首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Preuss M  Miller AD 《FEBS letters》2000,466(1):75-79
The affinity of four short peptides for the Escherichia coli molecular chaperone GroEL was studied in the presence of the co-chaperone GroES and nucleotides. Our data show that binding of GroES to one ring enhances the interaction of the peptides with the opposite GroEL ring, a finding that was related to the structural readjustments in GroEL following GroES binding. We further report that the GroEL/GroES complex has a high affinity for peptides during ATP hydrolysis when protein substrates would undergo repeated cycles of assisted folding. Although we could not determine at which step(s) during the cycle our peptides interacted with GroEL, we propose that successive state changes in GroEL during ATP hydrolysis may create high affinity complexes and ensure maximum efficiency of the chaperone machinery under conditions of protein folding.  相似文献   

2.
Small-angle neutron scattering and contrast variation were used to study the solution structure of GroEL and GroEL/GroES chaperonins complexed with a nonnative variant of the polypeptide substrate, subtilisin (PJ9). The subtilisin was 86% deuterated (dPJ9) so that it contrasted sufficiently with the chaperonin, allowing the contrast variation technique to be used to separate the scattering from the two components bound in the complex. Both the native double-ring GroEL and a single-ring mutant were used with dPJ9 bound in a 1:1 stoichiometry per GroEL toroid. This allowed both the position and the shape of dPJ9 in the GroEL/dPJ9 complexes to be determined. A single-ring GroEL/GroES variant complexed with one dPJ9 molecule was used to study the structural changes of dPJ9 in GroEL/GroES/dPJ9 complexes formed with ADP and with ATP. It was found that both the shape and the position of the bound dPJ9 in the GroEL/GroES/dPJ9 complex with ADP were the same as those in the GroEL/dPJ9 complex. However, dPJ9 assumed a more symmetric shape when bound in the GroEL/GroES/dPJ9 complex with ATP. This important observation reflects the relative ability of ATP to promote refolding of protein substrates relative to that of ADP.  相似文献   

3.
Two new 2-D crystal forms of the Escherichia coli chaperone GroEL (cpn60) 2 × 7-mer have been produced using the negative staining-carbon film (NS-CF) technique. These 2-D crystals, which contain the cylindrical GroEL in side-on and end-on orientations, both possess p21 symmetry, with two molecules in the respective unit cells. The crystallographically averaged images correlate well with those obtained by other authors from single particle analysis of GroEL and our own previous crystallographic analysis. 2-D crystallization of the smaller chaperone GroES (cpn10) 7-mer has also been achieved using the NS-CF technique. Crystallographically averaged images of GroES single particle images indicate considerable variation in molecular shape, which is most likely due to varying molecular orientation on the carbon support film. The quaternary structure of GroES does, nevertheless, approximate to a ring-like shape. The complex formed by GroEL and GroES in the presence of ATP at room temperature has been shown to possess a symmetrical hollow ellipsoidal conformation. This symmetrical complex forms in the presence of a 2:1 or greater molar ratio of GroES:GroEL. At lower molar ratios linear chains of GroEL form, apparently linked by GroES in a 1:1 manner, which provide supportive evidence for the ability of both ends of the GroEL cylinder to interact with GroES. The apparent discrepancy between our data and that of other groups who have described an asymmetrical "bullet-shaped" (holo-chaperone) GroEL/ES complex is discussed in detail.  相似文献   

4.
The GroEL/GroES protein folding chamber is formed and dissociated by ATP binding and hydrolysis. ATP hydrolysis in the GroES-bound (cis) ring gates entry of ATP into the opposite unoccupied trans ring, which allosterically ejects cis ligands. While earlier studies suggested that hydrolysis of cis ATP is the rate-limiting step of the cycle (t½ ∼ 10 s), a recent study suggested that ADP release from the cis ring may be rate-limiting (t½ ∼ 15-20 s). Here we have measured ADP release using a coupled enzyme assay and observed a t½ for release of ?4-5 s, indicating that this is not the rate-limiting step of the reaction cycle.  相似文献   

