首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The proteins in blood were all first expressed as mRNAs from genes within cells. There are databases of human proteins that are known to be expressed as mRNA in human cells and tissues. Proteins identified from human blood by the correlation of mass spectra that fail to match human mRNA expression products may not be correct. We compared the proteins identified in human blood by mass spectrometry by 10 different groups by correlation to human and nonhuman nucleic acid sequences. We determined whether the peptides or proteins identified by the different groups mapped to the human known proteins of the Reference Sequence (RefSeq) database. We used Structured Query Language data base searches of the peptide sequences correlated to tandem mass spectrometry spectra and basic local alignment search tool analysis of the identified full length proteins to control for correlation to the wrong peptide sequence or the existence of the same or very similar peptide sequence shared by more than one protein. Mass spectra were correlated against large protein data bases that contain many sequences that may not be expressed in human beings yet the search returned a very high percentage of peptides or proteins that are known to be found in humans. Only about 5% of proteins mapped to hypothetical sequences, which is in agreement with the reported false-positive rate of searching algorithms conditions. The results were highly enriched in secreted and soluble proteins and diminished in insoluble or membrane proteins. Most of the proteins identified were relatively short and showed a similar size distribution compared to the RefSeq database. At least three groups agree on a nonredundant set of 1671 types of proteins and a nonredundant set of 3151 proteins were identified by at least three peptides.  相似文献   

2.
Although human plasma represents an attractive sample for disease biomarker discovery, the extreme complexity and large dynamic range in protein concentrations present significant challenges for characterization, candidate biomarker discovery, and validation. Herein we describe a strategy that combines immunoaffinity subtraction and subsequent chemical fractionation based on cysteinyl peptide and N-glycopeptide captures with two-dimensional LC-MS/MS to increase the dynamic range of analysis for plasma. Application of this "divide-and-conquer" strategy to trauma patient plasma significantly improved the overall dynamic range of detection and resulted in confident identification of 22,267 unique peptides from four different peptide populations (cysteinyl peptides, non-cysteinyl peptides, N-glycopeptides, and non-glycopeptides) that covered 3,654 different proteins with 1,494 proteins identified by multiple peptides. Numerous low abundance proteins were identified, exemplified by 78 "classic" cytokines and cytokine receptors and by 136 human cell differentiation molecules. Additionally a total of 2,910 different N-glycopeptides that correspond to 662 N-glycoproteins and 1,553 N-glycosylation sites were identified. A panel of the proteins identified in this study is known to be involved in inflammation and immune responses. This study established an extensive reference protein database for trauma patients that provides a foundation for future high throughput quantitative plasma proteomic studies designed to elucidate the mechanisms that underlie systemic inflammatory responses.  相似文献   

3.
Plasma Proteome Database as a resource for proteomics research   总被引:1,自引:0,他引:1  
Plasma is one of the best studied compartments in the human body and serves as an ideal body fluid for the diagnosis of diseases. This report provides a detailed functional annotation of all the plasma proteins identified to date. In all, gene products encoded by 3778 distinct genes were annotated based on proteins previously published in the literature as plasma proteins and the identification of multiple peptides from proteins under HUPO's Plasma Proteome Project. Our analysis revealed that 51% of these genes encoded more than one protein isoform. All single nucleotide polymorphisms involving protein-coding regions were mapped onto the protein sequences. We found a number of examples of isoform-specific subcellular localization as well as tissue expression. This database is an attempt at comprehensive annotation of a complex subproteome and is available on the web at http://www.plasmaproteomedatabase.org.  相似文献   

