首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 55 毫秒
1.
The model plant tobacco (Nicotiana tabacum L.) was chosen for a survey of the subunit composition of the V-ATPase at the protein level. V-ATPase was purified from tobacco leaf cell tonoplasts by solubilization with the nonionic detergent Triton X-100 and immunoprecipitation. In the purified fraction 12 proteins were present. By matrix-assisted laser-desorption ionization mass spectrometry (MALDI-MS) and amino acid sequencing 11 of these polypeptides could be identified as subunits A, B, C, D, F, G, c, d and three different isoforms of subunit E. The polypeptide which could not be identified by MALDI analysis might represent subunit H. The data presented here, for the first time, enable an unequivocal identification of V-ATPase subunits after gel electrophoresis and open the possibility to assign changes in polypeptide composition to variations in respective V-ATPase subunits occurring as a response to environmental conditions or during plant development.  相似文献   

2.
In the epididymis and vas deferens, the vacuolar H(+)ATPase (V-ATPase), located in the apical pole of narrow and clear cells, is required to establish an acidic luminal pH. Low pH is important for the maturation of sperm and their storage in a quiescent state. The V-ATPase also participates in the acidification of intracellular organelles. The V-ATPase contains many subunits, and several of these subunits have multiple isoforms. So far, only subunits ATP6V1B1, ATP6V1B2, and ATP6V1E2, previously identified as B1, B2, and E subunits, have been described in the rat epididymis. Here, we report the localization of V-ATPase subunit isoforms ATP6V1A, ATP6V1C1, ATP6V1C2, ATP6V1G1, ATP6V1G3, ATP6V0A1, ATP6V0A2, ATP6V0A4, ATP6V0D1, and ATP6V0D2, previously labeled A, C1, C2, G1, G3, a1, a2, a4, d1, and d2, in epithelial cells of the rat epididymis and vas deferens. Narrow and clear cells showed a strong apical staining for all subunits, except the ATP6V0A2 isoform. Subunits ATP6V0A2 and ATP6V1A were detected in intracellular structures closely associated but not identical to the TGN of principal cells and narrow/clear cells, and subunit ATP6V0D1 was strongly expressed in the apical membrane of principal cells in the apparent absence of other V-ATPase subunits. In conclusion, more than one isoform of subunits ATP6V1C, ATP6V1G, ATP6V0A, and ATP6V0D of the V-ATPase are present in the epididymal and vas deferens epithelium. Our results confirm that narrow and clear cells are well fit for active proton secretion. In addition, the diverse functions of the V-ATPase may be established through the utilization of specific subunit isoforms. In principal cells, the ATP6V0D1 isoform may have a physiological function that is distinct from its role in proton transport via the V-ATPase complex.  相似文献   

3.
The vacuolar (H(+))-ATPases (or V-ATPases) are structurally related to the F(1)F(0) ATP synthases of mitochondria, chloroplasts and bacteria, being composed of a peripheral (V(1)) and an integral (V(0)) domain. To further investigate the arrangement of subunits in the V-ATPase complex, covalent cross-linking has been carried out on the V-ATPase from clathrin-coated vesicles using three different cross-linking reagents. Cross-linked products were identified by molecular weight and by Western blot analysis using polyclonal antibodies raised against individual V-ATPase subunits. In the intact V(1)V(0) complex, evidence for cross-linking of subunits C and E, D and F, as well as E and G by disuccinimidyl glutarate was obtained, while in the free V(1) domain, cross-linking of subunits H and E was also observed. Subunits C and E as well as D and E could be cross-linked by 1-ethyl-3-(dimethylaminopropyl)carbodiimide, while subunits a and E could be cross-linked by 4-(N-maleimido)benzophenone. It was further demonstrated that it is possible to treat the V-ATPase with potassium iodide and MgATP in such a way that while subunits A, B, and H are nearly quantitatively removed, significant amounts of subunits C, D, E, and F remain attached to the membrane, suggesting that one or more of these latter subunits are in contact with the V(0) domain. In addition, treatment of the V-ATPase with cystine, which modifies Cys-254 of the catalytic A subunit, results in dissociation of subunit H, suggesting communication between the catalytic nucleotide binding site and subunit H. Finally, the stoichiometry of subunits F, G, and H were determined by quantitative amino acid analysis. Based on these and previous observations, a new structural model of the V-ATPase from clathrin-coated vesicles is proposed.  相似文献   

