首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
《Seminars in Virology》1993,4(6):357-361
Transgenic tobacco plants (CP +) that express the coat protein gene of cucumber mosaic virus (CMV)-Y strain were highly protected from infection with either CMV virions or CMV RNA, while transgenic protoplasts were also protected from infection with CMV virions but not with CMV RNA. CP + plants showed greater susceptibility to infection with satellite RNA-free CMV-Y than CMV-Y containing satellite RNA. At temperatures above 30°C, CP + plants did not or poorly resist infection with CMV. Elevated temperature affected the accumulation of CP rather than its mRNA, suggesting that CP molecules are mainly involved in virus resistance in CP + plants.  相似文献   

5.
Viruses encode RNA silencing suppressors to counteract host antiviral silencing. In this study, we analyzed the suppressors encoded by potato virus M (PVM), a member of the genus Carlavirus. In the conventional green fluorescent protein transient coexpression assay, the cysteine-rich protein (CRP) of PVM inhibited both local and systemic silencing, whereas the triple gene block protein 1 (TGBp1) showed suppressor activity only on systemic silencing. Furthermore, to elucidate the roles of these two suppressors during an active viral infection, we performed PVX vector-based assays and viral movement complementation assays. CRP increased the accumulation of viral RNA at the single-cell level and also enhanced viral cell-to-cell movement by inhibiting RNA silencing. However, TGBp1 facilitated viral movement but did not affect viral accumulation in protoplasts. These data suggest that CRP inhibits RNA silencing primarily at the viral replication step, whereas TGBp1 is a suppressor that acts at the viral movement step. Thus, our findings demonstrate a sophisticated viral infection strategy that suppresses host antiviral silencing at two different steps via two mechanistically distinct suppressors. This study is also the first report of the RNA silencing suppressor in the genus Carlavirus.  相似文献   

6.
Cucumber mosaic virus (CMV) RNA was used to study electroporation conditions suitable for protoplasts from rice suspension cultures. Rice protoplasts required a stronger and shorter electric pulse than tobacco protoplasts for introduction of viral RNA. Under optimized conditions, CMV infection was established in 65 % of electroporated protoplasts. In contrast, electroporation with tobacco mosaic virus (TMV) RNA did not result in infection of rice protoplasts. However, when TMV RNA was electroporated into rice protoplasts together with CMV RNA, TMV production was demonstrated in 15 % of protoplasts. Differential staining with fluorescent antibodies against the two viruses showed that the protoplasts producing TMV were without exception also infected by CMV. The results show that CMV replicates in rice protoplasts by itself, whereas TMV does so only with the aid of CMV.Abbreviations CMV cucumber mosaiv virus - PBS phosphate buffered saline - TMV tobacco mosaic virus.  相似文献   

7.
8.
Total RNA extracted from cucumber mosaic virus (CMV) strains WT, with its associated satellite CARNA 5 (CMV-associated RNA 5), was successfully electroporated into isolated tomato protoplasts. At various time intervals samples were extracted for total nucleic acids and analyzed by semidenaturing polyacrylamide gel electrophoresis (PAGE). Sequence-specific hybridization probes were used for the detection of viral and satellite RNAs following Northern transfer. The resulting PAGE patterns and/or autoradiographs depict the proportional presence of viral and satellite RNAs in the extracts over time and have been referred to as "replication footprint profiles" (RFPs) of specific CMV/CARNA 5 combinations. The effective isolation and infection of tomato protoplasts, combined with the ability to follow virus/satellite titers during the infection by RFP analysis, yield results similar to those of infected plants and reduces experiments of 21 or more days in whole plants to less than 72 h in protoplasts.  相似文献   

