首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 16 毫秒
1.
Silver nanoparticles (Ag NPs) of different sizes have been prepared by Lee and Meisel’s method using trisodium citrate as reducing agent under ultra sonication. Optical absorption and fluorescence emission techniques were employed to investigate the interaction of 1,4-dihydroxy-2,3-dimethyl anthracene-9,10-dione (DHDMAD) with silver nanoparticles. In fluorescence spectroscopic study, we used the DHDMAD and Ag NPs as component molecules for construction of Förster Resonance Energy Transfer (FRET), whereas DHDMAD serve as donor and Ag NPs as acceptor. The surface plasmon resonance (SPR) peak of the prepared silver colloidal solution was observed from 419 nm to 437 nm. The synthesized silver nanoparticles at different heating time intervals were spherical in shape about the size of 25 nm and 55 nm. The fluorescence interaction between silver nanoparticles and DHDMAD confirms the FRET mechanism. According to Förster theory, the distance between silver nanoparticles and DHDMAD and the critical energy transfer distance were calculated and it is increase with heating time.  相似文献   

2.
In this paper, a systematic investigation of the interaction of bovine serum albumin (BSA) with water‐soluble CdTe quantum dots (QDs) of two different sizes capped with carboxylic thiols is presented based on steady‐state and time‐resolved fluorescence measurements. Efficient Förster resonance energy transfer (FRET) was observed to occur from BSA donor to CdTe acceptor as noted from reduction in the fluorescence of BSA and enhanced fluorescence from CdTe QDs. FRET parameters such as Förster distance, spectral overlap integral, FRET rate constant and efficiency were determined. The quenching of BSA fluorescence in aqueous solution observed in the presence of CdTe QDs infers that fluorescence resonance energy transfer is primarily responsible for the quenching phenomenon. Bimolecular quenching constant (kq) determined at different temperatures and the time‐resolved fluorescence data provide additional evidence for this. The binding stoichiometry and various thermodynamic parameters are evaluated by using the van ‘t Hoff equation. The analysis of the results suggests that the interaction between BSA and CdTe QDs is entropy driven and hydrophobic forces play a key role in the interaction. Binding of QDs significantly shortened the fluorescence lifetime of BSA which is one of the hallmarks of FRET. The effect of size of the QDs on the FRET parameters are discussed in the light of FRET parameters obtained.  相似文献   

3.
Gold@silica core–shell nanoparticles were prepared with various gold core diameters (ranging from 20 to 150 nm) and silica thicknesses (ranging from 10 to 30 nm). When the gold diameter is increased, the size dispersion became larger, leading to a broader plasmon band. Then, silicon carbide (SiC) nanoparticles were covalently immobilized onto silica to obtain hybrid (Au@SiO2) SiC nanoparticles. The absorption properties of these hybrid nanoparticles showed that an excess of SiC nanoparticles in the dispersion can be identified by a strong absorption in the UV region. Compared to SiC reference samples, a blue shift of the fluorescence emission, from 582 to 523 nm, was observed, which was previously attributed to the strong surface modification of SiC when immobilized onto silica. Finally, the influence of several elaboration parameters (gold diameter, silica thickness, SiC concentration) on fluorescence enhancement was investigated. It showed that the highest enhancements were obtained with 10 nm silica thickness, low concentration of SiC nanoparticles, and surprisingly, with a 20-nm gold core diameter. This last result could be attributed to the broad plasmon band of big gold colloids. In this case, SiC emission strongly overlapped gold absorption, leading to possible quenching of SiC fluorescence by energy transfer.  相似文献   

4.
The interaction of Pyronin Y with human serum albumin (HSA) has been investigated systematically by fluorescence, absorption, fluorescence decay lifetime measurements, FTIR, synchronous fluorescence spectroscopy, and molecular modeling method. The spectroscopic and fluorescence quenching experiments show that Pyronin Y may show a static quenching mechanism with HSA. The specific binding distance of 1.96 nm between HSA and Pyronin Y was obtained via Förster non-radiation energy transfer method. The thermodynamic parameters indicate that the electrostatic interactions play a significant role during the binding process. In addition, synchronous fluorescence and FT-IR spectra indicated that the conformation and microenvironment of HSA were not influenced with the addition of Pyronin Y. The obtained results can be of biological significance in photodynamic therapy.  相似文献   