4.
The amino acid sequence of a vacuolar-type ATPase (V-ATPase) subunit B has been deduced from a cDNA clone isolated from a Manduca sexta larval midgut library. The library was screened by hybridization with a labeled cDNA encoding subunit B of Arabidopsis thaliana tonoplast V-ATPase. The M. sexta V-ATPase subunit B consists of 494 amino acids with a calculated M(r) of 54,902. The amino acid sequence deduced for V-ATPase subunit B of M. sexta is between 98% and 76% identical with that of seven other V-ATPase subunits B and greater than 52% identical with three archaebacterial ATPase subunits B.  相似文献   

5.
6.
The vacuolar-type H+-ATPase (V-ATPase) is a multi-subunit proton pump that is involved in both intra- and extracellular acidification processes throughout human body. Subunits constituting the peripheral stalk of the V-ATPase are known to have several isoforms responsible for tissue/cell specific different physiological roles. To study the different interaction of these isoforms, we expressed and purified the isoforms of human V-ATPase peripheral stalk subunits using Escherichia coli cell-free protein synthesis system: E1, E2, G1, G2, G3, C1, C2, H and N-terminal soluble part of a1 and a2 isoforms. The purification conditions were different depending on the isoforms, maybe reflecting the isoform specific biochemical characteristics. The purified proteins are expected to facilitate further experiments to study about the cell specific interaction and regulation and thus provide insight into physiological meaning of the existence of several isoforms of each subunit in V-ATPase.  相似文献   

7.
The yeast cwh36Delta mutant was identified in a screen for yeast mutants exhibiting a Vma(-) phenotype suggestive of loss of vacuolar proton-translocating ATPase (V-ATPase) activity. The mutation disrupts two genes, CWH36 and a recently identified open reading frame on the opposite strand, YCL005W-A. We demonstrate that disruption of YCL005W-A is entirely responsible for the Vma(-) growth phenotype of the cwh36Delta mutant. YCL005W-A encodes a homolog of proteins associated with the Manduca sexta and bovine chromaffin granule V-ATPase. The functional significance of these proteins for V-ATPase activity had not been tested, but we show that the protein encoded by YCL005W-A, which we call Vma9p, is essential for V-ATPase activity in yeast. Vma9p is localized to the vacuole but fails to reach the vacuole in a mutant lacking one of the integral membrane subunits of the V-ATPase. Vma9p is associated with the yeast V-ATPase complex in vacuolar membranes, as demonstrated by co-immunoprecipitation with known V-ATPase subunits and glycerol gradient fractionation of solubilized vacuolar membranes. Based on this evidence, we propose that Vma9p is a genuine subunit of the yeast V-ATPase and that e subunits may be a functionally essential part of all eukaryotic V-ATPases.  相似文献   