5.
A double-heptamer ring chaperonin GroEL binds denatured substrate protein, ATP, and GroES to the same heptamer ring and encapsulates substrate into the central cavity underneath GroES where productive folding occurs. GroES is a disk-shaped heptamer, and each subunit has a GroEL-binding loop. The residues of the GroEL subunit responsible for GroES binding largely overlap those involved in substrate binding, and the mechanism by which GroES can replace the substrate when GroES binds to GroEL/substrate complex remains to be clarified. To address this question, we generated single polypeptide GroES by fusing seven subunits with various combinations of active and GroEL binding-defective subunits. Functional tests of the fused GroES variants indicated that four active GroES subunits were required for efficient formation of the stable GroEL/GroES complex and five subunits were required for the productive GroEL/substrate/GroES complex. An increase in the number of defective GroES subunits resulted in a slowing of encapsulation and folding. These results indicate the presence of an intermediate GroEL/substrate/GroES complex in which the substrate and GroES bind to GroEL by sharing seven common binding sites.  相似文献   

6.
To facilitate folding and assembly of different proteins, chaperonin GroEL requires the presence of its helper protein GroES. Using a photochemical cross-linking approach, we show that GroES and newly synthesized pre-beta-lactamase (pre-beta lac) contact with each other only within the ternary complex with GroEL. Possibly owing to this contact GroES is able to directly influence the pre-beta lac/GroEL interaction. Furthermore, the cross-linking of pre-beta lac to GroES suggests that the binding of the protein ligands to GroEL occurs near the GroES binding site, known to be in the central hole space of GroEL.  相似文献   

7.
8.
Despite a vast amount information on the interplay of GroEL, GroES, and ATP in chaperone-assisted folding, the molecular details on the conformational dynamics of folding polypeptide during its GroEL/GroES-assisted folding cycle is quite limited. Practically no such studies have been reported to date on large proteins, which often have difficulty folding in vitro. The effect of the GroEL/GroES chaperonin system on the folding pathway of an 82-kDa slow folding protein, malate synthase G (MSG), was investigated. GroEL bound to the burst phase intermediate of MSG and accelerated the slowest kinetic phase associated with the formation of native topology in the spontaneous folding pathway. GroEL slowly induced conformational changes on the bound burst phase intermediate, which was then transformed into a more folding-compatible form. Subsequent addition of ATP or GroES/ATP to the GroEL-MSG complex led to the formation of the native state via a compact intermediate with the rate several times faster than that of spontaneous refolding. The presence of GroES doubled the ATP-dependent reactivation rate of bound MSG by preventing multiple cycles of its GroEL binding and release. Because GroES bound to the trans side of GroEL-MSG complex, it may be anticipated that confinement of the substrate underneath the co-chaperone is not required for accelerating the rate in the assisted folding pathway. The potential role of GroEL/GroES in assisted folding is most likely to modulate the conformation of MSG intermediates that can fold faster and thereby eliminate the possibility of partial aggregation caused by the slow folding intermediates during its spontaneous refolding pathway.  相似文献   

9.
SecYEG functions as a membrane channel for protein export. SecY constitutes the protein-conducting pore, which is enwrapped by SecE in a V-shaped manner. In its minimal form SecE consists of a single transmembrane segment that is connected to a surface-exposed amphipathic α-helix via a flexible hinge. These two domains are the major sites of interaction between SecE and SecY. Specific cleavage of SecE at the hinge region, which destroys the interaction between the two SecE domains, reduced translocation. When SecE and SecY were disulfide bonded at the two sites of interaction, protein translocation was not affected. This suggests that the SecY and SecE interactions are static, while the hinge region provides flexibility to allow the SecY pore to open.  相似文献   

10.
Chaperone GroEL/GroES and Lon protease were shown to play a role in regulating the expression of the Vibrio fischeri lux operon cloned in Escherichia coli cells. The E. coli groE mutant carrying a plasmid with the full-length V. fischeri lux regulon showed a decreased bioluminescence. The bioluminescence intensity was high in E. coli cells with mutant lonA and the same plasmid. Bioluminescence induction curves lacked the lag period characteristic of lon + strains. Regulatory luxR of V. fischeri was cloned in pGEX-KG to produce the hybrid gene GST-luxR. The product of its expression, GST-LuxR, was isolated together with GroEL and Lon upon affinity chromatography on a column with glutathione-agarose, suggesting complexation of LuxR with these proteins. It was assumed that GroEL/GroES is involved in LuxR folding, while Lon protease degrades LuxR before its folding into an active globule or after denaturation.  相似文献   