5.
Water dispersible zinc sulfide quantum dots (ZnS QDs) with an average diameter of 2.9 nm were synthesized in an environment friendly method using chitosan as stabilizing agent. These nanocrystals displayed characteristic absorption and emission spectra having an absorbance edge at 300 nm and emission maxima (λ emission) at 427 nm. Citrate-capped silver nanoparticles (Ag NPs) of ca. 37-nm diameter were prepared by modified Turkevich process. The fluorescence of ZnS QDs was significantly quenched in presence of Ag NPs in a concentration-dependent manner with K sv value of 9 × 109 M−1. The quenching mechanism was analyzed using Stern–Volmer plot which indicated mixed nature of quenching. Static mechanism was evident from the formation of electrostatic complex between positively charged ZnS QDs and negatively charged Ag NPs as confirmed by absorbance study. Due to excellent overlap between ZnS QDs emission and surface plasmon resonance band of Ag NPs, the role of energy transfer process as an additional quenching mechanism was investigated by time-resolved fluorescence measurements. Time-correlated single-photon counting study demonstrated decrease in average lifetime of ZnS QDs fluorescence in presence of Ag NPs. The corresponding F?rster distance for the present QD–NP pair was calculated to be 18.4 nm.  相似文献   

6.
We present a detailed theoretical analysis of the Förster energy transfer process when a pair of molecules (donor and acceptor) is located nearby a cluster of two metallic nanospheres (dimer). We consider the case in which plasmonic resonances are within the overlap between the donor emission and acceptor absorption spectra, as well as the case that excludes such resonances from the aforementioned spectral overlap. Moreover, we explore the dependence of the Förster energy transfer rate on different dimer configurations (size and separation of nanospheres) and several dipole orientations of molecules. The dimer perturbs strongly the Förster energy transfer rate when plasmons are excited, donor dipole is oriented along the longitudinal axis of the dimer, and the radii of nanospheres and the sphere-gap distance are on the order of a few nanometers. In case of plasmonic excitation, the Förster energy transfer rate is degraded as the sphere-gap distance and size of the nanoparticles increase due to the dephasing of electronic motion arising from ohmic losses of metal. Also, we study the Förster efficiency influenced by the dimer, finding that the high efficiency region (delimited by the Förster radius curve) is reduced as a consequence of significant enhancement of the direct donor decay rate. Our study could impact applications that involve Förster energy transfer.  相似文献   

7.
It was reported that bovine α-lactalbumin (BLA) as an important whey protein can be utilized as valuable vehicle for metal ions. The goal of this study was to investigate the interaction of BLA with bisdemethoxycurcumin (BDMC), Diacetylcurcumin (DAC), and diacetylbisdemethoxycurcumin (DABC) as three bioactive compounds by fluorescence quenching measurements and docking studies. It was observed that these ligands come closer to tryptophan residues and quench their emission without any change in their micro region polarity. The Stern–Volmer equation which is the best model to provide information about the interaction between small bioactive molecules and proteins was used to obtain the binding constants and the binding stoichiometry. Information about the extent of resonance energy transfer and Förster’s distance between donor and acceptor was estimated. Thermodynamic parameters confirmed that the final BDMC–BLA complex was stabilized by hydrogen bonds, whereas the final DABC–BLA and DAC–BLA complexes were stabilized by hydrophobic bonds which are in accordance with their chemical structures. Both the synchronous and docking studies verified that theTrp-26 which is the most exposed Tryptophan residue has the most contribution in the binding process. The Förster’s distances between bound ligands and tryptophans were in agreement with the measured distances by docking studies. The obtained achievements confirmed that there are considerable binding interactions between these curcuminoids and BLA.  相似文献   

8.
The peripheral light-harvesting antenna complex (LH2) of purple photosynthetic bacteria is an ideal testing ground for models of structure–function relationships due to its well-determined molecular structure and ultrafast energy deactivation. It has been the target for numerous studies in both theory and ultrafast spectroscopy; nevertheless, certain aspects of the convoluted relaxation network of LH2 lack a satisfactory explanation by conventional theories. For example, the initial carotenoid-to-bacteriochlorophyll energy transfer step necessary on visible light excitation was long considered to follow the Förster mechanism, even though transfer times as short as 40 femtoseconds (fs) have been observed. Such transfer times are hard to accommodate by Förster theory, as the moderate coupling strengths found in LH2 suggest much slower transfer within this framework. In this study, we investigate LH2 from Phaeospirillum (Ph.) molischianum in two types of transient absorption experiments—with narrowband pump and white-light probe resulting in 100 fs time resolution, and with degenerate broadband 10 fs pump and probe pulses. With regard to the split Qx band in this system, we show that vibronically mediated transfer explains both the ultrafast carotenoid-to-B850 transfer, and the almost complete lack of transfer to B800. These results are beyond Förster theory, which predicts an almost equal partition between the two channels.  相似文献   

