首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
We have characterized previously the nuclear matrix protein/scaffold attachment factor (SAFB) as an estrogen receptor corepressor and as a potential tumor suppressor gene in breast cancer. A search of the human genome for other potential SAFB family members revealed that KIAA00138 (now designated as SAFB2) has high homology to SAFB (now designated as SAFB1). SAFB1 and SAFB2 are mapped adjacent to each other on chromosome 19p13.3 and are arranged in a bidirectional divergent configuration (head to head), being separated by a short (<500 bp) GC-rich intergenic region that can function as a bidirectional promoter. SAFB1 and SAFB2 share common functions but also have unique properties. As shown previously for SAFB1, SAFB2 functions as an estrogen receptor corepressor, and its overexpression results in inhibition of proliferation. SAFB1 and SAFB2 interact directly through a C-terminal domain, resulting in additive repression activity. They are coexpressed in a number of tissues, but unlike SAFB1, which is exclusively nuclear, SAFB2 is found in the cytoplasm as well as the nucleus. Consistent with its cytoplasmic localization, we detected an interaction between SAFB2 and vinexin, a protein involved in linking signaling to the cytoskeleton. Our findings suggest that evolutionary duplication of the SAFB gene has allowed it to retain crucial functions, but also to gain novel functions in the cytoplasm and/or nucleus.  相似文献   

3.
4.
5.
6.
7.
Mutation of the BRCA1 tumor suppressor gene predisposes women to hereditary breast and ovarian cancers. BRCA1 forms a heterodimer with BARD1. The BRCA1/BARD1 heterodimer has ubiquitin ligase activity, considered to play crucial roles in tumor suppression and DNA damage response. Nevertheless, relevant BRCA1 substrates are poorly defined. We have developed a new approach to systematically identify the substrates of ubiquitin ligases by identifying proteins that display an enhanced incorporation of His-tagged ubiquitin upon ligase coexpression; using this method, we identified several candidate substrates for BRCA1. These include scaffold attachment factor B2 (SAFB2) and Tel2 as well as BARD1. BRCA1 was found to enhance SAFB protein expression and induce Tel2 nuclear translocation. Identification of the ubiquitination substrates has been a major obstacle to understanding the functions of ubiquitin ligases. The quantitative proteomics approach we devised for the identification of BRCA1 substrates will facilitate the identification of ubiquitin ligase-substrate pairs.  相似文献   

8.
9.
10.
11.
12.
The structural maintenance of chromosome 3 protein (SMC3) is a component of the multimeric cohesin complex that holds sister chromatids together and prevents their premature separation during mitosis. By screening a human cDNA library for interacting proteins we have established that the proto-oncogene RET finger protein (RFP) interacts with SMC3. The sites of interaction map to part of the central coiled coil region of RFP and to the C-terminal region of the SMC3 globular hinge domain. SMC3/RFP interaction was confirmed in vivo by co-immunoprecipitation studies and by performing mammalian two-hybrid interaction assays. Cytoimmunolocalization experiments showed that SMC3 and RFP co-localize in the same cell substructures. Overexpression of RFP in NIH3T3 cells significantly increased the fraction of SMC3 recovered in the nucleus supporting the idea that RFP regulates the intracellular distribution of SMC3. These studies identify a novel SMC3-interacting protein that may affect SMC3 availability to complex with its cohesin partners.  相似文献   

13.
We have found novel functions of scaffold attachment factor-B1 (SAFB) during apoptosis. The experiments showed that SAFB moved into the nucleolus 15 min after the induction of apoptosis and before the release of cytochrome c into the cytoplasm. Two hours later SAFB formed a peri-nucleolar ring-like structure and this occurred after cytochrome c release and before PARP cleavage. Digestion with RNase suggested that the peri-nucleolar ring structure was dependent on RNA integrity and a RNA moiety formed part of this structure. Studies using SAFB deletion mutants showed that the formation of the peri-nucleolar structure was not mediated by the DNA binding (SAP) or the RNA binding (RRM) domain of SAFB but was instead dependent on the S/K and R/E coiled-coil regions: a result suggesting that the structure is formed via protein interactions. In addition, SAFB cleavage was shown to be mediated by caspase-3 and occurred after the formation of the peri-nucleolar ring and after cleavage of PARP (characteristic of proteins having a direct role in apoptosis). A determinant for this cleavage is located in the DNA binding domain and we hypothesize that SAFB may direct the reorganization and segregation of nuclear RNA and DNA prior to endonuclease-mediated DNA cleavage.  相似文献   

14.
15.
16.
The urokinase-type plasminogen activator receptor (uPAR) has been implicated in tumor growth and metastasis. The crystal structure of uPAR revealed that the external surface is largely free to interact with a number of proteins. Additionally, due to absence of an intracellular cytoplasmic protein domain, many of the biological functions of uPAR necessitate interactions with other proteins. Here, we used yeast two-hybrid screening of breast cancer cDNA library to identify hSpry1 and HAX1 proteins as putative candidate proteins that interact with uPAR bait constructs. Interaction between these two candidates and uPAR was confirmed by GST-pull down, co-immunoprecipitation assays and confocal microscopy. These novel interactions that have been identified may also provide further evidence that uPAR can interact with a number of other proteins which may influence a range of biological functions.  相似文献   

17.
18.
19.
DNA methylation and histone deacetylation are two epigenetic mechanisms involved in the lack of estrogen receptor (ER) expression. Our previous studies demonstrated that mutant p53 along with repression complex proteins including DNMT1, HDAC1 and MeCP2 is associated with ER-negative promoter in MDA-MB-468 cells. To elucidate the molecular mechanism of estrogen receptor 1 (ESR1) gene silencing in these cells, we down-regulated DNMT1 and HDAC1 expression using siRNAs and studied the ability of DNMT1, HDAC1, MeCP2 and p53 in binding to ESR1 promoter CpG island. Our results showed that DNMT1 or HDAC1 down-regulation disassembled the repression complex proteins and mutant p53 from ER-negative promoter. The partial demethylation of ESR1 promoter and ER re-expression in down-regulated cells supports these findings. In vivo binding studies demonstrated that mutation of p53 protein in this cell line did not affect its binding capacity to DNMT1, HDAC1 and MeCP2 proteins. Our observations suggest that not only histone deacetylase activity of HDAC1 contributes to inactivation of methylated ESR1 gene but also HDAC1 presence on ESR1 promoter is important for assembly of DNMT1 in repression complex. In addition, our data revealed that mutant p53 protein binds to the promoter of ESR1 through direct interaction with HDAC1 and indirect interaction with DNMT1, MeCP2 proteins in the ER-negative MDA-MB-468 cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号