11.
12.
R. E. Williamson 《Planta》1972,106(2):149-157
Summary Experiments are reported which were designed to test the hypothesis that the movement of the translocation stream is driven by the contractile activity of P-protein filaments. The different types of filament found after negative staining of phloem exudates from Ricinus communis and Cucurbita pepo are described. An approximate model is proposed for the quaternary structure of a 20 nm component in the R. communis exudate. None of the filaments showed any ability to bind heavy meromyosin subfragment one. In experiments with cytochalasin B, no evidence of effects on the movement of 14C-assimilates or on the ultrastructure of the sieve elements of Lepidium sativum was found. It is concluded that the available evidence is unfavourable to the view that P-protein resembles known contractile proteins elsewhere.  相似文献   

13.
Jo S  Kim T  Im W 《PloS one》2007,2(9):e880
Molecular dynamics simulations of membrane proteins have provided deeper insights into their functions and interactions with surrounding environments at the atomic level. However, compared to solvation of globular proteins, building a realistic protein/membrane complex is still challenging and requires considerable experience with simulation software. Membrane Builder in the CHARMM-GUI website (http://www.charmm-gui.org) helps users to build such a complex system using a web browser with a graphical user interface. Through a generalized and automated building process including system size determination as well as generation of lipid bilayer, pore water, bulk water, and ions, a realistic membrane system with virtually any kinds and shapes of membrane proteins can be generated in 5 minutes to 2 hours depending on the system size. Default values that were elaborated and tested extensively are given in each step to provide reasonable options and starting points for both non-expert and expert users. The efficacy of Membrane Builder is illustrated by its applications to 12 transmembrane and 3 interfacial membrane proteins, whose fully equilibrated systems with three different types of lipid molecules (DMPC, DPPC, and POPC) and two types of system shapes (rectangular and hexagonal) are freely available on the CHARMM-GUI website. One of the most significant advantages of using the web environment is that, if a problem is found, users can go back and re-generate the whole system again before quitting the browser. Therefore, Membrane Builder provides the intuitive and easy way to build and simulate the biologically important membrane system.  相似文献   

14.
Post-translational isoprenylation of proteins is carried out by three related enzymes: farnesyltransferase, geranylgeranyl transferase-I, and Rab geranylgeranyl transferase (RabGGTase). Despite the fact that the last one is responsible for the largest number of individual protein prenylation events in the cell, no structural information is available on its interaction with substrates and products. Here, we present structural and biophysical analyses of RabGGTase in complex with phosphoisoprenoids as well as with the prenylated peptides that mimic the C terminus of Rab7 GTPase. The data demonstrate that, unlike other protein prenyl transferases, both RabGGTase and its substrate RabGTPases completely 'outsource' their specificity for each other to an accessory subunit, the Rab escort protein (REP). REP mediates the placement of the C terminus of RabGTPase into the active site of RabGGTase through a series protein-protein interactions of decreasing strength and selectivity. This arrangement enables RabGGTase to prenylate any cysteine-containing sequence. On the basis of our structural and thermodynamic data, we propose that RabGGTase has evolved from a GGTase-I-like molecule that 'learned' to interact with a recycling factor (GDI) that, in turn, eventually gave rise to REP.  相似文献   

15.
The mechanism of GroEL (chaperonin)-mediated protein folding is only partially understood. We have analysed structural and functional properties of the interaction between GroEL and the co-chaperonin GroES. The stoichiometry of the GroEL 14mer and the GroES 7mer in the functional holo-chaperonin is 1:1. GroES protects half of the GroEL subunits from proteolytic truncation of the approximately 50 C-terminal residues. Removal of this region results in an inhibition of the GroEL ATPase, mimicking the effect of GroES on full-length GroEL. Image analysis of electron micrographs revealed that GroES binding triggers conspicuous conformational changes both in the GroES adjacent end and at the opposite end of the GroEL cylinder. This apparently prohibits the association of a second GroES oligomer. Addition of denatured polypeptide leads to the appearance of irregularly shaped, stain-excluding masses within the GroEL double-ring, which are larger with bound alcohol oxidase (75 kDa) than with rhodanese (35 kDa). We conclude that the functional complex of GroEL and GroES is characterized by asymmetrical binding of GroES to one end of the GroEL cylinder and suggest that binding of the substrate protein occurs within the central cavity of GroEL.  相似文献   

