首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Organotypic cultures of embryonic mouse tooth germs were used to investigate the developmental expression and roles of MMPs in the formation and mineralization of dentin and enamel matrices. The spatially and temporally regulated expression of MMP-2, MMP-9 and MMP-20 in developing mouse tooth germs in vivo was maintained in culture. The inhibition of metalloproteinases activity by marimastat altered the morphogenesis and mineralization of the tooth germs associated with an inhibition of the activation of both MMP-20 and MMP-2. MMP inhibition deregulated the molecular processing of two major dental matrix proteins, amelogenin and dentin sialoprotein (DSP). This coincided with their accumulation and the loss of their normal distribution within the extracellular matrix, resulting in a defective mineralization of dentin and enamel matrices. These findings demonstrate the critical role of MMPs in the processing and maturation of the dental matrix.  相似文献   

2.
3.
Enamel formation depends on a triad of tissue-specific matrix proteins (amelogenin, ameloblastin, and enamelin) to help initiate and stabilize progressively elongating, thin mineral ribbons of hydroxyapatite formed during an appositional growth phase. Subsequently, these proteins are eradicated to facilitate lateral expansion of the hydroxyapatite crystallites. The purpose of this study was to investigate changes in enamel mineralization occurring in mice unable to produce kallikrein 4 (Klk4), a proteinase associated with terminal extracellular degradation of matrix proteins during the maturation stage. Mice lacking functional matrix metalloproteinase 20 (Mmp20), a proteinase associated with early cleavage of matrix proteins during the secretory stage, were also analyzed as a frame of reference. The results indicated that mice lacking Klk4 produce enamel that is normal in thickness and overall organization in terms of layers and rod/inter-rod structure, but there is a developmental defect in enamel rods where they first form near the dentinoenamel junction. Mineralization is normal up to early maturation after which the enamel both retains and gains additional proteins and is unable to mature beyond 85% mineral by weight. The outmost enamel is hard, but inner regions are soft and contain much more protein than normal. The rate of mineral acquisition overall is lower by 25%. Mice lacking functional Mmp20 produce enamel that is thin and structurally abnormal. Relatively high amounts of protein remain throughout maturation, but the enamel is able to change from 67 to 75% mineral by weight during maturation. These findings reaffirm the importance of secreted proteinases to enamel mineral acquisition.  相似文献   

4.
The cellular enamel organ and the cell-free organic matrix of developing enamel of female rats injected intravascularly with [3H]serine and [3H]proline were extracted in a number of solvents and examined by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis and h.p.l.c. in 6M-guanidinium chloride at intervals varying from 5 min to 1 week after injection. Three major species soluble in NH4HCO3 with Mr values of approx. 100 000, 25 000 and 11 000 were identified in the cellular enamel organ. The Mr 100 000 and 11 000 components were not secreted but remained intracellular for periods of up to 1 week after injection of the radioactively labelled amino acids. In contrast, the Mr 25 000 species was secreted from the cells and was first detected in the extracellular organic matrix approx. 15-30 min after injection. With time, labelled components, first of Mr approx. 11 000 and subsequently approx. 6500, were detected in the organic matrix concomitant with a relative decrease in the Mr 25 000 component, demonstrating that the lower Mr species were derived from degradation of the putative extracellular precursor protein (Mr 25 000). All of the extracellular components were found to contain O-phosphoserine. No radioactively labelled component with an Mr greater than approx. 25 000, either an amelogenin or an enamelin, was observed in the extracellular organic matrix or in an intracellular component which subsequently was lost from the intracellular pool. The Mr of the highest Mr protein or class of proteins is calculated to be approx. 22 000-26 000 when standard proteins are used as markers, but only 15 000-18 000 when using the CNBr peptides of alpha 1 chains of rat tail tendon collagen as markers.  相似文献   

