首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Müllerian inhibiting substance (MIS), a member of the transforming growth factor-beta superfamily, induces regression of the Müllerian duct in male embryos. In this report, we demonstrate MIS type II receptor expression in normal breast tissue and in human breast cancer cell lines, breast fibroadenoma, and ductal adenocarcinomas. MIS inhibited the growth of both estrogen receptor (ER)-positive T47D and ER-negative MDA-MB-231 breast cancer cell lines, suggesting a broader range of target tissues for MIS action. Inhibition of growth was manifested by an increase in the fraction of cells in the G(1) phase of the cell cycle and induction of apoptosis. Treatment of breast cancer cells with MIS activated the NFkappaB pathway and selectively up-regulated the immediate early gene IEX-1S, which, when overexpressed, inhibited breast cancer cell growth. Dominant negative IkappaBalpha expression ablated both MIS-mediated induction of IEX-1S and inhibition of growth, indicating that activation of the NFkappaB signaling pathway was required for these processes. These results identify the NFkappaB-mediated signaling pathway and a target gene for MIS action and suggest a putative role for the MIS ligand and its downstream interactors in the treatment of ER-positive as well as negative breast cancers.  相似文献   

3.
Eph receptor tyrosine kinases play a critical role in embryonic patterning and angiogenesis. In the adult, they are involved in carcinogenesis and pathological neovascularization. However, the mechanisms underlying their role in tumor formation and metastasis remain to be defined. Here, we demonstrated that stimulation of EphB1 with ephrinB1/Fc led to a marked downregulation of EphB1 protein, a process blocked by the lysosomal inhibitor bafilomycin. Following ephrinB1 stimulation, the ubiquitin ligase Cbl was recruited by EphB1 and then phosphorylated. Both Cbl phosphorylation and EphB1 ubiquitination were blocked by the Src inhibitor PP2. Overexpression of wild-type Cbl, but not of 70Z mutant lacking ligase activity, enhanced EphB1 ubiquitination and degradation. This negative regulation required the tyrosine kinase activity of EphB1 as kinase-dead EphB1-K652R was resistant to Cbl. Glutathione S-transferase binding experiments showed that Cbl bound to EphB1 through its tyrosine kinase-binding domain. In aggregate, we demonstrated that Cbl induces the ubiquitination and lysosomal degradation of activated EphB1, a process requiring EphB1 and Src kinase activity. To our knowledge, this is the first study dissecting the molecular mechanisms leading to EphB1 downregulation, thus paving the way to new means of modulating their angiogenic and tumorigenic properties.  相似文献   

4.
5.
In the study, we investigated the correlation between EphB4 receptor expression and the angiogenesis of pancreatic cancer. EphB4 receptor is unevenly distributed or distributed with small patches in pancreatic ductal cell cancer. While EphB4 receptor was not expressed in normal pancreatic tissues. It can be observed that the mRNA of EphB4 receptor is high expressed in all 15 cases of pancreatic ductal cell cancer tissues but not expressed in normal pancreatic tissues. Finally, positive correlation was observed between the mRNA expression level of EphB4 receptor and MVD. Immunohistochemical analysis showed that EphB4 receptor protein expression was related to tumor differentiation and clinical stage. It can be observed that MVD is relevant to histological differentiation and clinical stage. EphB4 receptor is correlated to the initiation, progression and tumor angiogenesis. In conclusion, EphB4 receptor maybe a promising targeted goal of antiangiogenic formation, which provides a new approach and method for tumor treatment.  相似文献   

6.
Previous studies have shown that androgen receptor (AR) is involved in the progression of prostate cancer (CaP) by several mechanisms. However, how AR is regulated has not been fully understood. In this study, miR-185 was found to be down-regulated in clinical CaP samples. Targets prediction revealed that AR had putative complementary sequences to miR-185, which was confirmed by the following dual luciferase reporter assay. Overexpression of miR-185 could reduce the expression of AR protein but not mRNA in LNCaP cells. The proliferation of LNCaP cells was inhibited by overexpression of miR-185. Cell cycle analysis revealed cell cycle arrest at G0/G1 phase. The invasive and migration abilities of cells could also be suppressed by miR-185. Furthermore, miR-185 inhibited tumorigenicity in a CaP xenografts model. CDC6, one target of AR and an important regulatory molecule for cell cycle, was found to be down-regulated by overexpression of miR-185. Our findings suggest that miR-185 could function as a tumor-suppressor gene in CaP by directly targeting AR, and act as a potential therapeutic target for CaP.  相似文献   

