首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Histone RNA 3' processing in vitro produces one or more 5' cleavage products corresponding to the mature histone mRNA 3' end, and a group of 3' cleavage products whose 5' ends are mostly located several nucleotides downstream of the mRNA 3' end. The formation of these 3' products is coupled to the formation of 5' products and dependent on the U7 snRNP and a heat-labile processing factor. These short 3' products therefore are a true and general feature of the processing reaction. Identical 3' products are also formed from a model RNA containing all spacer nucleotides downstream of the mature mRNA 3' end, but no sequences from the mature mRNA. Again, this reaction is dependent on both the U7 snRNP and a heat-labile factor. Unlike the processing with a full-length histone pre-mRNA, this reaction produces only 3' but no 5' fragments. In addition, product formation is inhibited by addition of cap structures at the model RNA 5' end, indicating that product formation occurs by 5'-3' exonucleolytic degradation. This degradation of a model 3' product by a 5'-3' exonuclease suggests a mechanism for the release of the U7 snRNP after processing by shortening the cut-off histone spacer sequences base paired to U7 RNA.  相似文献   

2.
3.
4.
We have analysed the extent of base-pairing interactions between spacer sequences of histone pre-mRNA and U7 snRNA present in the trans-acting U7 snRNP and their importance for histone RNA 3' end processing in vitro. For the efficiently processed mouse H4-12 gene, a computer analysis revealed that additional base pairs could be formed with U7 RNA outside of the previously recognised spacer element (stem II). One complementarity (stem III) is located more 3' and involves nucleotides from the very 5' end of U7 RNA. The other, more 5' located complementarity (stem I) involves nucleotides of the Sm binding site of U7 RNA, a part known to interact with snRNP structural proteins. These potential stem structures are separated from each other by short internal loops of unpaired nucleotides. Mutational analyses of the pre-mRNA indicate that stems II and III are equally important for interaction with the U7 snRNP and for processing, whereas mutations in stem I have moderate effects on processing efficiency, but do not impair complex formation with the U7 snRNP. Thus nucleotides near the processing site may be important for processing, but do not contribute to the assembly of an active complex by forming a stem I structure. The importance of stem III was confirmed by the ability of a complementary mutation in U7 RNA to suppress a stem III mutation in a complementation assay using Xenopus laevis oocytes. The main role of the factor(s) binding to the upstream hairpin loop is to stabilise the U7-pre-mRNA complex. This was shown by either stabilising (by mutation) or destabilising (by increased temperature) the U7-pre-mRNA base-pairing under conditions where hairpin factor binding was either allowed or prevented (by mutation or competition). The hairpin dependence of processing was found to be inversely related to the strength of the U7-pre-mRNA interaction.  相似文献   

5.
Brown KM  Gilmartin GM 《Molecular cell》2003,12(6):1467-1476
Human cleavage factor I(m) (CFI(m)) is a heterodimeric RNA binding protein complex that functions at an early step in the assembly of the pre-mRNA 3' processing complex. In this report we show that CFI(m) can stimulate both cleavage and poly(A) addition, and can act to suppress poly(A) site cleavage in a sequence-dependent manner. Elevated levels of CFI(m) suppressed cleavage at the primary poly(A) site of the pre-mRNA encoding the 68 kDa subunit of CFI(m). CFI(m)-mediated suppression of poly(A) site cleavage was dependent upon the presence of three copies of an RNA element initially identified by CFI(m)-SELEX. These data provide evidence for a mechanism for the regulation of poly(A) site selection by a basal pre-mRNA 3' processing factor.  相似文献   

6.
7.
Mature U3 snoRNA in yeast is generated from the 3′-extended precursors by endonucleolytic cleavage followed by exonucleolytic trimming. These precursors terminate in poly(U) tracts and are normally stabilised by binding of the yeast La homologue, Lhp1p. We report that normal 3′ processing of U3 requires the nuclear Lsm proteins. On depletion of any of the five essential proteins, Lsm2–5p or Lsm8p, the normal 3′-extended precursors to the U3 snoRNA were lost. Truncated fragments of both mature and pre-U3 accumulated in the Lsm-depleted strains, consistent with substantial RNA degradation. Pre-U3 species were co-precipitated with TAP-tagged Lsm3p, but the association with spliced pre-U3 was lost in strains lacking Lhp1p. The association of Lhp1p with pre-U3 was also reduced on depletion of Lsm3p or Lsm5p, indicating that binding of Lhp1p and the Lsm proteins is interdependent. In contrast, a tagged Sm-protein detectably co-precipitated spliced pre-U3 species only in strains lacking Lhp1p. We propose that the Lsm2–8p complex functions as a chaperone in conjunction with Lhp1p to stabilise pre-U3 RNA species during 3′ processing. The Sm complex may function as a back-up to stabilise 3′ ends that are not protected by Lhp1p.  相似文献   

8.
9.
10.
3'-End processing of pre-mRNA in eukaryotes   总被引:1,自引:0,他引:1  
  相似文献   

11.
RBM25 has been shown to associate with splicing cofactors SRm160/300 and assembled splicing complexes, but little is known about its splicing regulation. Here, we characterize the functional role of RBM25 in alternative pre-mRNA splicing. Increased RBM25 expression correlated with increased apoptosis and specifically affected the expression of Bcl-x isoforms. RBM25 stimulated proapoptotic Bcl-xS 5′ splice site (5′ ss) selection in a dose-dependent manner, whereas its depletion caused the accumulation of antiapoptotic Bcl-xL. Furthermore, RBM25 specifically bound to Bcl-x RNA through a CGGGCA sequence located within exon 2. Mutation in this element abolished the ability of RBM25 to enhance Bcl-xS 5′ ss selection, leading to decreased Bcl-xS isoform expression. Binding of RBM25 was shown to promote the recruitment of the U1 small nuclear ribonucleoprotein particle (snRNP) to the weak 5′ ss; however, it was not required when a strong consensus 5′ ss was present. In support of a role for RBM25 in modulating the selection of a 5′ ss, we demonstrated that RBM25 associated selectively with the human homolog of yeast U1 snRNP-associated factor hLuc7A. These data suggest a novel mode for Bcl-xS 5′ ss activation in which binding of RBM25 with exonic element CGGGCA may stabilize the pre-mRNA-U1 snRNP through interactions with hLuc7A.  相似文献   