5.
 Amelogenins are the most abundant constituent in the enamel matrix of developing teeth. Recent investigations of rodent incisors and molar tooth germs revealed that amelogenins are expressed not only in secretory ameloblasts but also in maturation ameloblasts, although in relatively low levels. In this study, we investigated expression of amelogenin in the maturation stage of porcine tooth germs by in situ hybridization and immunocytochemistry. Amelogenin mRNA was intensely expressed in ameloblasts from the differentiation to the transition stages, but was not detected in maturation stage ameloblasts. C-terminal specific anti-amelogenin antiserum, which only reacts with nascent amelogenin molecules, stained ameloblasts from the differentiation to the transition stages. This antiserum also stained the surface layer of immature enamel at the same stages. At the maturation stage, no immunoreactivity was found within the ameloblasts or the immature enamel. These results indicate that, in porcine tooth germs, maturation ameloblasts do not express amelogenins, suggesting that newly secreted enamel matrix proteins from the maturation ameloblast are not essential to enamel maturation occurring at the maturation stage. Accepted: 14 January 1999  相似文献   

6.
7.
The main sulfated proteins secreted by rabbit mammary gland tissue had M(r) of approximately 67 000, 63 000 and 23 000, and one component which most likely corresponded to proteoglycans had a diffuse electrophoretic mobility (M(r)200 000). The sulfate groups in the 67-63 kDa proteins were mostly linked to carbohydrates. These proteins and the 23 kDa protein were co-purified and identified to heavy chains of immunoglobulin A (IgA) and J chain, respectively. Sulfation of alpha-chains also occurred in rat mammary and rabbit lacrimal glands. We conclude that polymeric IgA which are produced by plasma cells and released in secretion fluids after transcytosis through epithelia are sulfated.  相似文献   

8.
Is there more to enamel matrix proteins than biomineralization?   总被引:13,自引:0,他引:13  
Enamel proteins are proteins synthesized by ameloblast cells. These proteins are secreted into the enamel extracellular matrix where they nucleate and regulate the growth of hydroxyapatite crystals to form the mineralized enamel covering the crown of the teeth. Although the exact role of these proteins in enamel mineralization is just beginning to be elucidated, new studies suggest that these proteins might have functions outside enamel formation. Furthermore, extracts of enamel proteins are currently being used to regenerate periodontal tissues destroyed by periodontal disease and new studies suggest that they might have chondrogenic and osteogenic properties. These new functions of enamel proteins will be the focus of this review.  相似文献   

9.
10.
LIM mineralization protein 1 (LMP-1) is an essential positive regulator of osteoblast differentiation, maturation and bone formation. Our previous investigations on the distribution of LMP-1 in mature human teeth indicated that LMP-1 might play a role in the odontoblast differentiation and dentin matrix mineralization. The aim of the present study was to use immunohistochemistry to determine the expression of LMP-1 during tooth development in mouse molars. In embryonic and postnatal Kunming mice, LMP-1 protein was expressed during molar development, but the expression levels and patterns differed at various developmental stages. At embryonic day 13.5 (E13.5), LMP-1 was found in the enamel organ. At E14.5, LMP-1 was detected in the entire enamel organ and in the underlying mesenchyme. At E16.5, LMP-1 was observed in the inner and outer enamel epithelium and the stratum intermedium. The expression also converged at the cusps in the dental papilla. At E18.5 and postnatal day 2.5 (P2.5), LMP-1 was restricted to the stratum intermedium, in differentiating dental papilla cells at cusps, while it disappeared in terminal differentiated ameloblasts and odontoblasts. At P13.5, no positive staining was detected in the odontoblasts or in the dental pulp cells. Therefore, LMP-1 showed spatiotemporal expression patterns during molar development and might participate in molar crown morphogenesis and odontoblast differentiation at late molar development.  相似文献   

11.
Dendritic cells in the enamel organ of rat incisors were examined with immunocytochemistry using an anti-cystatin C antibody for immature dendritic cells and macrophages, OX6 for MHC Class II, ED1 for macrophages and dendritic cells, and ED2 for macrophages. Single cells positive for anti-cystatin C appeared in the enamel organ in zones at which ameloblasts secrete enamel matrix proteins. They were also present in transition and enamel maturation zones. In addition, ameloblasts, osteocytes, and osteoclasts were labeled by anti-cystatin C. ED1 and ED2 immunocytochemistry revealed that there was no macrophage population in the enamel organ of secretion, transition, or enamel maturation zone. A double labeling study showed that most anti-cystatin C-positive cells in the enamel maturation zone were also positive for OX6, whereas anti-cystatin C-positive and OX6-negative cells were prevalent in the secretion zone. The results suggest that immature dendritic cells penetrate the enamel organ of the secretion zone and begin to mature in the zones of transition and enamel maturation. (J Histochem Cytochem 48:1243-1255, 2000)  相似文献   