4.
Human blood plasma is a useful source of proteins associated with both health and disease. Analysis of human blood plasma is a challenge due to the large number of peptides and proteins present and the very wide range of concentrations. In order to identify as many proteins as possible for subsequent comparative studies, we developed an industrial-scale (2.5 liter) approach involving sample pooling for the analysis of smaller proteins (M(r) generally < ca. 40 000 and some fragments of very large proteins). Plasma from healthy males was depleted of abundant proteins (albumin and IgG), then smaller proteins and polypeptides were separated into 12 960 fractions by chromatographic techniques. Analysis of proteins and polypeptides was performed by mass spectrometry prior to and after enzymatic digestion. Thousands of peptide identifications were made, permitting the identification of 502 different proteins and polypeptides from a single pool, 405 of which are listed here. The numbers refer to chromatographically separable polypeptide entities present prior to digestion. Combining results from studies with other plasma pools we have identified over 700 different proteins and polypeptides in plasma. Relatively low abundance proteins such as leptin and ghrelin and peptides such as bradykinin, all invisible to two-dimensional gel technology, were clearly identified. Proteins of interest were synthesized by chemical methods for bioassays. We believe that this is the first time that the small proteins in human blood plasma have been separated and analyzed so extensively.  相似文献   

5.
Nonenzymatic glycation of peptides and proteins by d-glucose has important implications in the pathogenesis of diabetes mellitus, particularly in the development of diabetic complications. In this work, we report the first proteomics-based characterization of nonenzymatically glycated proteins in human plasma and erythrocyte membranes from individuals with normal glucose tolerance, impaired glucose tolerance, and type 2 diabetes mellitus. Phenylboronate affinity chromatography was used to enrich glycated proteins and glycated tryptic peptides from both human plasma and erythrocyte membranes. The enriched peptides were subsequently analyzed by liquid chromatography coupled with electron transfer dissociation-tandem mass spectrometry, resulting in the confident identification of 76 and 31 proteins from human plasma and erythrocyte membranes, respectively. Although most of the glycated proteins could be identified in samples from individuals with normal glucose tolerance, slightly higher numbers of glycated proteins and more glycation sites were identified in samples from individuals with impaired glucose tolerance and type 2 diabetes mellitus.  相似文献   

6.
A database was established from human hemofiltrate (HF) that consisted of a mass database and a sequence database, with the aim of analyzing the composition of the peptide fraction in human blood. To establish a mass database, all 480 fractions of a peptide bank generated from HF were analyzed by MALDI-TOF mass spectrometry. Using this method, over 20 000 molecular masses representing native, circulating peptides were detected. Estimation of repeatedly detected masses suggests that approximately 5000 different peptides were recorded. More than 95% of the detected masses are smaller than 15 000, indicating that HF predominantly contains peptides. The sequence database contains over 340 entries from 75 different protein and peptide precursors. 55% of the entries are fragments from plasma proteins (fibrinogen A 13%, albumin 10%, β2-microglobulin 8.5%, cystatin C 7%, and fibrinogen B 6%). Seven percent of the entries represent peptide hormones, growth factors and cytokines. Thirty-three percent belong to protein families such as complement factors, enzymes, enzyme inhibitors and transport proteins. Five percent represent novel peptides of which some show homology to known peptide and protein families. The coexistence of processed peptide fragments, biologically active peptides and peptide precursors suggests that HF reflects the peptide composition of plasma. Interestingly, protein modules such as EGF domains (meprin Aα-fragments), somatomedin-B domains (vitronectin fragments), thyroglobulin domains (insulin like growth factor-binding proteins), and Kazal-type inhibitor domains were identified. Alignment of sequenced fragments to their precursor proteins and the analysis of their cleavage sites revealed that there are different processing pathways of plasma proteins in vivo.  相似文献   