9.
Mixed infection of Cucumber mosaic virus (CMV) and Turnip mosaic virus (TuMV) induced more severe symptoms on Nicotiana benthamiana than single infection. To dissect the relationships between spatial infection patterns and the 2b protein (2b) of CMV in single or mixed infections, the CMV vectors expressing enhanced green fluorescent or Discosoma sp. red fluorescent proteins (EGFP [EG] or DsRed2 [Ds], respectively were constructed from the same wild-type CMV-Y and used for inoculation onto N. benthamiana. CMV2-A1 vector (C2-A1 [A1]) has a functional 2b while CMV-H1 vector (C2-H1 [H1]) is 2b deficient. As we expected from the 2b function as an RNA silencing suppressor (RSS), in a single infection, A1Ds retained a high level of accumulation at initial infection sites and showed extensive fluorescence in upper, noninoculated leaves, whereas H1Ds disappeared rapidly at initial infection sites and could not spread efficiently in upper, noninoculated leaf tissues. In various mixed infections, we found two phenomena providing novel insights into the relationships among RSS, viral synergism, and interference. First, H1Ds could not spread efficiently from vasculature into nonvascular tissues with or without TuMV, suggesting that RNA silencing was not involved in CMV unloading from vasculature. These results indicated that 2b could promote CMV to unload from vasculature into nonvascular tissues, and that this 2b function might be independent of its RSS activity. Second, we detected spatial interference (local interference) between A1Ds and A1EG in mixed infection with TuMV, between A1Ds (or H1Ds) and TuMV, and between H1Ds and H1EG. This observation suggested that local interference between two viruses was established even in the synergism between CMV and TuMV and, again, RNA silencing did not seem to contribute greatly to this phenomenon.  相似文献   

10.
The helicase-like 1a and polymerase-like 2a proteins of brome mosaic virus (BMV) are required for viral RNA replication in vivo, are present in membrane-bound viral RNA polymerase extracts, and share conservation with the many other members of the alphavirus-like superfamily. To better understand BMV RNA replication and BMV-host interactions, we used confocal microscopy and double-label immunofluorescence to determine and compare the sites of 1a, 2a, and nascent viral RNA accumulation in BMV-infected barley protoplasts. 1a and 2a showed nearly complete colocalization throughout infection, accumulating in defined cytoplasmic spots usually adjacent to or surrounding the nucleus. These spots grew throughout infection and by 16 h postinoculation often assumed a vesicle-like appearance. The BMV RNA replication complex incorporated 5-bromouridine 5'-triphosphate into RNA in vitro and in vivo, allowing immunofluorescent detection of nascent RNA. The cytoplasmic sites of BMV-specific RNA synthesis coincided with the sites of 1a and 2a accumulation, and at the resolution of confocal microscopy, all sites of 1a and 2a accumulation were sites of BMV RNA synthesis. Double-label immunofluorescence detection of selected subcellular markers and 1a or 2a showed that BMV replication complexes were tightly associated with markers for the endoplasmic reticulum but not the medial Golgi or later compartments of the cellular secretory pathway. Defining this association of BMV RNA replication complexes with endoplasmic reticulum markers should assist in identifying and characterizing host factors involved in BMV RNA replication.  相似文献   

11.
M Ishikawa  S Naito    T Ohno 《Journal of virology》1993,67(9):5328-5338
For the multiplication of RNA viruses, specific host factors are considered essential, but as of yet little is known about this aspect of virus multiplication. To identify such host factors, we previously isolated PD114, a mutant of Arabidopsis thaliana, in which the accumulation of the coat protein of tobacco mosaic virus (TMV) in uninoculated leaves of an infected plant was reduced to low levels. The causal mutation, designated tom1, was single, nuclear, and recessive. Here, we demonstrate that the tom1 mutation affects the amplification of TMV-related RNAs in a single cell. When protoplasts were inoculated with TMV RNA by electroporation, the percentage of TMV-positive protoplasts (detected by indirect immunofluorescence staining with anti-TMV antibodies) was lower (about 1/5 to 1/10) among PD114 protoplasts than among wild-type protoplasts. In TMV-positive PD114 protoplasts, the amounts of the positive-strand RNAs (the genomic RNA and subgenomic mRNAs) and coat protein reached levels similar to, or slightly lower than, those reached in TMV-positive wild-type protoplasts, but the accumulation of the positive-strand RNAs and coat protein occurred more slowly than with the wild-type protoplasts. The parallel decrease in the amounts of the coat protein and its mRNA suggests that the coat protein is translated from its mRNA with normal efficiency. These observations support the idea that the TOM1 gene encodes a host factor necessary for the efficient amplification of TMV RNA in an infected cell. Furthermore, we show that TMV multiplication in PD114 protoplasts is severely affected by the coinoculation of cucumber mosaic virus (CMV) RNA. When PD114 protoplasts were inoculated with a mixture of TMV and CMV RNAs by electroporation, the accumulation of TMV-related molecules was approximately one-fifth of that in PD114 protoplasts inoculated with TMV RNA alone. No such reduction in the accumulation of TMV-related molecules was observed when wild-type protoplasts were inoculated with a mixture of TMV and CMV RNAs or when wild-type and PD114 protoplasts were inoculated with a mixture of TMV and turnip crinkle virus RNAs. These observations are compatible with a hypothetical model in which a gene(s) that is distinct from the TOM1 gene is involved in both TMV and CMV multiplication.  相似文献   