12.
13.
Dental fluorosis is characterized by subsurface hypomineralization and increased porosity of enamel, associated with a delay in the removal of enamel matrix proteins. To investigate the effects of fluoride on ameloblasts, A/J mice were given 50 ppm sodium fluoride in drinking water for four weeks, resulting serum fluoride levels of 4.5 µM, a four-fold increase over control mice with no fluoride added to drinking water. MicroCT analyses showed delayed and incomplete mineralization of fluorosed incisor enamel as compared to control enamel. A microarray analysis of secretory and maturation stage ameloblasts microdissected from control and fluorosed mouse incisors showed that genes clustered with Mmp20 appeared to be less downregulated in maturation stage ameloblasts of fluorosed incisors as compared to control maturation ameloblasts. One of these Mmp20 co-regulated genes was the global chromatin organizer, special AT-rich sequence-binding protein-1 (SATB1). Immunohistochemical analysis showed increased SATB1 protein present in fluorosed ameloblasts compared to controls. In vitro, exposure of human ameloblast-lineage cells to micromolar levels of both NaF and AlF3 led to a significantly increase in SATB1 protein content, but not levels of Satb1 mRNA, suggesting a fluoride-induced mechanism protecting SABT1 from degradation. Consistent with this possibility, we used immunohistochemistry and Western blot to show that fluoride exposed ameloblasts had increased phosphorylated PKCα both in vivo and in vitro. This kinase is known to phosphorylate SATB1, and phosphorylation is known to protect SATB1 from degradation by caspase-6. In addition, production of cellular diacylglycerol (DAG) was significantly increased in fluorosed ameloblasts, suggesting that the increased phosphorylation of SATB1 may be related to an effect of fluoride to enhance Gαq activity of secretory ameloblasts.  相似文献   

14.
We have previously reported that the odontogenic ameloblast‐associated protein (ODAM) plays important roles in enamel mineralization through the regulation of matrix metalloproteinase‐20 (MMP‐20). However, the precise function of ODAM in MMP‐20 regulation remains largely unknown. The aim of the present study was to uncover the molecular mechanisms responsible for MMP‐20 regulation. The subcellular localization of ODAM varies in a stage‐specific fashion during ameloblast differentiation. During the secretory stage of amelogenesis ODAM was localized to both the nucleus and cytoplasm of ameloblasts. However, during the maturation stage of amelogenesis, ODAM was observed in the cytoplasm and at the interface between ameloblasts and the enamel layer, but not in the nucleus. Secreted ODAM was detected in the conditioned medium of ameloblast‐lineage cell line (ALC) from days 14 to 21, which coincided with the maturation stage of amelogenesis. Interestingly, the expression of Runx2 and nuclear ODAM correlated with MMP‐20 expression in ALC. We therefore examined whether ODAM cooperates with Runx2 to regulate MMP‐20 and modulate enamel mineralization. Increased expression of ODAM and Runx2 augmented MMP‐20 expression, and Runx2 expression enhanced expression of ODAM, although overexpression of ODAM did not influence Runx2 expression. Conversely, loss of Runx2 in ALC decreased ODAM expression, resulting in down‐regulation of MMP‐20 expression. Increased MMP‐20 expression accelerated amelogenin processing during enamel mineralization. Our data suggest that Runx2 regulates the expression of ODAM and that nuclear ODAM serves an important regulatory function in the mineralization of enamel through the regulation of MMP‐20 apart from a different, currently unidentified, function of extracellular ODAM. J. Cell. Biochem. 111: 755–767, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