7.
8.
In this study, we aimed to explore the association between miR-99a-5p and CDC25A in breast cancer and the regulatory mechanisms of miR-99a-5p on breast cancer. The expressions of messenger RNA and microRNAs in breast cancer tissues and adjacent tissues were analyzed by the Cancer Genome Atlas microarray analysis. Quantitative real-time polymerase chain reaction was conducted to find out the expression levels of miR-99a-5p and CDC25A. The expression levels of proteins (CDC25A, ki67, cyclin D1, p21, BAX, BCL-2, BCL-XL, MMP2, and MMP9) were determined by Western blot analysis. The relationship between miR-99a-5p and CDC25A was predicted and verified by bioinformatics analysis and dual luciferase assay. After transfection, cell proliferation, invasion, and apoptosis of breast cancer tissues were, respectively, observed by cell counting kit-8 assay, transwell assay, and flow cytometry (FCM). Furthermore, the relationship among miR-99a-5p, CDC25A, and cell-cycle progression was determined by FCM assay. The nude mouse transplantation tumor experiment was performed to verify the influence of miR-99a-5p on breast cancer cell in vivo. The expression of miR-99a-5p in breast cancer tissues and cells was significantly downregulated, whereas CDC25A expression was upregulated. MiR-99a-5p targeted CDC25A and suppressed its expression in breast cancer cells. Overexpression of miR-99a-5p and decreased expression of CDC25A could suppress breast cancer cell proliferation and invasion and facilitate apoptosis. Cell-cycle progression was significantly activated by downregulated miR-99a-5p and upregulated CDC25A. Moreover, miR-99a-5p overexpression repressed the expressions of CDC25A, marker ki67, and Cyclin D1 proteins, whereas it upregulated the expression of p21 protein. MicroRNA-99a-5p suppresses breast cancer progression and cell-cycle pathway through downregulating CDC25A.  相似文献   

9.
10.

Background

INPP4B and PTEN dual specificity phosphatases are frequently lost during progression of prostate cancer to metastatic disease. We and others have previously shown that loss of INPP4B expression correlates with poor prognosis in multiple malignancies and with metastatic spread in prostate cancer.

Results

We demonstrate that de novo expression of INPP4B in highly invasive human prostate carcinoma PC-3 cells suppresses their invasion both in vitro and in vivo. Using global gene expression analysis, we found that INPP4B regulates a number of genes associated with cell adhesion, the extracellular matrix, and the cytoskeleton. Importantly, de novo expressed INPP4B suppressed the proinflammatory chemokine IL-8 and induced PAK6. These genes were regulated in a reciprocal manner following downregulation of INPP4B in the independently derived INPP4B-positive LNCaP prostate cancer cell line. Inhibition of PI3K/Akt pathway, which is highly active in both PC-3 and LNCaP cells, did not reproduce INPP4B mediated suppression of IL-8 mRNA expression in either cell type. In contrast, inhibition of PKC signaling phenocopied INPP4B-mediated inhibitory effect on IL-8 in either prostate cancer cell line. In PC-3 cells, INPP4B overexpression caused a decline in the level of metastases associated BIRC5 protein, phosphorylation of PKC, and expression of the common PKC and IL-8 downstream target, COX-2. Reciprocally, COX-2 expression was increased in LNCaP cells following depletion of endogenous INPP4B.