8.
9.
Vacuolar H(+)-ATPases (V-ATPases) are multi-subunit membrane proteins that couple ATP hydrolysis to the extrusion of protons from the cytoplasm. Although they share a common macromolecular architecture and rotational mechanism with the F(1)F(0)-ATPases, the organization of many of the specialized V-ATPase subunits within this rotary molecular motor remains uncertain. In this study, we have identified sequence segments involved in linking putative stator subunits in the Saccharomyces V-ATPase. Precipitation assays revealed that subunits Vma5p (subunit C) and Vma10p (subunit G), expressed as glutathione-S-transferase fusion proteins in E. coli, are both able to interact strongly with Vma4p (subunit E) expressed in a cell-free system. GST-Vma10p also associated with Vma2p and Vma1p, the core subunits of the ATP-hydrolyzing domain, and was able to self-associate to form a dimer. Mutations within the first 19-residue region of Vma4p, which disrupted interaction with Vma5p in vitro, also prevented the Vma4p polypeptide from restoring V-ATPase function in a complementation assay in vivo. These mutations did not prevent assembly of Vma5p (subunit C) and Vma2p (subunit B) into an inactive complex at the vacuolar membrane, indicating that Vma5p must make multiple interactions involving other V-ATPase subunits. A second, highly conserved region of Vma4p between residues 19 and 38 is involved in binding Vma10p. This region is highly enriched in charged residues, suggesting a role for electrostatic effects in Vma4p-Vma10p interaction. These protein interaction studies show that the N-terminal region of Vma4p is a key factor not only in the stator structure of the V-ATPase rotary molecular motor, but also in mediating interactions with putative regulatory subunits.  相似文献   

10.
The vacuolar (H+)-ATPase (or V-ATPase) is a membrane protein complex that is structurally related to F1 and F0 ATP synthases. The V-ATPase is composed of an integral domain (V0) and a peripheral domain (V1) connected by a central stalk and up to three peripheral stalks. The number of peripheral stalks and the proteins that comprise them remain controversial. We have expressed subunits E and G in Escherichia coli as maltose binding protein fusion proteins and detected a specific interaction between these two subunits. This interaction was specific for subunits E and G and was confirmed by co-expression of the subunits from a bicistronic vector. The EG complex was characterized using size exclusion chromatography, cross-linking with short length chemical cross-linkers, circular dichroism spectroscopy, and electron microscopy. The results indicate a tight interaction between subunits E and G and revealed interacting helices in the EG complex with a length of about 220 angstroms. We propose that the V-ATPase EG complex forms one of the peripheral stators similar to the one formed by the two copies of subunit b in F-ATPase.  相似文献   

11.
The vacuolar ATPase (V-ATPase) is a multisubunit enzyme that acidifies intracellular organelles in eukaryotes. Similar to the F-type ATP synthase (FATPase), the V-ATPase is composed of two subcomplexes, V(1) and V(0). Hydrolysis of ATP in the V(1) subcomplex is tightly coupled to proton translocation accomplished by the V(0) subcomplex, which is composed of five unique subunits (a, d, c, c', and c"). Three of the subunits, subunit c (Vma3p), c' (Vma11p), and c" (Vma16p), are small highly hydrophobic integral membrane proteins called "proteolipids" that share sequence similarity to the F-ATPase subunit c. Whereas subunit c from the F-ATPase spans the membrane bilayer twice, the V-ATPase proteolipids have been modeled to have at least four transmembrane-spanning helices. Limited proteolysis experiments with epitope-tagged copies of the proteolipids have revealed that the N and the C termini of c (Vma3p) and c' (Vma11p) were in the lumen of the vacuole. Limited proteolysis of epitope-tagged c" (Vma16p) indicated that the N terminus is located on the cytoplasmic face of the vacuole, whereas the C terminus is located within the vacuole. Furthermore, a chimeric fusion between Vma16p and Vma3p, Vma16-Vma3p, was found to assemble into a fully functional V-ATPase complex, further supporting the conclusion that the C terminus of Vma16p resides within the lumen of the vacuole. These results indicate that subunits c and c' have four transmembrane segments with their N and C termini in the lumen and that c" has five transmembrane segments, with the N terminus exposed to the cytosol and the C terminus lumenal.  相似文献   