15.
1. The low-molecular-weight components of myosin freshly prepared by the standard procedure from adult rabbit skeletal muscle migrated as four main bands Ml(1), Ml(2), Ml(3) and Ml(4) on polyacrylamide-gel electrophoresis in 8m-urea. 2. The number of bands increased on storage. This change was accelerated by increasing the temperature and pH. 3. None of the bands had electrophoretic mobilities identical with those of the well-characterized proteins of the myofibril or with the sarcoplasmic proteins. 4. By varying the ionic conditions and concentration of muscle mince used for the initial extraction it was possible to change the relative proportions of the two electrophoretic bands of intermediate mobility, Ml(2) and Ml(3). 5. The four-band picture similar to that obtained with rabbit was observed with myosin isolated from skeletal muscle of the rat, mouse, hamster, pigeon and chicken. 6. Rabbit cardiac myosin gave only two bands on electrophoresis. Myosin from rabbit red muscle gave a pattern intermediate between cardiac and white-skeletal-muscle myosin, i.e. the two fastest bands were present in decreased relative amounts. 7. It is suggested that the differences in the low-molecular-weight components of myosin from different types of muscle are a consequence of differences in the isoenzyme composition of the myosins.  相似文献   

16.
Tooth primordia at early stages of mineralization in the sharks Negaprion brevirostris and Triaenodon obesus were examined electron microscopically for evidence of ameloblastic secretion and its relation to calcification of the enamel (enameloid) layer. Ameloblasts are polarized with most of the mitochondria and all of the Golgi dictyosomes localized in the infranuclear end of the cell toward the squamous outer cells of the enamel organ. Endoplasmic reticular membranes and ribosomes are also abundant in this region. Ameloblastic vesicles bud from the Golgi membranes and evidently move through perinuclear and supranuclear zones to accumulate at the apical end of the cell. The vesicles secrete their contents through the apical cell membrane in merocrine fashion and appear to contribute precursor material both for the basal lamina and the enameline matrix. The enamel layer consists of four zones: a juxta-laminar zone containing newly polymerized mineralizing fibrils (tubules); a pre-enamel zone of assembly of matrix constituents; palisadal zones of mineralizing fibrils (tubules); and interpalisadal zones containing granular amorphous matrix, fine unit fibrils, and giant cross-banded fibers with a periodicity of 17.9 nm. It seems probable that amorphous, non-mineralizing fibrillar and mineralizing fibrillar constituents of the matrix are all products of ameloblastic secretion. Odontoblastic processes are tightly embedded in the matrix of the palisadal zones and do not appear to be secretory at the stages investigated. The shark tooth enamel layer is considered homologous with that of other vertebrates with respect to origin of its mineralizing fibrils from the innerental epithelium. The term enameloid is appropriate to connote the histological distinction that the enamel layer contains odontoblastic processes but should not signify that shark tooth enamel is a modified type of dentine. How amelogenins and/or enamelins secreted by amelo- blasts in the shark and other vertebrates are related to nucleation and growth of enamel crystallites is still not known.  相似文献   

17.
Enzymatically dispersed cell aggregates were prepared from rat submandibular glands. Cells were responsive to α- and β-adrenergic agonists, as measured by net K+ release and radiolabeled protein secretion, respectively. Protein production by submandibular gland cells was constant during the 90 min experimental period. Specific agonist and antagonist experiments demonstrated that both α- and β-adrenergic receptor stimulation were required for maximum secretion of newly synthesized protein. Proteins were radiolabeled with [35S] methionine and both soluble cell and secreted proteins examined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autofluorography. A broad size range of newly synthesized proteins was detected (Mr~104?5 × 105). Adrenergic stimulation (1-epinephrine) specifically increased the secretion of certain radiolabeled proteins and, in addition, resulted in both cellular and secreted proteins with electrophoretic characteristics distinct from that of control preparations.  相似文献   