12.
The movement protein (MP) of Tobacco mosaic virus (TMV) facilitates the cell-to-cell transport of the viral RNA genome through plasmodesmata (Pd). A previous report described the functional reversion of a dysfunctional mutation in MP (Pro81Ser) by two additional amino acid substitution mutations (Thr104Ile and Arg167Lys). To further explore the mechanism underlying this intramolecular complementation event, the mutations were introduced into a virus derivative expressing the MP as a fusion to green fluorescent protein (GFP). Microscopic analysis of infected protoplasts and of infection sites in leaves of MP-transgenic Nicotiana benthamiana indicates that MP(P81S)-GFP and MP(P81S;T104I;R167K)-GFP differ in subcellular distribution. MP(P81S)-GFP lacks specific sites of accumulation in protoplasts and, in epidermal cells, exclusively localizes to Pd. MP(P81S;T104I;R167K)-GFP, in contrast, in addition localizes to inclusion bodies and microtubules and thus exhibits a subcellular localization pattern that is similar, if not identical, to the pattern reported for wild-type MP-GFP. Since accumulation of MP to inclusion bodies is not required for function, these observations confirm a role for microtubules in TMV RNA cell-to-cell transport.  相似文献   

13.
The multifunctional nuclear inclusion protein a (NIa) of potyviruses (genus Potyvirus; Potyviridae) accumulates in the nucleus of virus-infected cells for unknown reasons. In this study, two regions in the viral genome-linked protein (VPg) domain of NIa in Potato virus A (PVA) were found to constitute nuclear and nucleolar localization signals (NLS) in plant cells (Nicotiana spp). Amino acid substitutions in both NLS I (residues 4 to 9) and NLS II (residues 41 to 50) prevented nuclear localization, whereas mutations in either single NLS did not. Mutations in either NLS, however, prevented nucleolar localization and prevented or diminished virus replication in protoplasts, accumulation in infected plant tissues, and/or systemic movement in plants. One NLS mutant was partially complemented by the wild-type VPg expressed in transgenic plants. Furthermore, NLS I controlled NIa accumulation in Cajal bodies. The VPg domain interacted with fibrillarin, a nucleolar protein, and depletion of fibrillarin reduced PVA accumulation. Overexpression of VPg in leaf tissues interfered with cosuppression of gene expression (i.e., RNA silencing), whereas NLS I and NLS II mutants, which exhibited reduced nuclear and nucleolar localization, showed no such activity. These results demonstrate that some of the most essential viral functions required for completion of the infection cycle are tightly linked to regulation of the NIa nuclear and nucleolar localization.  相似文献   

14.
Huh SU  Kim MJ  Ham BK  Paek KH 《The New phytologist》2011,191(3):746-762
? In Cucumber mosaic virus (CMV) RNA replication, replicase-associated protein CMV 1a and RNA-dependent RNA polymerase protein CMV 2a are essential for formation of an active virus replicase complex on vacuolar membranes. ? To identify plant host factors involved in CMV replication, a yeast two-hybrid system was used with CMV 1a protein as bait. One of the candidate genes encoded Tsi1-interacting protein 1 (Tsip1), a zinc (Zn) finger protein. Tsip1 strongly interacted with CMV 2a protein, too. ? Formation of a Tsip1 complex involving CMV 1a or CMV 2a was confirmed in vitro and in planta. When 35S::Tsip1 tobacco (Nicotiana tabacum) plants were inoculated with CMV-Kor, disease symptom development was delayed and the accumulation of CMV RNAs and coat protein was decreased in both the infected local leaves and the uninfected upper leaves, compared with the wild type, whereas Tsip1-RNAi plants showed modestly but consistently increased CMV susceptibility. In a CMV replication assay, CMV RNA concentrations were reduced in the 35S::Tsip1 transgenic protoplasts compared with wild-type (WT) protoplasts. ? These results indicate that Tsip1 might directly control CMV multiplication in tobacco plants by formation of a complex with CMV 1a and CMV 2a.  相似文献   