Conclusion

Taken together, we discovered that INPP4B is a novel suppressor of oncogenic PKC signaling, further emphasizing the role of INPP4B in maintaining normal physiology of the prostate epithelium and suppressing metastatic potential of prostate tumors.
  相似文献   

11.
12.
13.
Although the flavonoid quercetin is known to inhibit activation of insulin receptor signaling, the inhibitory mechanism is largely unknown. In this study, we demonstrate that quercetin suppresses insulin induced dimerization of the insulin receptor (IR) through interfering with ligand–receptor interactions, which reduces the phosphorylation of IR and Akt. This inhibitory effect further inhibits insulin stimulated glucose uptake due to decreased cell membrane translocation of glucose transporter 4 (GLUT4), resulting in impaired cancer cell proliferation. The effect of quercetin in inhibiting tumor growth was also evident in an in vivo model, indicating a potential future application for quercetin in the treatment of cancers.  相似文献   

14.
Recently, it has been suggested that C2ORF40 is a candidate tumor suppressor gene in breast cancer. However, the mechanism for reduced expression of C2ORF40 and its functional role in breast cancers remain unclear. Here we show that C2ORF40 is frequently silenced in human primary breast cancers and cell lines through promoter hypermethylation. C2ORF40 mRNA level is significantly associated with patient disease-free survival and distant cancer metastasis. Overexpression of C2ORF40 inhibits breast cancer cell proliferation, migration and invasion. By contrast, silencing C2ORF40 expression promotes these biological phenotypes. Bioinformatics and FACS analysis reveal C2ORF40 functions at G2/M phase by downregulation of mitotic genes expression, including UBE2C. Our results suggest that C2ORF40 acts as a tumor suppressor gene in breast cancer pathogenesis and progression and is a candidate prognostic marker for this disease.  相似文献   

15.
Denbinobin (5-hydroxy-3,7-dimethoxy- 1,4-phenanthraquinone), a biologically active chemical isolated from Ephemerantha lonchophylla, has been demonstrated to display anti-cancer activity. Breast cancer is the leading cause of female mortality, and the high mortality is mainly attributable to metastasis. Src kinase activity is elevated in many human cancers, including breast cancer, and is often associated with aggressive disease. In the present study, we examined the anti-metastatic effects of denbinobin through decreasing Src kinase activity in human and mouse breast cancer cells. Denbinobin caused significant block of Src kinase activity in both human and mouse breast cancer cells. Moreover, phosphorylation of the signaling molecules focal adhesion kinase, Crk-associated substrate and paxillin downstream of Src was also inhibited by denbinobin. Furthermore, denbinobin inhibited the in vitro migration, invasion and in vivo metastasis of breast cancers in a mouse metastatic model. The denbinobin-treated group showed a significant reduction in tumor metastasis, orthrotopic tumor volume, and spleen enlargement compared to the control group. In addition, transfection of breast cancer cells with a plasmid coding for a constitutively active Src prevented the denbinobin-mediated phosphorylation of Src and downstream molecules and cell migration. Our findings provide evidences that denbinobin inhibits Src-mediated signaling pathways involved in controlling breast cancer migration and metastasis, suggesting that it has therapeutic potential in breast cancer treatment.  相似文献   

16.
正The estrogen receptor(ER)-related factor(ERRF)was previously reported as a novel modulator of breast cancer(Su et al.,2012).Its expression was upregulated in breast cancer,and increased ERRF expression was significantly associated with ER and/or progesterone receptor(PR)positivity and human epidermal growth factor receptor 2(HER2)negativity(Su et al.,2012).In addition,ERRF was necessary for ER-positive breast cancer cells to form tumors in  相似文献   

17.
Breast cancer is a major cause of cancer related deaths in women worldwide. Available treatments pose serious limitations such as systemic toxicity, metastasis, tumor recurrence, off-target effects, and drug resistance. In recent years, phytochemicals such as secondary metabolites due to their effective anticancer potential at very low concentration have gained attention. Aim of the study was to evaluate anticancer potential of Citrullus colocynthis and its possible molecular targets on MCF-7, a human breast cancer cell line. Methanolic extract of leaves was prepared and fractionated by solvents (n-hexane, chloroform, ethyl acetate and n-butanol) with increasing polarity. Bioassays and gene expression regulation was conducted to evaluate the anticancer activity, proliferation rate and cell cycle regulation of breast cancer cells treated with extract and its fractions, separately. Results showed a significant anticancer activity of methanolic extract of C. colocynthis and two of its fractions prepared with chloroform and ethyl acetate. Bioassays depicted significant decrease in proliferation and growth potential along with cell cycle arrest of treated cells compared to control untreated cells. Expression regulation of genes further confirmed the cell cycle arrest through significant upregulation of cyclin-CDK inhibitors (p21 and p27) and cell cycle checkpoint regulators (HUS1, RAD1, ATM) followed by downregulation of downstream cell cycle progression genes (Cyclin A, Cyclin E, CDK2). It is concluded that C. colocynthis arrests cell cycle in human breast cancer cells through expression regulation of cyclin-CDK inhibitors and with further research can be proposed for therapeutic interventions.  相似文献   