9.
CcmL is a small, pentameric protein that is argued to fill the vertices of β-carboxysomal shell. Here we report the structures of two CcmL orthologs, those from Nostoc sp. PCC 7120 and Thermosynechococcus elongatus BP-1. These structures broadly resemble those previously reported for other strains. However, the Nostoc CcmL structure shows an interesting pattern of behavior where two loops that map to the base of the pentamer adopt either an out or in conformation, with a consistent (over six pentamers) out–in–out–in–in pattern of protomers. The pentamers in this structure are also consistently organized into a back-to-back decamer, though evidence suggests that this is likely not present in solution. Förster resonance energy transfer experiments were able to show a weak interaction between CcmL and CcmK2 when CcmK2 was present at >100 μM. Since CcmK2 forms defined bodies with approximately 200 nm diameter at this concentration, this would support the idea that CcmL can only interact with CcmK2 at rare defect points in the growing shell.  相似文献   

10.
The binding interaction between quinapril (QNPL) and bovine serum albumin (BSA) in vitro has been investigated using UV absorption spectroscopy, steady-state fluorescence spectroscopic, synchronous fluorescence spectroscopy, 3D fluorescence spectroscopy, Fourier transform infrared spectroscopy, circular dichroism, and molecular docking methods for obtaining the binding information of QNPL with BSA. The experimental results confirm that the quenching mechanism of the intrinsic fluorescence of BSA induced by QNPL is static quenching based on the decrease in the quenching constants of BSA in the presence of QNPL with the increase in temperature and the quenching rates of BSA larger than 1010 L mol?1 s?1, indicating forming QNPL–BSA complex through the intermolecular binding interaction. The binding constant for the QNPL–BSA complex is in the order of 105 M?1, indicating there is stronger binding interaction of QNPL with BSA. The analysis of thermodynamic parameters together with molecular docking study reveal that the main binding forces in the binding process of QNPL with BSA are van der Waal’s forces and hydrogen bonding interaction. And, the binding interaction of BSA with QNPL is an enthalpy-driven process. Based on Förster resonance energy transfer, the binding distance between QNPL and BSA is calculated to be 2.76 nm. The results of the competitive binding experiments and molecular docking confirm that QNPL binds to sub-domain IIA (site I) of BSA. It is confirmed there is a slight change in the conformation of BSA after binding QNPL, but BSA still retains its secondary structure α-helicity.  相似文献   

11.
Biosynthesis of gold nanoparticles has been accomplished via reduction of an aqueous chloroauric acid solution with the dried biomass of an edible freshwater epilithic red alga, Lemanea fluviatilis (L.) C.Ag., as both reductant and stabilizer. The synthesized nanoparticles were characterized by UV–visible, powder X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR), and dynamic light scattering (DLS) studies. The UV–visible spectrum of the synthesized gold nanoparticles showed the surface plasmon resonance (SPR) at around 530 nm. The powder XRD pattern furnished evidence for the formation of face-centered cubic structure of gold having average crystallite size 5.9 nm. The TEM images showed the nanoparticles to be polydispersed, nearly spherical in shape and have sizes in the range 5–15 nm. The photoluminescence spectrum of the gold nanoparticles excited at 300 nm showed blue emission at around 440 nm. Gold nanoparticles loaded within the biomatrix studied using a modified 2,2-diphenyl-1-picrylhydrazyl (DPPH) method exhibited pronounced antioxidant activity.  相似文献   

12.
Green chemistry is a boon for the development of safe, stable and ecofriendly nanostructures using biological tools. The present study was carried out to explore the potential of selected fungal strains for biosynthesis of intra- and extracellular gold nanostructures. Out of the seven cultures, two fungal strains (SBS-3 and SBS-7) were selected on the basis of development of dark pink colour in cell free supernatant and fungal beads, respectively indicative of extra- and intracellular gold nanoparticles production. Both biomass associated and cell free gold nanoparticles were characterized using X-ray diffractogram (XRD) analysis and transmission electron microscopy (TEM). XRD analysis confirmed crystalline, face-centered cubic lattice of metallic gold nanoparticles along with average crystallite size. A marginal difference in average crystallite size of extracellular (17.76 nm) and intracellular (26 and 22 nm) Au-nanostructures was observed using Scherrer equation. In TEM, a variety of shapes (triangles, spherical, hexagonal) were observed in both extra- and intracellular nanoparticles. 18S rRNA gene sequence analysis by multiple sequence alignment (BLAST) indicated 99 % homology of SBS-3 to Aspergillus fumigatus with 99 % alignment coverage and 98 % homology of SBS-7 to Aspergillus flavus with 98 % alignment coverage respectively. Native-PAGE and activity staining further confirmed enzyme linked synthesis of gold nanoparticles.  相似文献   