15.
16.
Mixed infection with the SON41 strain of Potato virus Y (PVY-SON41) in tomato increased accumulation of RNAs of strains Fny and LS of Cucumber mosaic virus (CMV-Fny and CMV-LS, respectively) and enhanced disease symptoms. By contrast, replication of PVY-SON41 was downregulated by CMV-Fny and this was due to the CMV-Fny 2b protein. The CMV-FnyΔ2b mutant was unable to systemically invade the tomato plant because its movement was blocked at the bundle sheath of the phloem. The function needed for invading the phloem was complemented by PVY-SON41 in plants grown at 22°C whereas this complementation was not necessary in plants grown at 15°C. Mutations in the 2b protein coding sequence of CMV-Fny as well as inhibition of translation of the 2a/2b overlapping region of the 2a protein lessened both the accumulation of viral RNAs and the severity of symptoms. Both of these functions were complemented by PVY-SON41. Infection of CMV-Fny supporting replication of the Tfn-satellite RNA reduced the accumulation of CMV RNA and suppressed symptom expression also in plants mixed-infected with PVY-SON41. The interaction between CMV and PVY-SON41 in tomato exhibited different features from that documented in other hosts. The results of this work are relevant from an ecological and epidemiological perspective due to the frequency of natural mixed infection of CMV and PVY in tomato.  相似文献   

17.
Conditions were established for the introduction of both tobacco mosaic virus (TMV) and cucumber mosaic virus (CMV) RNAs into tobacco mesophyll protoplasts by electroporation. The proportion of infected protoplasts was quantified by staining with viral coat protein-specific antibodies conjugated to fluorescein isothiocyanate. Approximately 30–40% of the protoplasts survived electroporation. Under optimal conditions, up to 75% of these were infected with TMV-RNA. Successful infection was demonstrated in 19 out of 20 experiments. Optimal infection was achieved with several direct current pulses of 90 sec at a field strength of 5 to 10 kV/cm. Changing the position of the protoplasts within the chamber between electric pulses was essential for achievement of high rates of infection. Optimal viral RNA concentration was about 10 g/ml in a solution of 0.5 M mannitol without buffer salts.  相似文献   

18.
Cowpea mosaic virus (CPMV) replication induces an extensive proliferation of endoplasmic reticulum (ER) membranes, leading to the formation of small membranous vesicles where viral RNA replication takes place. Using fluorescent in situ hybridization, we found that early in the infection of cowpea protoplasts, CPMV plus-strand RNA accumulates at numerous distinct subcellular sites distributed randomly throughout the cytoplasm which rapidly coalesce into a large body located in the center of the cell, often near the nucleus. The combined use of immunostaining and a green fluorescent protein ER marker revealed that during the course of an infection, CPMV RNA colocalizes with the 110-kDa viral polymerase and other replication proteins and is always found in close association with proliferated ER membranes, indicating that these sites correspond to the membranous site of viral replication. Experiments with the cytoskeleton inhibitors oryzalin and latrunculin B point to a role of actin and not tubulin in establishing the large central structure. The induction of ER membrane proliferations in CPMV-infected protoplasts did not coincide with increased levels of BiP mRNA, indicating that the unfolded-protein response is not involved in this process.  相似文献   

19.
20.
M Ishikawa  T Meshi  T Ohno    Y Okada 《Journal of virology》1991,65(2):861-868
The time course of accumulation of viral plus-strand RNAs (genomic RNA and subgenomic mRNA for the coat protein) and minus-strand RNA in tobacco protoplasts synchronously infected with tobacco mosaic virus (TMV) RNA was examined. In protoplasts infected with the wild-type TMV L RNA, the plus and minus strands accumulated differently not only in quantity but also in the outline of kinetics. The time courses of accumulation of the genomic RNA and coat protein mRNA were similar: they became detectable at 2 or 4 h postinoculation (p.i.), and their accumulation increased until 14 to 18 h p.i. The accumulation rate reached the maximum at about 4 h p.i. and then gradually decreased. In contrast, accumulation of the minus-strand RNA ceased at 6 to 8 h p.i., at which time the plus-strand accumulation was already about 100 times greater and still continued vigorously. This specific halt of minus-strand accumulation was not caused exclusively by encapsidation of the genomic RNA, because a similar halt was observed upon infection with a deletion mutant that lacks the 30K and coat protein genes. Upon infection with a mutant that could not produce the 130K protein (one of the two proteins that are thought to be involved in viral RNA replication), the accumulation levels of both plus and minus strands were lower than that of the parental wild-type virus. Given these observations, possible mechanisms of TMV replication are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号