首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The accumulation of oat (Avena sativa L.) phytoalexins, avenanthramides, occurred in leaf segments treated with oligo-N-acetylchitooligosaccharides. The amount of avenanthramide A, the major oat phytoalexin, reached a maximum 36–48 h after elicitor treatment. This accumulation was preceded by a marked increase in enzyme activities of phenylpropanoid pathway members, including phenylalanine ammonia-lyase (EC 4.3.1.5), cinnamate 4-hydroxylase (EC 1.14.13.11) and 4-coumarate:CoA ligase (EC 6.2.1.12). These enzyme activities reached a maximum 6–12 h after elicitor treatment, when the avenanthramides were produced most rapidly. Both phenylalanine ammonia-lyase and 4-coumarate:CoA ligase activities decreased thereafter to undetectable levels 72 h after treatment, while cinnamate 4-hydroxylase activity showed a second increase 48 h after treatment. Among the chitooligosaccharides tested, tetra- and pentasaccharides most effectively induced these enzyme activities in a dose-dependent manner. The elicitor-induced 4-coumarate: CoA ligase accepted all hydroxycinnamic acids occurring in the avenanthramides as substrates, with the exception of avenalumic acid. These findings indicate that accumulation of the avenanthramides results from de-novo synthesis through the general phenylpropanoid pathway and that early biosynthetic enzymes function as regulatory points of carbon flow to the avenanthramides. Received: 3 December 1998 / Accepted: 27 January 1999  相似文献   

2.
The callose synthase (UDP-glucose: 1,3-β-d-glucan 3-β-d-glucosyl transferase; EC 2.4.1.34) enzyme (CalS) from pollen tubes of Nicotiana alata Link et Otto is responsible for developmentally regulated deposition of the cell wall polysaccharide callose. Membrane preparations from N. alata pollen tubes grown in liquid culture were fractionated by density-gradient centrifugation. The CalS activity sedimented to the denser regions of the gradient, approximately 1.18 g · ml−1, away from markers for Golgi, endoplasmic reticulum and mitochondria, and into fractions enriched in ATPase activity and in membranes staining with phosphotungstic acid at low pH. This suggests that pollen-tube CalS is localised in the plasma membrane. Callose synthase activity from membranes enriched by downward centrifugation was solubilised with digitonin, which gave a 3- to 4-fold increase in enzyme activity, and the solubilised activity was then enriched a further 10-fold by product entrapment. The complete procedure gave final CalS specific activities up to 1000-fold higher than those of pollen-tube homogenates. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that several polypeptides co-fractionated with CalS activity through purification, with a polypeptide of 190 kDa being enriched in product-entrapment pellets. Received: 24 September 1997 / Accepted: 12 November 1997  相似文献   

3.
Membrane preparations from suspension-cultured cells of French bean (Phaseolus vulgaris L.) contained callose synthase (EC 2.4.1.34) activity which was preserved upon solubilisation. Following elicitor treatment of cell cultures, increased activity could be extracted and this increase was maintained during purification. The enzyme was purified by high-pressure liquid chromatography and active fractions showed a variable association of two polypeptides of relative molecular masses (Mr) 55 000 and 65 000, the latter being in excess. The Mr-65 000 polypeptide was purified to homogeneity and an antibody raised to it. This antibody showed complex effects on callose synthase activity when incubated with membrane and soluble extracts. In comparison with other systems, the Mr-55 000 subunit is likely to represent the catalytic subunit while the Mr-65 000 polypeptide is a possible regulatory subunit. The Mr-65 000 polypeptide was immunolocated in membranes at sites of callose synthesis in the plant, in cell plates, in sieve plates, at the plasma membrane-wall interface of wounded cells and in papillae in infected cells. Received: 18 January 1997 / Accepted: 8 May 1997  相似文献   