7.
We have merged four different views of the human plasma proteome, based on different methodologies, into a single nonredundant list of 1175 distinct gene products. The methodologies used were 1) literature search for proteins reported to occur in plasma or serum; 2) multidimensional chromatography of proteins followed by two-dimensional electrophoresis and mass spectroscopy (MS) identification of resolved proteins; 3) tryptic digestion and multidimensional chromatography of peptides followed by MS identification; and 4) tryptic digestion and multidimensional chromatography of peptides from low-molecular-mass plasma components followed by MS identification. Of 1,175 nonredundant gene products, 195 were included in more than one of the four input datasets. Only 46 appeared in all four. Predictions of signal sequence and transmembrane domain occurrence, as well as Genome Ontology annotation assignments, allowed characterization of the nonredundant list and comparison of the data sources. The "nonproteomic" literature (468 input proteins) is strongly biased toward signal sequence-containing extracellular proteins, while the three proteomics methods showed a much higher representation of cellular proteins, including nuclear, cytoplasmic, and kinesin complex proteins. Cytokines and protein hormones were almost completely absent from the proteomics data (presumably due to low abundance), while categories like DNA-binding proteins were almost entirely absent from the literature data (perhaps unexpected and therefore not sought). Most major categories of proteins in the human proteome are represented in plasma, with the distribution at successively deeper layers shifting from mostly extracellular to a distribution more like the whole (primarily cellular) proteome. The resulting nonredundant list confirms the presence of a number of interesting candidate marker proteins in plasma and serum.  相似文献   

8.

Background

It may be possible to discover new diagnostic or therapeutic peptides or proteins from blood plasma using LC–ESI–MS/MS to identify, with a linear quadrupole ion trap to identify, quantify and compare the statistical distributions of peptides cleaved ex vivo from plasma samples from different clinical populations.

Methods

A systematic method for the organic fractionation of plasma peptides was applied to identify and quantify the endogenous tryptic peptides from human plasma from multiple institutions by C18 HPLC followed nano electrospray ionization and tandem mass spectrometry (LC–ESI–MS/MS) with a linear quadrupole ion trap. The endogenous tryptic peptides, or tryptic phospho peptides (i.e. without exogenous digestion), were extracted in a mixture of organic solvent and water, dried and collected by preparative C18. The tryptic peptides from 6 institutions with 12 different disease and normal EDTA plasma populations, alongside ice cold controls for pre-analytical variation, were characterized by mass spectrometry. Each patient plasma was precipitated in 90% acetonitrile and the endogenous tryptic peptides extracted by a stepwise gradient of increasing water and then formic acid resulting in 10 sub-fractions. The fractionated peptides were manually collected over preparative C18 and injected for 1508 LC–ESI–MS/MS experiments analyzed in SQL Server R.

Results

Peptides that were cleaved in human plasma by a tryptic activity ex vivo provided convenient and sensitive access to most human proteins in plasma that show differences in the frequency or intensity of proteins observed across populations that may have clinical significance. Combination of step wise organic extraction of 200 μL of plasma with nano electrospray resulted in the confident identification and quantification ~?14,000 gene symbols by X!TANDEM that is the largest number of blood proteins identified to date and shows that you can monitor the ex vivo proteolysis of most human proteins, including interleukins, from blood. A total of 15,968,550 MS/MS spectra ≥?E4 intensity counts were correlated by the SEQUEST and X!TANDEM algorithms to a federated library of 157,478 protein sequences that were filtered for best charge state (2+ or 3+) and peptide sequence in SQL Server resulting in 1,916,672 distinct best-fit peptide correlations for analysis with the R statistical system. SEQUEST identified some 140,054 protein accessions, or some ~?26,000 gene symbols, proteins or loci, with at least 5 independent correlations. The X!TANDEM algorithm made at least 5 best fit correlations to more than 14,000 protein gene symbols with p-values and FDR corrected q-values of ~?0.001 or less. Log10 peptide intensity values showed a Gaussian distribution from E8 to E4 arbitrary counts by quantile plot, and significant variation in average precursor intensity across the disease and controls treatments by ANOVA with means compared by the Tukey–Kramer test. STRING analysis of the top 2000 gene symbols showed a tight association of cellular proteins that were apparently present in the plasma as protein complexes with related cellular components, molecular functions and biological processes.