18.
Endochondral skeletal development involves the condensation of mesenchymal cells, their differentiation into chondrocytes, followed by chondrocyte maturation, hypertrophy, and matrix mineralization, and replacement by osteoblasts. The Wnt family of secreted proteins have been shown to play important roles in vertebrate limb formation. To examine the role(s) of Wnt members and their transmembrane-spanning receptor(s), Frizzled (fz), we retrovirally misexpressed Wnt-5a, Wnt-7a, chicken frizzled-1 (Chfz-1), and frizzled-7 (Chfz-7) in long-term (21 day) high density, micromass cultures of stage 23/24 chick embryonic limb mesenchyme. This culture system recapitulates in vitro the entire differentiation (days 1-10), growth (days 5-12), and maturation and hypertrophy (from day 12 on) program of cartilage development. Wnt-7a misexpression severely inhibited chondrogenesis from day 7 onward. Wnt-5a misexpression resulted in a poor hypertrophic phenotype by day 14. Chfz-7 misexpression caused a slight delay of chondrocyte maturation based on histology, whereas Chfz-1 misexpression did not affect the chondrogenic phenotype. Misexpression of all Wnt members decreased collagen type X expression and alkaline phosphatase activity at day 21. Our findings implicate functional role(s) for Wnt signaling throughout embryonic cartilage development, and show the utility of the long-term in vitro limb mesenchyme culture system for such studies.  相似文献   

19.
Transforming growth factor-ß (TGF-ß) signaling plays an important role in regulating crucial biological processes such as cell proliferation, differentiation, apoptosis, and extracellular matrix remodeling. Many of these processes are also an integral part of amelogenesis. In order to delineate a precise role of TGF-ß signaling during amelogenesis, we developed a transgenic mouse line that harbors bovine amelogenin promoter-driven Cre recombinase, and bred this line with TGF-ß receptor II floxed mice to generate ameloblast-specific TGF-ß receptor II conditional knockout (cKO) mice. Histological analysis of the teeth at postnatal day 7 (P7) showed altered enamel matrix composition in the cKO mice as compared to the floxed mice that had enamel similar to the wild-type mice. The µCT and SEM analyses revealed decreased mineral content in the cKO enamel concomitant with increased attrition and thinner enamel crystallites. Although the mRNA levels remained unaltered, immunostaining revealed increased amelogenin, ameloblastin, and enamelin localization in the cKO enamel at the maturation stage. Interestingly, KLK4 mRNA levels were significantly reduced in the cKO teeth along with a slight increase in MMP-20 levels, suggesting that normal enamel maturation is regulated by TGF-ß signaling through the expression of KLK4. Thus, our study indicates that TGF-ß signaling plays an important role in ameloblast functions and enamel maturation.  相似文献   

20.
Nel-like molecule-1 (Nell-1) is a recently discovered secreted protein that plays an important role in osteoblast differentiation, bone formation, and bone regeneration. However, its expression and distribution during tooth development are largely unknown. The aim of this study was to investigate the expression patterns of Nell-1 during murine molar development by immunohistochemistry. Nell-1 protein was expressed during molar development in embryonic and postnatal Kunming mice, but its expression levels and patterns at various developmental stages differed. At embryonic day 13.5 (E13.5) and E14.5, Nell-1 was found in both the entire enamel organ and the underlying mesenchyme. At E16.5, it was detected in the inner and outer enamel epithelia, stratum intermedium, secondary enamel knot, and dental papilla. At E18.5, Nell-1 was expressed in the differentiating ameloblasts, differentiating odontoblasts, and stratum intermedium. Positive staining was also found in the outer enamel epithelium. At postnatal day 2.5 (P2.5), P5, and P7, Nell-1 appeared in the secretory and mature ameloblasts and odontoblasts (odontoblastic bodies and processes) as well as immature enamel. Hertwig’s epithelial root sheath also stained positively at P7. At P13.5, positive staining was restricted to the reduced dental epithelium and odontoblasts, whereas Nell-1 disappeared in the mature enamel. During tooth eruption, Nell-1 was observed only in the odontoblastic bodies, odontoblastic processes, and endothelial cells of blood vessels. The spatiotemporal expression patterns of Nell-1 during murine tooth development suggest that it might play an important role in ameloblast and odontoblast differentiation, secretion and mineralization of the extracellular enamel matrix, molar crown morphogenesis, as well as root formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号