4.
 In order to determine why the activated methyl cycle is up-regulated in plants undergoing defence responses to fungal pathogens we have monitored the utilisation of methyl groups derived from methionine in cell-suspension cultures of alfalfa (Medicago sativa L.) treated for various times with fungal elicitor, by carrying out a parallel labelling study with [35S]methionine and [methyl-3H]methionine. The distribution of the two radiolabels among the medium, soluble cellular components and cell wall was then determined. In the absence of elicitor the utilisation of the two radiolabels was similar. However, in the presence of the elicitor the total incorporation of radioactivity from [methyl-3H]methionine into metabolites was far greater than from [35S]methionine, indicating that the methyl label had been utilised in methylation reactions. Elicitor treatment resulted in up to a sixfold increase in the use of 3H-methyl groups in the methylation of hydrophobic metabolites. In the period 0–24 h after elicitor treatment, increased methylation was directed largely into the synthesis of the isoflavonoid phytoalexin medicarpin and related metabolites. Newly synthesized phytoalexins were exported into the medium, while a significant proportion of the medicarpin accumulating in the cell in the early stages of elicitation was derived from the hydrolysis of its respective conjugate. Elicitor treatment also modified the incorporation of 3H-methyl groups into the cell wall. Between 0 and 24 h after elicitor treatment the methylation of pectin in the cell wall declined. After 24 h, pectin methylation recovered and was associated with an increase in the methylation of other wall-bound polysaccharide components. Since no other major metabolic sink for the increased methylation was determined we conclude that the increased activity of the activated methyl cycle during defence interactions in alfalfa is required to support phytoalexin synthesis and cell wall modifications. Received: 1 August 1996 / Accepted: 24 October 1996  相似文献   

5.
Treatment of a Cinchona robusta How. cell suspension culture with a homogenate of Phytophthora cinnamomi resulted in cessation of growth and a rapid induction of the biosynthesis of anthraquinone-type phytoalexins. The strongest induction of anthraquinone biosynthesis was obtained when the elicitor was added in the early growth phase of the growth cycle. The accumulation of anthraquinones was accompanied by a tri-phasic response in the activity of isopentenyl diphosphate (IPP) isomerase (EC 5.3.3.2): phase I was characterised by a rapid induction of activity, reaching a maximum at 12 h after elicitation. During phase II, IPP isomerase rapidly decreased to levels below those found in untreated cells. At phase III, IPP isomerase activity increased again, reaching a second maximum at about 72 h after elicitation. During phase I, the activity of farnesyl diphosphate synthase (EC 2.5.1.10) was found to be suppressed. Extraction and assay conditions were optimised for IPP isomerase. The presence of Mn2+ in the incubation buffer resulted in a marked increase in the activity of the enzymes obtained from cells in phase I. The induction of IPP isomerase in combination with a concomitant inhibition of farnesyl diphosphate synthase might result in an efficient channeling of C5-precursors into phytoalexin biosynthesis. Received: 23 August 1996 / Accepted: 20 March 1997  相似文献   

6.
β-Glucosidase from almonds (EC 3.2.1.21) was covalently immobilized by a two-step technique. In the first step, double bonds were introduced into the β-glucosidase by derivatization with itaconic anhydride. In separate studies with α-N-protected l-amino acids, it was established that itaconic anhydride acylated mainly primary amino groups of lysines and, to a much lesser extent hydroxyl groups of tyrosines and sulfhydryl groups of cysteines. The acylated β-glucosidase showed no loss of activity and the K m decreased from 3.6 mM to 2.6 mM when p-nitrophenyl β-d-glucopyranoside was used as the substrate. In the second step, the derivatized β-glucosidase was co-polymerized radically with N,N′-methylenebisacrylamide in buffer solution. The resulting acrylamide immobilizate possessed a much better storage stability at 30–56 °C when compared to β-glucosidase immobilized on Eupergit C. However, the specific activity was higher with the Eupergit immobilizate. Free and acrylamide-immobilized β-glucosidase were used for glucosylation of chloramphenicol by transglucosylation in 20% (v/v) acetonitrile at 37 °C. The acrylamide immobilizate demonstrated a great enhancement of stability and approximately 50% more chloramphenicol β-glucoside was obtained after 5 h. Received: 22 September 1997 / Accepted: 28 October 1997  相似文献   