Conclusions

The random and independent sampling of pre-fractionated blood peptides by LC-ESI-MS/MS with SQL Server-R analysis revealed the largest plasma proteome to date and was a practical method to quantify and compare the frequency or log10 intensity of individual proteins cleaved ex vivo across populations of plasma samples from multiple clinical locations to discover treatment-specific variation using classical statistics suitable for clinical science. It was possible to identify and quantify nearly all human proteins from EDTA plasma and compare the results of thousands of LC–ESI–MS/MS experiments from multiple clinical populations using standard database methods in SQL Server and classical statistical strategies in the R data analysis system.
  相似文献   

9.
Several factors reduce the efficacy of natural peptides as drug candidates; chief among these is their rapid digestion by human proteases. Over the last few decades, a number of strategies have been employed to increase the enzymatic stability of peptides, including the introduction of non-natural amino acids. This study aims at the investigation of the effect of side chain fluorination on the stability of peptides in human blood plasma. Ten model peptides with different non-natural amino acids were designed, synthesized and subjected to enzymatic degradation in human blood plasma. The stability of the studied peptides was followed by HPLC analysis and compared to the control peptide built with only proteinogenic residues. Four main hydrolysis products were detected and identified by mass spectrometry, three of them being characteristic cleavage products of the serine protease Elastase. A final enzymatic study with isolated Elastase validated then the outcome of the plasma study. This case study contributes to the application of fluorinated amino acids in the design of proteolytically stable peptides and proteins with potential clinical relevance.  相似文献   

10.
Peptide-based mass spectrometry approaches, such as multiple reaction monitoring, provide a powerful means to measure candidate protein biomarkers in plasma. A potential confounding problem is the effect of preanalytical variables, which may affect the integrity of proteins and peptides. Although some blood proteins undergo rapid physiological proteolysis ex vivo, the stability of most plasma proteins to preanalytical variables remains largely unexplored. We applied liquid chromatography-tandem mass spectrometry shotgun proteomics and multiple reaction monitoring analyses to characterize the stability of proteins at the peptide level in plasma. We systematically evaluated the effects of delay in plasma preparation at different temperatures, multiple freeze-thaw cycles and erythocyte hemolysis on peptide and protein inventories in prospectively collected human plasma. Time course studies indicated few significant changes in peptide and protein identifications, semitryptic peptides and methionine-oxidized peptides in plasma from blood collected in EDTA plasma tubes and stored for up to a week at 4 °C or room temperature prior to plasma isolation. Similarly, few significant changes were observed in similar analyses of plasma subjected to up to 25 freeze-thaw cycles. Hemolyzed samples produced no significant differences beyond the presence of hemoglobin proteins. Finally, paired comparisons of plasma and serum samples prepared from the same patients also yielded few significant differences, except for the depletion of fibrinogen in serum. Blood proteins thus are broadly stable to preanalytical variables when analyzed at the peptide level. Collection protocols to generate plasma for multiple reaction monitoring-based analyses may have different requirements than for other analyses directed at intact proteins.  相似文献   

11.
Free-flow electrophoresis (FFE) and rapid (6 min) RP-HPLC was used to fractionate human citrate-treated plasma. Prior to analysis, the six most abundant proteins in plasma were removed by immunoaffinity chromatography; both depleted plasma and the fraction containing the six abundant proteins depleted were taken for MS-based analysis. Fractionated proteins were digested with trypsin and the generated peptides were subjected to MS-based peptide sequencing. To date, 78 plasma proteins have been unambiguously identified by manual validation from 16% (15/96 FFE total fractions) of the collected FFE pools; 55 identifications were based on > or = 2 tryptic peptides and 23 using single peptides. The molecular weight range of proteins and peptides isolated by this method ranged from approximately 190 K (e.g., Complement C3 and C4) to approximately 4-6 K (e.g., CRISPP and Apolipoprotein C1). This FFE/RP-HPLC approach reveals low-abundance proteins and peptides (e.g., L-Selectin approximately 17 ng/mL and the cancer-associated SCM-recognition, immunodefense suppression, and serine protease protection peptide (CRISPP) at approximately 0.5-1 ng/mL), where CRISPP was found in association with alpha-1-antitrypsin as a non-covalent complex, in the fraction containing the depleted high-abundance proteins. In contrast to shotgun proteomic approaches, the FFE/RP-HPLC method described here allows the identification of potentially interesting peptides to be traced back to their protein of origin, and for the first time, has confirmed the "protein sponge" hypothesis where the 35 residue CRISPP polypeptide is non-covalently complexed with the major circulating plasma protein alpha-1-antitrypsin.  相似文献   