12.
13.
14.
Long-distance regulatory elements and local chromatin structure are critical for proper regulation of gene expression. Here we characterize the chromatin conformation of the chicken α-globin silencer-enhancer elements located 3′ of the domain. We found a characteristic and erythrocyte-specific structure between the previously defined silencer and the enhancer, defined by two nuclease hypersensitive sites, which appear when the enhancer is active during erythroid differentiation. Fine mapping of these sites demonstrates the absence of a positioned nucleosome and the association of GATA-1. Functional analyses of episomal vectors, as well as stably integrated constructs, revealed that GATA-1 plays a major role in defining both the chromatin structure and the enhancer activity. We detected a progressive enrichment of histone acetylation on critical enhancer nuclear factor binding sites, in correlation with the formation of an apparent nucleosome-free region. On the basis of these results, we propose that the local chromatin structure of the chicken α-globin enhancer plays a central role in its capacity to differentially regulate α-globin gene expression during erythroid differentiation and development.  相似文献   

15.
16.
17.
We have studied the requirements for efficient histone-specific RNA 3' processing in nuclear extract from mammalian tissue culture cells. Processing is strongly impaired by mutations in the pre-mRNA spacer element that reduce the base-pairing potential with U7 RNA. Moreover, by exchanging the hairpin and spacer elements of two differently processed H4 genes, we find that this difference is exclusively due to the spacer element. Finally, processing is inhibited by the addition of competitor RNAs, if these contain a wild-type spacer sequence, but not if their spacer element is mutated. Conversely, the importance of the hairpin for histone RNA 3' processing is highly variable: A hairpin mutant of the H4-12 gene is processed with almost wild-type efficiency in extract from K21 mouse mastocytoma cells but is strongly affected in HeLa cell extract, whereas an identical hairpin mutant of the H4-1 gene is affected in both extracts. The hairpin defect of H4-12-specific RNA in HeLa cells can be overcome by a compensatory mutation that increases the base complementarity to U7 snRNA. Very similar results were also obtained in RNA competition experiments: processing of H4-12-specific RNA can be competed by RNA carrying a wild-type hairpin element in extract from HeLa, but not K21 cells, whereas processing of H4-1-specific RNA can be competed in both extracts. With two additional histone genes we obtained results that were in one case intermediate and in the other similar to those obtained with H4-1. These results suggest that hairpin binding factor(s) can cooperatively support the ability of U7 snRNPs to form an active processing complex, but is(are) not directly involved in the processing mechanism.  相似文献   

18.
19.
Processing of histone pre-mRNA requires a single 3′ endonucleolytic cleavage guided by the U7 snRNP that binds downstream of the cleavage site. Following cleavage, the downstream cleavage product (DCP) is rapidly degraded in vitro by a nuclease that also depends on the U7 snRNP. Our previous studies demonstrated that the endonucleolytic cleavage is catalyzed by the cleavage/polyadenylation factor CPSF-73. Here, by using RNA substrates with different nucleotide modifications, we characterize the activity that degrades the DCP. We show that the degradation is blocked by a 2′-O-methyl nucleotide and occurs in the 5′-to-3′ direction. The U7-dependent 5′ exonuclease activity is processive and continues degrading the DCP substrate even after complete removal of the U7-binding site. Thus, U7 snRNP is required only to initiate the degradation. UV cross-linking studies demonstrate that the DCP and its 5′-truncated version specifically interact with CPSF-73, strongly suggesting that in vitro, the same protein is responsible for the endonucleolytic cleavage of histone pre-mRNA and the subsequent degradation of the DCP. By using various RNA substrates, we define important space requirements upstream and downstream of the cleavage site that dictate whether CPSF-73 functions as an endonuclease or a 5′ exonuclease. RNA interference experiments with HeLa cells indicate that degradation of the DCP does not depend on the Xrn2 5′ exonuclease, suggesting that CPSF-73 degrades the DCP both in vitro and in vivo.  相似文献   

20.
Cell cycle-regulated histone mRNAs end in a conserved 26-nt sequence that can form a stem-loop with a six-base stem and a four-base loop. The 3' end of histone mRNA has distinct functions in the nucleus and in the cytoplasm. In the nucleus it functions in pre-mRNA processing and transport, whereas in the cytoplasm it functions in translation and regulation of histone mRNA stability. The stem-loop binding protein (SLBP), present in both nuclei and polyribosomes, is likely the trans-acting factor that binds to the 3' end of mature histone mRNA and mediates its function. A nuclear extract that efficiently processes histone pre-mRNA was prepared from mouse myeloma cells. The factor(s) that bind to the 3' end of histone mRNA can be depleted from this extract using a biotinylated oligonucleotide containing the conserved stem-loop sequence. Using this depleted extract which is deficient in histone pre-mRNA processing, we show that SLBP found in polyribosomes can restore processing, suggesting that SLBP associates with histone pre-mRNA in the nucleus, participates in processing, and then accompanies the mature mRNA to the cytoplasm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号