7.
 The effects of alginate on the physiological activities of plant cells were studied. Addition of alginate oligomer (AO) to the suspension culture of Catharanthus roseus L. or Wasabia japonica cells promoted the production of antibiotic enzymes such as 5′-phosphodiesterase or chitinase respectively. Ajmalicine (a secondary metabolite) production by C. roseus CP3 cells was also promoted when AO was added to the suspension culture. On the basis of these results, we assumed that alginate is an elicitor-like substance. We therefore compared the effect of AO on C. roseus L. and W. japonica cells with those of chitosan oligomer (CO) and oligo-galacturonic acid (OGA), which are well known as an exogenous elicitor and endogenous elicitor respectively. The effects of various concentrations of AO, OGA, and CO on the physiological activities, membrane permeability and protoplast formation of C. roseus L. or W. japonica cells were investigated. AO and OGA showed similar physiological effects, which were quite different from those of CO. Since alginate appeared to have similar effects to galacturonic acid, we concluded that alginate acts as an endogenous elicitor. Both alginate and galacturonic acid are uronic acids, and we considered their structural similarity. The effects of esterification of the carboxylic groups of alginate by propylene oxide were also studied. The greater the degree of esterification, the less the secretion of 5′-phosphodiesterase. Hence we assumed that carboxylic groups have an important role in the initiation of the elicitation reaction in plant cells, as shown in the case of galacturonic acid. Received: 18 January 1999 / Received revision: 2 April 1999 / Accepted: 1 May 1999  相似文献   

8.
The green alga Chlamydomonas reinhardtii Dangeard CW-15 exhibited very low rates of plasma-membrane Fe(III) reductase activity when grown under Fe-sufficient conditions. After switching the medium to an Fe-free formulation, both ferricyanide reductase and ferric chelate reductase activities rapidly increased, reaching a maximum after 3 d under iron-free conditions. Both of the Fe(III) reductase activities increased in parallel over time, they exhibited similar K m values (approximately 10 μM) with respect to Fe(III), displayed the same pH profile of activity, and both exhibited the same degree of light stimulation which could be inhibited by 3-(3′,4′-dichlorophenyl)-1,1-dimethylurea (DCMU). Furthermore, ferricyanide competitively inhibited ferric chelate reduction by iron-limited cells. These results indicate that both Fe(III) reductase activities were mediated by the same iron-limitation-induced plasma-membrane reductase. No evidence was found for the presence of Fe(III)-reducing substances in the culture medium, or for the involvement of active oxygen species in the process of Fe(III) reduction. Chlamydomonas reinhardtii appears to respond to iron limitation in a manner similar to Strategy I higher plants. Received: 24 June 1997 / Accepted: 2 August 1997  相似文献   

9.
The influence of the anti-fungal agent phosphonate (Phi) on the response of oilseed rape (Brassica napus L. cv. Jet Neuf ) cell suspensions to inorganic phosphate (Pi) starvation was examined. Subculture of the cells for 7 d in the absence of Pi increased acid phosphatase (APase; EC 3.1.3.2) and pyrophosphate (PPi)-dependent phosphofructokinase (PFP; EC 2.7.1.90) activities by 4.5- and 2.8-fold, respectively, and led to a 19-fold increase in V max and a 14-fold decrease in K m (Pi) for Pi uptake. Addition of 2 mM Phi to the nutrient media caused dramatic reductions in the growth and Pi content of the Pi-starved, but not Pi-sufficient cells, and largely abolished the Pi-starvation-dependent induction of PFP, APase, and the high-affinity plasmalemma Pi translocator. Immunoblotting indicated the cells contain three APase isoforms that are synthesized de novo following Pi stress, and that Phi treatment represses this process. Phosphonate treatment of Pi-starved cells significantly altered the relative extent of in-vivo 32P-labelling of polypeptides having Mrs of 66, 55, 45 and 40 kDa. However, Phi had no effect on the total adenylate pool of Pi-starved cells which was about 32% lower than that of Pi-sufficient cells by day 7. Soluble protein levels, and activities of pyruvate kinase (EC 2.7.1.40) and ATP-dependent phosphofructokinase (EC 2.7.1.11) were unaffected by Pi starvation and/or Phi treatment. The effects of Phi on the growth, and APase and PFP activities of Pi-starved B. napus seedlings were similar to those observed in the suspension cells. The results are consistent with the hypothesis that a primary site of Phi action in higher plants is at the level of the signal transduction chain by which plants perceive and respond to Pi stress at the molecular level. Received: 30 December 1996 / Accepted: 19 February 1997  相似文献   

