNAs can be degraded by alternative pathways. The normal pathway depends on functional polynucleotide phosphorylase and is concerted, since S20 mRNAs disappear without accumulation of detectable intermediates in the decay process. The slower alternative pathway is followed when polynucleotide phosphorylase is inactivated by mutation. This pathway is distinguished by segmental rather than concerted degradation of S20 mRNAs and involves at least one endonucleolytic cleavage. The 5' two-thirds of S20 mRNAs decays significantly more quickly than the 3' third in this latter mode of mRNA turnover.  相似文献   

17.
1. Trypsin digestion of Micrococcus lysodeikticus polynucleotide phosphorylase (nucleoside diphosphate-polynucleotide nucleotidyltransferase) causes a progressive increase in electrophoretic mobility in polyacrylamide gels of the single active degradation product. 2. A marked increase in primer requirement for CDP polymerization occurs before a more mobile product is formed. 3. alpha-Chymotrypsin digestion yields a product that separates into several active species on polyacrylamide-gel electrophoretograms. 4. No separation of ADP-and CDP-polymerization activities occurs during electrophoresis after either trypsin or alpha-chymotrypsin treatment.  相似文献   

18.
Female (I/St X C57BL/St) F1 mice heterozygous at the sex-linked phosphorylase kinase deficiency locus (Phk) have phosphorylase kinase activities averaging 86% that of mice homozygous for the wild-type allele (C57BL/St), i.e., 72% greater than the sum of one-half the activities of the parental strains. Approximately one-half the phosphorylase kinase activity in the (I X C57BL) F1 muscle extracts had a stability at 42.5 C similar to that of the activity in C57BL extracts (t1/2 = 13.2 min); the other half of the activity in the F1 extracts was more labile (t1/2 = 3.9 min). Two species of phosphorylase kinase activity in F1 muscle extracts were also differentiated with an antiserum prepared in guinea pigs against purified rabbit skeletal muscle phosphorylase kinase. This anti-serum cross-reacted with phosphorylase kinase in C57BL muscle extracts but did not cross-react with skeletal muscle extracts of mice hemi- or homozygous for the mutant allele (I/LnJ). The guinea pig antiserum precipitated 52% as much protein from (I X C57BL)F1 muscle extracts compared to those of C57BL. However, an antiserum prepared against purified rabbit skeletal muscle phosphorylase kinase in the goat cross-reacted with the mutant phosphorylase kinase. The ratio C57BL:(I X C57BL)F1:I of immunoprecipitated protein from skeletal muscle extracts with this antiserum was 1:0.97:1.08. Polyacrylamide gel electrophoresis of the immunoprecipitates in the presence of 0.1% sodium dodecylsulfate showed three subunits for mouse phosphorylase kinase with molecular weights of 139,000, 118,000, and 41,000; these values are similar to the ones obtained with purified rabbit skeletal muscle phosphorylase kinase. These three subunits were also observed in immunoprecipitates from I/LnJ muscle extracts. These results offer substantial evidence (1) that in skeletal muscle extracts of mice heterozygous at the Phk locus the mutant phosphorylase kinase is active, (2) that the gene product of the mutant allele is an enzyme with an abnormal structure, and (3) that the phosphorylase kinase deficiency in I/LnJ skeletal muscle extracts is not the result of the absence of phosphorylase kinase or one of its subunits.  相似文献   

19.
The reduction of nucleic acid by an endogenous polynucleotide phosphorylase and ribonuclease in cells of Brevibacterium JM98A (ATCC 29895) was studied. A simple process was developed for the activation of the endogenous RNA-degrading enzyme(s). RNA degradation was activated by the presence of Pi with 14.2 mumol of ribonucleoside 5'-monophosphate per g of cell mass accumulating extracellularly. The optimum pH for degradation of RNA was 10.5 and the optimum temperature was 55 to 60 degrees C. Enzymatic activity was inhibited by the presence of Ca2+, Zn2+, or Mg2+. Although some of the RNA-degrading enzymatic activity was associated with the ribosomal fraction, most was soluble. Both polynucleotide phosphorylase and ribonuclease activities were identified.  相似文献   

20.
Polynucleotides could be synthesized from nucleoside diphosphates by microorganisms belonging to genera Pseudotnonas, Serratia, Xatuhonwnas, Proteus, Aerobacter, Bacillus, and Brevibacterium. These strains were rich in polynucleotide phosphorylase easily extractable from cells and poor in both nuclease and nucleoside-diphosphate-degrading enzymes. Polynucleotide phosphorylase was effectively extracted from the bacterial cells, that had been once soaked in saturated saline solution, with hypotonic solution. Synthesis of polynucleotides was observed not only when the substrates were incubated with polynucleotide phosphorylase preparation isolated from the bacterial cells, but also when the substrates were added directly to the bacterial cultures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号