12.
Affibody (Affibody) ligands specific for human amyloid beta (Abeta) peptides (40 or 42 amino acid residues in size), involved in the progress of Alzheimer's disease, were selected by phage display technology from a combinatorial protein library based on the 58-amino acid residue staphylococcal protein A-derived Z domain. Post-selection screening of 384 randomly picked clones, out of which 192 clones were subjected to DNA sequencing and clustering, resulted in the identification of 16 Affibody variants that were produced and affinity purified for ranking of their binding properties. The two most promising Affibody variants were shown to selectively and efficiently bind to Abeta peptides, but not to the control proteins. These two Affibody ligands were in dimeric form (to gain avidity effects) coupled to affinity resins for evaluation as affinity devices for capture of Abeta peptides from human plasma and serum. It was found that both ligands could efficiently capture Abeta that were spiked (100 microgml(-1)) to plasma and serum samples. A ligand multimerization problem that would yield suboptimal affinity resins, caused by a cysteine residue present at the binding surface of the Affibody ligands, could be circumvented by the generation of second-generation Affibody ligands (having cysteine to serine substitutions). In an epitope mapping effort, the preferred binding site of selected Affibody ligands was mapped to amino acids 30-36 of Abeta, which fortunately would indicate that the Affibody molecules should not bind the amyloid precursor protein (APP). In addition, a significant effort was made to analyze which form of Abeta (monomer, dimer or higher aggregates) that was most efficiently captured by the selected Affibody ligand. By using Western blotting and a dot blot assay in combination with size exclusion chromatography, it could be concluded that selected Affibody ligands predominantly bound a non-aggregated form of analyzed Abeta peptide, which we speculate to be dimeric Abeta. In conclusion, we have successfully selected Affibody ligands that efficiently capture Abeta peptides from human plasma and serum. The potential therapeutic use of these optimized ligands for extracorporeal capture of Abeta peptides in order to slow down or reduce amyloid plaque formation, is discussed.  相似文献   

13.
Human blood plasma can be obtained relatively noninvasively and contains proteins from most, if not all, tissues of the body. Therefore, an extensive, quantitative catalog of plasma proteins is an important starting point for the discovery of disease biomarkers. In 2005, we showed that different proteomics measurements using different sample preparation and analysis techniques identify significantly different sets of proteins, and that a comprehensive plasma proteome can be compiled only by combining data from many different experiments. Applying advanced computational methods developed for the analysis and integration of very large and diverse data sets generated by tandem MS measurements of tryptic peptides, we have now compiled a high-confidence human plasma proteome reference set with well over twice the identified proteins of previous high-confidence sets. It includes a hierarchy of protein identifications at different levels of redundancy following a clearly defined scheme, which we propose as a standard that can be applied to any proteomics data set to facilitate cross-proteome analyses. Further, to aid in development of blood-based diagnostics using techniques such as selected reaction monitoring, we provide a rough estimate of protein concentrations using spectral counting. We identified 20,433 distinct peptides, from which we inferred a highly nonredundant set of 1929 protein sequences at a false discovery rate of 1%. We have made this resource available via PeptideAtlas, a large, multiorganism, publicly accessible compendium of peptides identified in tandem MS experiments conducted by laboratories around the world.  相似文献   