12.
13.
Previously, we have shown that the V-ATPase holoenzyme as well as the V1 complex isolated from the midgut of the tobacco hornworm (Manduca sexta) exhibits the ability of binding to actin filaments via the V1 subunits B and C (Vitavska, O., Wieczorek, H., and Merzendorfer,H. (2003) J. Biol. Chem. 278, 18499-18505). Since the recombinant subunit C not only enhances actin binding of the V1 complex but also can bind separately to F-actin, we analyzed the interaction of recombinant subunit C with actin. We demonstrate that it binds not only to F-actin but also to monomeric G-actin. With dissociation constants of approximately 50 nm, the interaction exhibits a high affinity, and no difference could be observed between binding to ATP-G-actin or ADP-G-actin, respectively. Unlike other proteins such as members of the ADF/cofilin family, which also bind to G- as well as to F-actin, subunit C does not destabilize actin filaments. On the contrary, under conditions where the disassembly of F-actin into G-actin usually occurred, subunit C stabilized F-actin. In addition, it increased the initial rate of actin polymerization in a concentration-dependent manner and was shown to cross-link actin filaments to bundles of varying thickness. Apparently bundling is enabled by the existence of at least two actin-binding sites present in the N- and in the C-terminal halves of subunits C, respectively. Since subunit C has the possibility to dimerize or even to oligomerize, spacing between actin filaments could be variable in size.  相似文献   

14.
Ma B  Xiang Y  An L 《Cellular signalling》2011,23(8):1244-1256
Vacuolar-type H+-ATPases (V-ATPases) is a large multi-protein complex containing at least 14 different subunits, in which subunits A, B, C, D, E, F, G, and H compose the peripheral 500-kDa V1 responsible for ATP hydrolysis, and subunits a, c, c′, c″, and d assembly the 250-kDa membrane-integral V0 harboring the rotary mechanism to transport protons across the membrane. The assembly of V-ATPases requires the presence of all V1 and V0 subunits, in which the V1 must be completely assembled prior to association with the V0, accordingly the V0 failing to assemble cannot provide a membrane anchor for the V1, thereby prohibiting membrane association of the V-ATPase subunits. The V-ATPase mediates acidification of intracellular compartments and regulates diverse critical physiological processes of cell for functions of its numerous functional subunits. The core catalytic mechanism of the V-ATPase is a rotational catalytic mechanism. The V-ATPase holoenzyme activity is regulated by the reversible assembly/disassembly of the V1 and V0, the targeting and recycling of V-ATPase-containing vesicles to and from the plasma membrane, the coupling ratio between ATP hydrolysis and proton pumping, ATP, Ca2+, and its inhibitors and activators.  相似文献   

15.
Excessive activity of osteoclasts becomes manifest in many common lytic bone disorders such as osteoporosis, Paget's disease, bone aseptic loosening and tumor-induced bone destruction. Vacuolar proton pump H+-adenosine triphosphatases (V-ATPases), located on the bone-apposed plasma membrane of the osteoclast, are imperative for the function of osteoclasts, and thus are a potential molecular target for the development of novel anti-resorptive agents. To date, the V-ATPases core structure has been well modeled and consists of two distinct functional domains, the V1 (A, B1, B2, C1, C2, D, E1, E2, F, G1, G2, G3, and H subunits) and V0 (a1, a2, a3, a4, d1, d2, c, c' e1, e2 subunits) as well as the accessory subunits ac45 and M8-9. However, the exact configuration of osteoclast specific V-ATPases remains to be established. Inactivation of subunit a3 leads to osteopetrosis in both mice and man because of non-functional osteoclasts that are capable of acidifying the extracellular resorption lacuna. On the other hand, inactivation of subunits c, d1 and ac45 results in early embryonic lethality, indicating that certain subunits, such as a3, are more specific to osteoclast function than others. In osteoclasts, V-ATPases also cooperate with chloride channel protein CLC-7 to acidify the resorption lacuna. In addition, development of V-ATPases inhibitors such as bafilomycin A1, SB 242784 and FR167356 that selectively target osteoclast specific V-ATPases remains a challenge. Understanding the molecular and cellular mechanisms by which specific subunits of V-ATPase regulate osteoclast function might facilitate the development of novel and selective inhibitors for the treatment of lytic bone disorders. This review summarizes recent research developments in V-ATPases with particular emphasis on osteoclast biology.  相似文献   