16.
Bacterial chaperonin, GroEL, together with its co-chaperonin, GroES, facilitates the folding of a variety of polypeptides. Experiments suggest that GroEL stimulates protein folding by multiple cycles of binding and release. Misfolded proteins first bind to an exposed hydrophobic surface on GroEL. GroES then encapsulates the substrate and triggers its release into the central cavity of the GroEL/ES complex for folding. In this work, we investigate the possibility to facilitate protein folding in molecular dynamics simulations by mimicking the effects of GroEL/ES namely, repeated binding and release, together with spatial confinement. During the binding stage, the (metastable) partially folded proteins are allowed to attach spontaneously to a hydrophobic surface within the simulation box. This destabilizes the structures, which are then transferred into a spatially confined cavity for folding. The approach has been tested by attempting to refine protein structural models generated using the ROSETTA procedure for ab initio structure prediction. Dramatic improvements in regard to the deviation of protein models from the corresponding experimental structures were observed. The results suggest that the primary effects of the GroEL/ES system can be mimicked in a simple coarse-grained manner and be used to facilitate protein folding in molecular dynamics simulations. Furthermore, the results support the assumption that the spatial confinement in GroEL/ES assists the folding of encapsulated proteins.  相似文献   

17.
Park ES  Fenton WA  Horwich AL 《FEBS letters》2005,579(5):1183-1186
In tritium-hydrogen exchange experiments, the large GroEL substrate Rubisco was unfolded and exchanged in urea/acid/tritiated water, then diluted into either protic buffer or protic buffer containing GroEL. The respective Rubisco metastable folding intermediate or Rubisco-GroEL binary complex was then separated from residual tritium after varying times of exchange by centrifugation through P-10 or G-25 resin. No significant tritium was recovered in either case, in contrast to an earlier report. Thus, although the earlier-proposed forced unfolding mechanism for the action of GroEL on a bound polypeptide, occurring during ATP/GroES binding, remains an attractive hypothesis, the data here do not provide any indication that it is involved in the folding of Rubisco.  相似文献   

18.
The submission of Escherichia coli cells to heat-shock (45 degrees C, 15 min) caused the intracellular aggregation of endogenous proteins. In the wt cells the aggregates (the S fraction) disappeared 10 min after transfer to 37 degrees C. In contrast, the S fraction in the dnaK and dnaJ mutant strains was stable during approximately one generation time (45 min). This demonstrated that neither the renaturation nor the degradation of the denatured proteins was possible in the absence of DnaK and DnaJ. The groEL44 and groES619 mutations stabilised the aggregates to a lesser extent. It was shown by the use of cloned genes, dnaK/dnaJ or groEL/groES, producing the corresponding proteins in about 4-fold excess, that the appearance of the S fraction in the wt strain resulted from a transiently insufficient supply of the heat-shock proteins. Overproduction of the GroEL/GroES proteins in dnaK756 or dnaJ259 background prevented the aggregation, however, overproduction of the DnaK/DnaJ proteins did not prevent the aggregation in the groEL44 or groES619 mutant cells although it accelerated the disappearance of the aggregates. The properties of the aggregated proteins are discussed from the point of view of their competence to renaturation/degradation by the heat-shock system.  相似文献   

19.
Cotranslational translocation of proteins requires ribosome binding to the Sec61p channel at the endoplasmic reticulum (ER) membrane. We have used electron cryomicroscopy to determine the structures of ribosome-channel complexes in the absence or presence of translocating polypeptide chains. Surprisingly, the structures are similar and contain 3-4 connections between the ribosome and channel that leave a lateral opening into the cytosol. Therefore, the ribosome-channel junction may allow the direct transfer of polypeptides into the channel and provide a path for the egress of some nascent chains into the cytosol. Moreover, complexes solubilized from mammalian ER membranes contain an additional membrane protein that has a large, lumenal protrusion and is intercalated into the wall of the Sec61p channel. Thus, the native channel contains a component that is not essential for translocation.  相似文献   

20.
GroEL encapsulates non-native protein in a folding cage underneath GroES (cis-cavity). Here we report the maximum size of the non-native protein to stay and fold in the cis-cavity. Using total soluble proteins of Escherichia coli in denatured state as binding substrates and protease resistance as the measure of polypeptide held in the cis-cavity, it was estimated that the cis-cavity can accommodate up to approximately 57-kDa non-native proteins. To know if a protein with nearly the maximum size can complete folding in the cis-cavity, we made a 54-kDa protein in which green fluorescent protein (GFP) and its blue fluorescent variant were fused tandem. This fusion protein was captured in the cis-cavity, and folding occurred there. Fluorescence resonance energy transfer proved that both GFP and blue fluorescent protein moieties of the same fused protein were able to fold into native structures in the cis-cavity. Consistently, simulated packing of crystal structures shows that two native GFPs just fit in the cis-cavity. A fusion protein of three GFPs (82 kDa) was also attempted, but, as expected, it was not captured in the cis-cavity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号