13.
In this work, the terbium(III), dysprosium(III), and ytterbium(III) complexes containing 2, 2′-bipyridine (bpy) ligand have been synthesized and characterized using CHN elemental analysis, FT-IR, UV–Vis and 1H-NMR techniques and their binding behavior with human serum albumin (HSA) was studied by UV–Vis, fluorescence and molecular docking examinations. The experimental data indicated that all three lanthanide complexes have high binding affinity to HSA with effective quenching of HSA fluorescence via static mechanism. The binding parameters, the type of interaction, the value of resonance energy transfer, and the binding distance between complexes and HSA were estimated from the analysis of fluorescence measurements and Förster theory. The thermodynamic parameters suggested that van der Waals interactions and hydrogen bonds play an important role in the binding mechanism. While, the energy transfer from HSA molecules to all these complexes occurs with high probability, the order of binding constants (BpyTb > BpyDy > BpyYb) represents the importance of radius of Ln3+ ion in the complex-HSA interaction. The results of molecular docking calculation and competitive experiments assessed site 3 of HSA, located in subdomain IB, as the most probable binding site for these ligands and also indicated the microenvironment residues around the bound mentioned complexes. The computational results kept in good agreement with experimental data.  相似文献   

14.
Quantum dots (QDs), bright luminescent semiconductor nanoparticles, have found numerous applications ranging from optoelectronics to bioimaging. Here, we present a systematic investigation of fluorescence resonance energy transfer (FRET) from hydrophilic ternary alloyed quantum dots (CdSeS/ZnS) to cresyl violet dye with a view to explore the effect of composition of QD donors on FRET efficiency. Fluorescence emission of QD is controlled by varying the composition of QD without altering the particle size. The results show that quantum yield of the QDs increases with increase in the emission wavelength. The FRET parameters such as spectral overlap J(λ), Förster distance R0, intermolecular distance (r) , rate of energy transfer kT (r), and transfer efficiency (E) are determined by employing both steady‐state and time‐resolved fluorescence spectroscopy. Additionally, dynamic quenching is noticed to occur in the present FRET system. Stern–Volmer (KD) and bimolecular quenching constants (kq) are determined from the Stern–Volmer plot. It is observed that the transfer efficiency follows a linear dependence on the spectral overlap and the quantum yield of the donor as predicted by the Förster theory upon changing the composition of the QD. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
A novel assay for oxytetracycline hydrochloride (OTC) based on fluorescence quenching was developed from the interaction between functionalized cadmium telluride quantum dots (CdTe QDs) and OTC. Optimum conditions for the detection of OTC were found after investigating all factors. Under optimum conditions, luminescence of CdTe nanocrystals (λex = 365 nm, λem = 562 nm) was quenched by OTC in a concentration‐dependent manner best described by a modified Stern‐Volmer type equation. Good linearity was obtained with a regression coefficient of 0.9999 in the range of 1.34 ~ 13.4 x 10‐5 mol/L and a limit of detection of 3.08 x 10‐7 mol/L. In addition, the quenching mechanism was also established. The results imply that the close proximity of OTC‐CdTe was driven by electrostatic attraction and the resulting effective electron transfer from OTC to QDs could be responsible for fluorescence quenching of CdTe‐QDs. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
Recently, the great interests in manufacturing and application of metal oxide nanoparticles in commercial and industrial products have led to focus on the potential impact of these particles on biomacromolecules. In the present study, the interaction of copper oxide (CuO) nanoparticles with bovine serum albumin (BSA) was studied by spectroscopic techniques. The zeta potential value for BSA and CuO nanoparticles with average diameter of around 50 nm at concentration of 10 μM in the deionized (DI) water were ?5.8 and ?22.5 mV, respectively. Circular dichroism studies did not show any changes in the content of secondary structure of the protein after CuO nanoparticles interaction. Fluorescence data revealed that the fluorescence quenching of BSA by CuO nanoparticles was the result of the formed complex of CuO nanoparticles – BSA. Binding constants and other thermodynamic parameters were determined at three different temperatures. The hydrogen bond interactions are the predominant intermolecular forces to stabilize the CuO nanoparticle – BSA complex. This study provides important insight into the interaction of CuO nanoparticles with proteins, which may be of importance for further application of these nanoparticles in biomedical applications.  相似文献   