10.
Min Yu  Peter J. Facchini 《Planta》1999,209(1):33-44
A development-specific and elicitor-inducible acyltransferase [hydroxycinnamoyl-CoA: tyramine N-(hydroxycinnamoyl)transferase (THT; EC 2.3.1.110)] that catalyzes the transfer of hydroxycinnamic acids from hydroxycinnamoyl-CoA esters to hydroxyphenethylamines was purified 988-fold to apparent homogeneity from opium poppy (Papaver somniferum L.) cell-suspension cultures. The purification procedure, which resulted in a 6.8% yield, involved hydrophobic interaction and anion-exchange chromatography, followed by affinity chromatography on Reactive Yellow-3-Agarose using the acyl donor (feruloyl-CoA) as eluent. Purified THT had an isoelectric point of 5.2, a native molecular mass of approximately 50 kDa, and consisted of two apparently identical 25-kDa subunits as determined by two-dimensional polyacrylamide gel electrophoresis. The purified enzyme was able to synthesize a variety of amides due to a relatively low specificity for cinnamoyl-CoA derivatives and hydroxyphenethylamines. The best substrates were feruloyl-CoA (VK m −113.4 mkat g−1 M−1) and tyramine (VK m −16.57 mkat g−1 M−1). The THT activity increased during development of opium poppy seedlings, occurred at high levels in roots and stems of mature plants, and was induced in cell-suspension cultures after treatment with a pathogen-derived elicitor. Immunoblot analysis using THT mouse polyclonal antibodies did not always show a correlation between THT polypeptide and enzyme activity levels. For example, despite low THT activity in leaves, an abundant 25-kDa immunoreactive polypeptide was detected. Immunohistochemical localization showed that THT polypeptides occur in cortical and xylem parenchyma, immature xylem vessel elements, root periderm, anthers, ovules, and the inner layer of the seed coat, but are most abundant in phloem sieve-tube members in roots, stems, leaves, and anther filaments. Received: 19 January 1999 / Accepted: 3 March 1999  相似文献   

11.
We tried genetically to immobilize cellulase protein on the cell surface of the yeast Saccharomyces cerevisiae in its active form. A cDNA encoding FI-carboxymethylcellulase (CMCase) of the fungus Aspergillus aculeatus, with its secretion signal peptide, was fused with the gene encoding the C-terminal half (320 amino acid residues from the C terminus) of yeast α-agglutinin, a protein involved in mating and covalently anchored to the cell wall. The plasmid constructed containing this fusion gene was introduced into S. cerevisiae and expressed under the control of the glyceraldehyde-3-phosphate dehydrogenase promoter from S. cerevisiae. The CMCase activity was detected in the cell pellet fraction. The CMCase protein was solubilized from the cell wall fraction by glucanase treatment but not by sodium dodecyl sulphate treatment, indicating the covalent binding of the fusion protein to the cell wall. The appearance of the fused protein on the cell surface was further confirmed by immunofluorescence microscopy and immunoelectron microscopy. These results proved that the CMCase was anchored on the cell wall in its active form. Received: 19 March 1997 / Received revision: 19 May 1997 / Accepted: 1 June 1997  相似文献   

12.
Transformation of N′,N′-dimethyl-N-(hydroxyphenyl)ureas was assayed in the presence of purified laccase produced by the fungus Trametes versicolor. The para- and ortho-hydroxyphenyl derivatives were enzymatically transformed, whereas the meta derivative was not. The performance of laccase-mediated transformation depended on the pH, with an optimum for the para-derivative degradation rate at pH 5. The pH also influenced the nature of the reaction products. The chemical was exclusively oxidised into p-benzoquinone at pH 3 and into mainly N′,N′-dimethyl-N-[(2,5-cyclohexadiene-1-one)-4-ylidene]urea at pH 6. The ortho- derivative was transformed essentially into insoluble purple compounds, probably appearing as polymers resulting from coupling of the parent compound. Received: 14 September 1998 / Received revision: 23 November 1998 / Accepted: 29 November 1998  相似文献   

13.
Cell wall material (CWM) was prepared from nine fruit species at two ripening stages (unripe and ripe) and extracted sequentially with 0.05 M trans-1,2-diaminocyclohexane-N,N,N′,N′-tetraacetic acid (CDTA), 0.05 M Na2CO3 and 4 M KOH. Each solubilised fraction and the CWM-residue remaining after 4 M KOH extraction was analysed for non-cellulosic sugar composition. A common pattern of distribution for polyuronide and pectin-associated neutral sugar was observed for all unripe fruit. Most polyuronide was extracted in the CDTA/Na2CO3 fractions while 70–93% of the neutral sugar was located on pectic polysaccharides in the 4 M KOH-soluble and CWM-residue fractions. During ripening, most of the galactose was lost from pectic polysaccharides in the CWM-residue. Partial solubilisation of these polysaccharides was achieved by treating the CWM-residue with endopolygalacturonase. The solubilised polysaccharides were separated into two fractions by ion-exchange chromatography. One of these contained polysaccharides with average molecular weights of 400 kDa or larger and consisted of between 70 and 90% arabinogalactan. The galactosyl residues were 80–90% β-1→4 linked, indicating largely unbranched side-chains. The arabinosyl residues were distributed among terminal, 3-, 5-, 2,5-, and 2,3,5-linked residues, indicating a highly ramified structure. The results are discussed with regard to the relationship between pectin solubilisation and galactose loss and their respective contribution to fruit softening. Received: 28 January 1997 / Accepted: 11 March 1997  相似文献   