18.

Previous work has shown that expression of the extracellular signal-regulated kinase (ERK) is decreased by high density in normal fibroblast cells, and this was correlated with increased expression of mitogen-activated protein kinase phosphatases. Because of these differences in ERK regulation upon contact inhibition, it is likely that other cellular responses may be influenced by the attainment of a contact-inhibited state. Expression of matrix metalloproteinase-9 and cadherin cleavage were both found to be decreased upon reaching high culture density. Inhibition of ERK activity with the MEK inhibitor PD98059 resulted in increased expression of cadherins, while constitutive activation of ERK through the use of expression of an ERK construct with a D319N sevenmaker mutation resulted in decreased expression of cadherins and enhanced colony formation of HT-1080 fibrosarcoma cells. Taken together, these results corroborate a role for the regulation of ERK upon the attainment of a contact-inhibited state with increased expression of cadherins.

  相似文献   

19.
In the evolution of cancer, tumor necrosis factor-alpha (TNF-α) plays a paradoxical role. High doses induce significant anticancer effects, but conversely, physiologic and pathologic levels of TNF-α may be involved in cancer promotion, tumor growth, and metastasis.Infliximab is a chimeric murine monoclonal antibody that binds with high affinity to soluble and membrane TNF-α and inhibits binding of TNF-α to its receptors. In the present study, we investigated the effect of infliximab, a TNF-α antagonist, on breast cancer aggressiveness and bone metastases.Infliximab greatly reduced cell motility and bone metastases in a metastatic breast cancer cell line, MDA-MB-231. The mechanism of bone metastasis inhibition involved decreased expression of CXC chemokine receptor 4 (CXCR4) and increased expression of decorin, which is the prototype of an expanding family of small leucine-rich proteoglycans. These results suggest a novel role for TNF-α inhibition in the reduction or prevention of bone metastases in this breast cancer model. Our study suggests that inhibition of TNF-α using infliximab may become a preventive therapeutic option for breast cancer.  相似文献   

20.
C-reactive protein (CRP) is one of the most important biomarker for cardiovascular diseases. Recent studies have shown that CRP affects cell survival, differentiation and apoptosis. However, the effect of CRP on the cell cycle has not been studied yet. We investigated the cell cycle alterations and cellular mechanisms induced by CRP in H9c2 cardiac myocytes. Flow cytometry analysis showed that CRP-treated H9c2 cells displayed cell cycle arrest in G0/G1 phase. CRP treatment resulted in a significant reduction in the levels of CDK4, CDK6 and cyclin D1 in a concentration-dependent manner. Interestingly, CRP caused an increase in the p53 accumulation and its phosphorylation on Ser15, leading to induce p21 upregulation. Treatment with a specific p53 inhibitor, PFT-α restored the levels of CDK4 and CDK6. A significant increase of ERK1/2 phosphorylation level was detected in CRP-treated cells. Furthermore, pretreatment of a specific ERK inhibitor resulted in decreased p53 phosphorylation and p21 induction. ERK inhibitor pretreatment induced significant restoration of protein levels of CDK4 and CDK6, leading to re-entry into the cell cycle. In addition, increased phosphorylation of p53 and ERK induced by CRP was considerably reversed by Fc gamma receptor IIIa (FcγRIIIa) knock-down using siRNA. FcγRIIIa siRNA transfection also restored the levels of cell cycle proteins. Our study has provided the first proposal on the novel insights into how CRP directly affects cell cycle in cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号