14.
Identification of novel diagnostic or therapeutic biomarkers from human blood plasma would benefit significantly from quantitative measurements of the proteome constituents over a range of physiological conditions. Herein we describe an initial demonstration of proteome-wide quantitative analysis of human plasma. The approach utilizes postdigestion trypsin-catalyzed 16O/18O peptide labeling, two-dimensional LC-FTICR mass spectrometry, and the accurate mass and time (AMT) tag strategy to identify and quantify peptides/proteins from complex samples. A peptide accurate mass and LC elution time AMT tag data base was initially generated using MS/MS following extensive multidimensional LC separations to provide the basis for subsequent peptide identifications. The AMT tag data base contains >8,000 putative identified peptides, providing 938 confident plasma protein identifications. The quantitative approach was applied without depletion of high abundance proteins for comparative analyses of plasma samples from an individual prior to and 9 h after lipopolysaccharide (LPS) administration. Accurate quantification of changes in protein abundance was demonstrated by both 1:1 labeling of control plasma and the comparison between the plasma samples following LPS administration. A total of 429 distinct plasma proteins were quantified from the comparative analyses, and the protein abundances for 25 proteins, including several known inflammatory response mediators, were observed to change significantly following LPS administration.  相似文献   

15.
The degree and the origins of quantitative variability of most human plasma proteins are largely unknown. Because the twin study design provides a natural opportunity to estimate the relative contribution of heritability and environment to different traits in human population, we applied here the highly accurate and reproducible SWATH mass spectrometry technique to quantify 1,904 peptides defining 342 unique plasma proteins in 232 plasma samples collected longitudinally from pairs of monozygotic and dizygotic twins at intervals of 2–7 years, and proportioned the observed total quantitative variability to its root causes, genes, and environmental and longitudinal factors. The data indicate that different proteins show vastly different patterns of abundance variability among humans and that genetic control and longitudinal variation affect protein levels and biological processes to different degrees. The data further strongly suggest that the plasma concentrations of clinical biomarkers need to be calibrated against genetic and temporal factors. Moreover, we identified 13 cis‐SNPs significantly influencing the level of specific plasma proteins. These results therefore have immediate implications for the effective design of blood‐based biomarker studies.  相似文献   

16.
Identification of novel antigens is essential for developing new diagnostic tests and vaccines. We used DIGE to compare protein expression in amastigote and promastigote forms of Leishmania chagasi. Nine hundred amastigote and promastigote spots were visualized. Five amastigote-specific, 25 promastigote-specific, and 10 proteins shared by the two parasite stages were identified. Furthermore, 41 proteins were identified in the Western blot employing 2-DE and sera from infected dogs. From these proteins, 3 and 38 were reactive with IgM and total IgG, respectively. The proteins recognized by total IgG presented different patterns in terms of their recognition by IgG1 and/or IgG2 isotypes. All the proteins selected by Western blot were mapped for B-cell epitopes. One hundred and eighty peptides were submitted to SPOT synthesis and immunoassay. A total of 25 peptides were shown of interest for serodiagnosis to visceral leishmaniasis. In addition, all proteins identified in this study were mapped for T cell epitopes by using the NetCTL software, and candidates for vaccine development were selected. Therefore, a large-scale screening of L. chagasi proteome was performed to identify new B and T cell epitopes with potential use for developing diagnostic tests and vaccines.  相似文献   

17.
18.

Background

Many biologically active compounds bind to plasma transport proteins, and this binding can be either advantageous or disadvantageous from a drug design perspective. Human serum albumin (HSA) is one of the most important transport proteins in the cardiovascular system due to its great binding capacity and high physiological concentration. HSA has a preference for accommodating neutral lipophilic and acidic drug-like ligands, but is also surprisingly able to bind positively charged peptides. Understanding of how short cationic antimicrobial peptides interact with human serum albumin is of importance for developing such compounds into the clinics.