14.
Kidney bean (Phaseolus vulgaris L.) ornithine carbamoyltransferase (OCT; EC 2.1.3.3) was purified to homogeneity from leaf homogenates in a single-step procedure, using δ-N-(phosphonoacetyl)-l-ornithine-Sepharose 6B affinity chromatography. The 8540-fold-purified OCT exhibited a specific activity of 526 micromoles citrulline per minute per milligram of protein at 35 °C and pH 8.0. The enzyme represents approximately 0.01% of the total soluble protein in the leaf. The molecular mass of the native enzyme was approximately 109 kDa as estimated by Sephacryl S-200 gel filtration chromatography. The purified protein ran as a single band of molecular mass 36 kDa when subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis and at a single isoelectric point of 6.6 when subjected to denaturing isoelectric focusing. These results suggest that the enzyme is a trimer of identical subunits. Among the tested amino acids, l-cysteine and S-carbamoyl-l-cysteine were the most effective inhibitors of the enzyme. The OCT of kidney bean showed a very low activity towards canaline. The OCTs of canavanine-deficient plants have very low canaline-dependent activities, but the OCTs of canavanine-containing plants showed high canaline-dependent activities. It was assumed that the substrate specificity of this enzyme determines the canavanine synthetic activity of the urea cycle. Received: 22 July 1997 / Accepted: 4 December 1997  相似文献   

15.
The ability to measure directly individual protoplast ion fluxes is a valuable addition to patch clamp and other techniques when using protoplasts to study membrane transporters. Before interpreting observations on protoplasts in terms of behaviour of intact cells and tissues, some methodological questions should be addressed. These include effects of space and time variations of transporter activities over the membrane, the osmotic dependence of specific ion transporters and the effect of the regenerating cell wall. In this study net H+ and Ca2+ fluxes were measured from individual corn (Zea mays L.) coleoptile protoplasts using a non-invasive microelectrode technique for ion flux measurements. For Ca2+, the flux distribution was almost symmetrical, ranging ±30 nmol · m−2 · s−1 around zero. For H+ it was skewed towards efflux ranging from −100 to +10 nmol · m−2 · s−1. The distribution of H+ fluxes through the protoplast surface was a complex mosaic which changed with time, sometimes showing oscillations. These flux variations with time and position around the surface, apparently driven by endogenous mechanisms, may be relevant to protoplast pH homeostasis. When the new cell wall was partially regenerated on the next day, the correlation between H+ and Ca2+ fluxes increased, which is consistent with the weak-acid Donnan-Manning model of cell wall ion exchange. Received: 11 June 1997 / Accepted: 10 July 1997  相似文献   

16.
17.
Cells of Catharanthus roseus (L.) G. Don were genetically engineered to over-express the enzymes strictosidine synthase (STR; EC 4.3.3.2) and tryptophan decarboxylase (TDC; EC 4.1.1.28), which catalyze key steps in the biosynthesis of terpenoid indole alkaloids (TIAs). The cultures established after Agrobacterium-mediated transformation showed wide phenotypic diversity, reflecting the complexity of the biosynthetic pathway. Cultures transgenic for Str consistently showed tenfold higher STR activity than wild-type cultures, which favored biosynthetic activity through the pathway. Two such lines accumulated over 200 mg · L−1 of the glucoalkaloid strictosidine and/or strictosidine-derived TIAs, including ajmalicine, catharanthine, serpentine, and tabersonine, while maintaining wild-type levels of TDC activity. Alkaloid accumulation by highly productive transgenic lines showed considerable instability and was strongly influenced by culture conditions, such as the hormonal composition of the medium and the availability of precursors. High transgene-encoded TDC activity was not only unnecessary for increased productivity, but also detrimental to the normal growth of the cultures. In contrast, high STR activity was tolerated by the cultures and appeared to be necessary, albeit not sufficient, to sustain high rates of alkaloid biosynthesis. We conclude that constitutive over-expression of Str is highly desirable for increased TIA production. However, given its complexity, limited intervention in the TIA pathway will yield positive results only in the presence of a favorable epigenetic environment. Received: 12 June 1997 / Accepted: 24 October 1997  相似文献   