16.
The V1Vo-ATPase from Enterococcus hirae catalyzes ATP hydrolysis coupled with sodium translocation. Mutants with deletions of each of 10 subunits (NtpA, B, C, D, E, F, G, H, I, and K) were constructed by insertion of a chloramphenicol acetyltransferase gene into the corresponding subunit gene in the genome. Measurements of cell growth rates, 22Na+ efflux activities, and ATP hydrolysis activities of the membranes of the deletion mutants indicated that V-ATPase requires nine of the subunits, the exception being the NtpH subunit. The results of Western blotting and V1-ATPase dissociation analysis suggested that the A, B, C, D, E, F, and G subunits constitute the V1 moiety, whereas the V0 moiety comprises the I and K subunits.  相似文献   

17.
The N-terminus of V-ATPase subunit E has been shown to associate with the subunits C, G and H, respectively. To understand the assembly of E with its neighboring subunits as well as its N-terminal structure, the N-terminal region, E(1-69), of the Saccharomyces cerevisiae V-ATPase subunit E was expressed and purified. The solution structure of E(1-69) was determined by NMR spectroscopy. The protein is 90.3?? in length and forms an á-helix between the residues 12-68. The molecule is amphipathic with hydrophobic residues at the N-terminus, predicted to interact with subunit C. The polar epitopes of E(1-69) are discussed as areas interacting with subunits G and H.  相似文献   

18.
19.
Vacuolar-type ATPase (V-ATPase) purified from the midgut of the tobacco hornworm Manduca sexta is inhibited 50% by 10 nm of the plecomacrolide concanamycin A, the specific inhibitor of V-ATPases. To determine the binding site(s) of that antibiotic in the enzyme complex, labeling with the semisynthetic 9-O-[p-(trifluoroethyldiazirinyl)-benzoyl]-21,23-dideoxy-23-[(125)I]iodo-concanolide A (J-concanolide A) was performed, which still inhibits the V-ATPase 50% at a concentration of 15-20 microm. Upon treatment with UV light, a highly reactive carbene is generated from this concanamycin derivative, resulting in the formation of a covalent bond to the enzyme. In addition, the radioactive tracer (125)I makes the detection of the labeled subunit(s) feasible. Treatment of the V(1)/V(o) holoenzyme, the V(o) complex, and the V-ATPase containing goblet cell apical membranes with concanolide resulted in the labeling of only the proteolipid, subunit c, of the proton translocating V(o) complex. Binding of J-concanolide A to subunit c was prevented in a concentration-dependent manner by concanamycin A, indicating that labeling was specific. Binding was also prevented by the plecomacrolides bafilomycin A(1) and B(1), respectively, but not by the benzolactone enamide salicylihalamide, a member of a novel class of V-ATPase inhibitors.  相似文献   

20.
How individual protein subunits assemble into the higher order structure of a protein complex is not well understood. Four proteins dedicated to the assembly of the V(0) subcomplex of the V-adenosine triphosphatase (V-ATPase) in the endoplasmic reticulum (ER) have been identified in yeast, but their precise mode of molecular action remains to be identified. In contrast to the highly conserved subunits of the V-ATPase, orthologs of the yeast assembly factors are not easily identified based on sequence similarity. We show in this study that two ER-localized Arabidopsis proteins that share only 25% sequence identity with Vma21p can functionally replace this yeast assembly factor. Loss of AtVMA21a function in RNA interference seedlings caused impaired cell expansion and changes in Golgi morphology characteristic for plants with reduced V-ATPase activity, and we therefore conclude that AtVMA21a is the first V-ATPase assembly factor identified in a multicellular eukaryote. Moreover, VMA21p acts as a dedicated ER escort chaperone, a class of substrate-specific accessory proteins so far not identified in higher plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号