Results

The binding of a selection of short synthetic cationic antimicrobial peptides (CAPs) to human albumin with binding affinities in the μM range is described. Competitive isothermal titration calorimetry (ITC) and NMR WaterLOGSY experiments mapped the binding site of the CAPs to the well-known drug site II within subdomain IIIA of HSA. Thermodynamic and structural analysis revealed that the binding is exclusively driven by interactions with the hydrophobic moieties of the peptides, and is independent of the cationic residues that are vital for antimicrobial activity. Both of the hydrophobic moieties comprising the peptides were detected to interact with drug site II by NMR saturation transfer difference (STD) group epitope mapping (GEM) and INPHARMA experiments. Molecular models of the complexes between the peptides and albumin were constructed using docking experiments, and support the binding hypothesis and confirm the overall binding affinities of the CAPs.

Conclusions

The biophysical and structural characterizations of albumin-peptide complexes reported here provide detailed insight into how albumin can bind short cationic peptides. The hydrophobic elements of the peptides studied here are responsible for the main interaction with HSA. We suggest that albumin binding should be taken into careful consideration in antimicrobial peptide studies, as the systemic distribution can be significantly affected by HSA interactions.  相似文献   

19.
The respiratory distress syndrome of premature infants is caused by both surfactant deficiency and surfactant inhibition by capillary-alveolar leakage of serum factors. Dispersions of a standard surfactant lipid mixture, with and without various synthetic peptides, modeled on human surfactant proteins SP-B (residues 1-25, 49-66, 1-78) and SP-C (residues 1-10), were evaluated for inhibition by serum and by plasma constituents using a pulsating bubble surfactometer. Inhibition was derived from the changes in surface properties of these mixtures after addition of human serum or plasma constituents. Modified bovine surfactant (TA) containing native SP-B and SP-C was used as a control. In the absence of serum inhibitors, mixtures with synthetic peptides gave results similar to surfactant TA. However, inhibition was more evident in the dispersions with synthetic peptides when compared with surfactant TA. The peptide/phospholipid mixture with the entire sequence of SP-B and the first 10 residues of SP-C were more resistant to inhibition than mixtures with synthetic peptides containing fewer domains. Addition of calcium reduced the inhibitory effects of serum both in mixtures containing synthetic peptides and in surfactant TA. Therefore, synthetic SP-B and SP-C peptides in surfactant lipids, in cooperation with calcium, permit resistance to inhibition by several plasma constituents that probably inactivate surfactant by a variety of different mechanisms.  相似文献   

20.
In many studies, particularly in the field of systems biology, it is essential that identical protein sets are precisely quantified in multiple samples such as those representing differentially perturbed cell states. The high degree of reproducibility required for such experiments has not been achieved by classical mass spectrometry-based proteomics methods. In this study we describe the implementation of a targeted quantitative approach by which predetermined protein sets are first identified and subsequently quantified at high sensitivity reliably in multiple samples. This approach consists of three steps. First, the proteome is extensively mapped out by multidimensional fractionation and tandem mass spectrometry, and the data generated are assembled in the PeptideAtlas database. Second, based on this proteome map, peptides uniquely identifying the proteins of interest, proteotypic peptides, are selected, and multiple reaction monitoring (MRM) transitions are established and validated by MS2 spectrum acquisition. This process of peptide selection, transition selection, and validation is supported by a suite of software tools, TIQAM (Targeted Identification for Quantitative Analysis by MRM), described in this study. Third, the selected target protein set is quantified in multiple samples by MRM. Applying this approach we were able to reliably quantify low abundance virulence factors from cultures of the human pathogen Streptococcus pyogenes exposed to increasing amounts of plasma. The resulting quantitative protein patterns enabled us to clearly define the subset of virulence proteins that is regulated upon plasma exposure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号