17.
Modeling of optical properties of spherical core–shell gold–silver and silver–gold nanoparticles (NPs) was carried out based on extended Mie theory for radiation wavelengths in the range 300?≤?λ?≤?650 nm. Efficiency factors of absorption, scattering, and extinction of radiation by core–shell NPs in the range of the radii 5–100 nm and in the range of shell thicknesses 0–40 nm were calculated. Results show the nonlinear dependences of optical properties of core–shell gold–silver and silver–gold nanoparticles on radiation wavelengths, core radii, and shell thicknesses. These results can be applied for photonic technologies of nanoparticles.  相似文献   

18.
A morin–zinc(II) complex (MZ) was synthesized and its interaction with bovine serum albumin (BSA) were studied by molecular spectroscopy including fluorescence emission spectra, UV-visible spectra, circular dichroism (CD) spectra, three-dimensional fluorescence spectra, and synchronous fluorescence spectra. The interaction mechanism of BSA and MZ was discussed by fluorescence quenching method and Förster non-radiation energy transfer theory. The thermodynamic parameters ΔH θ, ΔG θ, ΔS θ at different temperatures were calculated and the results indicate the interaction is an exothermic as well as entropy-driven process. Hydrogen bond forces played the most important role in the reaction. The fluorescence probe experiment showed that the binding site of MZ is in subdomain IIA of BSA and the distance between BSA and MZ is 3.17 nm at normal body temperature. The conformation changes of BSA in presence of MZ were investigated by CD spectra and three-dimensional fluorescence spectra.  相似文献   

19.
The interaction of paclitaxel with human serum albumin (HSA) was studied using fluorescence, resonance light scattering, ultraviolet‐visible, circular dichroism and Fourier transform infrared spectroscopy at pH 7.4. Fluorescence data revealed that the fluorescence quenching of HSA by paclitaxel was a static quenching procedure. Time‐resolved fluorescence data also confirmed the quenching mode, which present a constant decay time of about 5 ns. The binding sites were approximately 1 and the binding constant suggested a weak association (324/M at 298 K), which is helpful for the release of the drug to targeted organs. The thermodynamic parameters, ΔG, ΔH° and ΔS° were calculated as – 1.06 × 104 J/mol, 361 J/mol per K and 9.7 × 104 J/mol respectively at 298 K, suggesting that binding was spontaneous and was driven mainly by hydrophobic interactions. The binding distance between HSA and paclitaxel was determined to be 2.23 nm based on the Förster theory. Analysis of circular dichroism, ultraviolet‐visible, three‐dimensional fluorescence, Fourier transform infrared and resonance light scattering spectra demonstrated that HSA conformation was slightly altered in the presence of paclitaxel and dimension of the individual HSA molecules were larger after interacting with paclitaxel. These results were confirmed by a molecular docking study. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
A high-throughput Förster resonance energy transfer (FRET) study was performed on the approximately 100 amino acids long N-terminal domain of the photosynthetic complex CP29 of higher plants. For this purpose, CP29 was singly mutated along its N-terminal domain, replacing one-by-one native amino acids by a cysteine, which was labeled with a BODIPY fluorescent probe, and reconstituted with the natural pigments of CP9, chlorophylls and xanthophylls. Picosecond fluorescence experiments revealed rapid energy transfer (~20–70 ps) from BODIPY at amino-acid positions 4, 22, 33, 40, 56, 65, 74, 90, and 97 to Chl a molecules in the hydrophobic part of the protein. From the energy transfer times, distances were estimated between label and chlorophyll molecules, using the Förster equation. When the label was attached to amino acids 4, 56, and 97, it was found to be located very close to the protein core (~15 Å), whereas labels at positions 15, 22, 33, 40, 65, 74, and 90 were found at somewhat larger distances. It is concluded that the entire N-terminal domain is in close contact with the hydrophobic core and that there is no loop sticking out into the stroma. Most of the results support a recently proposed topological model for the N-terminus of CP29, which was based on electron-spin-resonance measurements on spin-labeled CP29 with and without its natural pigment content. The present results lead to a slight refinement of that model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号