18.
Short-latency vestibular-evoked potentials to pulsed linear acceleration were characterized in the quail. Responses occurred within 8 ms following the onset of stimuli and were composed of a series of positive and negative peaks. The latencies and amplitudes of the first four peaks were quantitatively characterized. Mean latencies at 1.0 g ms−1 ranged from 1265 ± 208 μs (P1, N = 18) to 4802 ± 441 μs (N4, N = 13). Amplitudes ranged from 3.72 ± 1.51 μV (P1/N1, N = 18) to 1.49 ± 0.77 μV (P3/N3, N = 16). Latency-intensity (LI) slopes ranged from −38.7 ± 7.3 μs dB−1 (P1, N = 18) to −71.6 ± 21.9 μs dB−1 (N3, N = 15) and amplitude-intensity (AI) slopes ranged from 0.20 ± 0.08 μV dB−1 (P1/N1, N = 18) to 0.07 ± 0.04 μV dB−1 (P3/N3, N = 11). The mean response threshold across all animals was −21.83 ± 3.34 dB re: 1.0 g ms−1 (N = 18). Responses remained after cochlear extirpation showing that they could not depend critically on cochlear activity. Responses were eliminated by destruction of the vestibular end organs, thus showing that responses depended critically and specifically on the vestibular system. The results demonstrate that the responses are vestibular and the findings provide a scientific basis for using vestibular responses to evaluate vestibular function through ontogeny and senescence in the quail. Accepted: 18 January 1997  相似文献   

19.
About 1000 bacterial colonies isolated from sea water were screened for their ability to convert dl-5-phenylhydantoin to d(−)N-carbamoylphenylglycine as a criterion for the determination of hydantoinase activity. The strain M-1, out of 11 hydantoinase-producing strains, exhibited the maximum ability to convert dl-5-phenylhydantoin to d(−)N-carbamoylphenylglycine. The strain M-1 appeared to be a halophilic Pseudomonas sp. according to morphological and physiological characteristics. Optimization of the growth parameters revealed that nutrient broth with 2% NaCl was the preferred medium for both biomass and enzyme production. d-Hydantoinase of strain M-1 was not found to be inducible by the addition of uracil, dihydrouracil, β-alanine etc. The optimum temperature for enzyme production was about 25 °C and the organism showed a broad pH optimum (pH 6.5–9.0) for both biomass and hydantoinase production. The organism seems to have a strict requirement of NaCl for both growth and enzyme production. The optimum pH and temperature of enzyme activity were 9–9.5 and 30 °C respectively. The biotransformation under the alkaline conditions allowed the conversion of 80 g l−1 dl-5-phenylhydantoin to 82 g l−1 d(−)N-carbamoylphenylglycine within 24 h with a molar yield of 93%. Received: 15 September 1997 / Received revision: 5 January 1998 / Accepted: 6 January 1998  相似文献   

20.
In order to clearly establish the properties of the enzymes responsible for hexose phosphorylation we have undertaken the separation and characterization of these enzymes present in tomato fruit (Martinez-Barajas and Randall 1996). This report describes the partial purification and characterization of glucokinase (EC. 2.7.1.1) from young green tomato fruit. The procedure yielded a 360-fold enrichment of glucokinase. Tomato fruit glucokinase is a monomer with a molecular mass of 53 kDa. Glucokinase activity was optimal between pH 7.5 and 8.5, preferred ATP as the phosphate donor (K m = 0.223 mM) and exhibited low activity with GTP or UTP. The tomato fruit glucokinase showed highest affinity for glucose (K m =65 μM). Activity observed with glucose was 4-fold greater than with mannose and 50-fold greater than with fructose. The tomato fruit glucokinase was sensitive to product inhibition by ADP (K i = 36 μM). Little inhibition was observed with glucose 6-phosphate (up to 15 mM) at pH 8.0; however, at pH 7.0 glucokinase activity was inhibited 30–50% by physiological concentrations of glucose 6-phosphate. Received: 4 October 1997 / Accepted: 10 January 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号