首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 820 毫秒
1.
An electrophoretic system using cellulose acetate has been developed for the resolution of beta-glucosidase isozymes (beta-D-glucoside glucohydrolase, EC 3.2.1.21 and D-glucosyl-N-acylsphingosine glucohydrolase, EC 3.2.1.45) in human tissue homogenates. Electrophoresis of homogenates from normal and Type 1 Gaucher disease tissues revealed two fluorescent bands of beta-glucosidase activity which corresponded to the acid and neutral isozymes separated by concanavalin A-Sepharose chromatography. The acid isozyme has only beta-glucosidase activity, whereas the neutral isozyme also exhibited alpha-L-arabinosidase (alpha-L-arabinofuranoside arabinofuranohydrolase, EC 3.2.1.55), beta-D-galactosidase (beta-D-galactoside galactohydrolase, EC 3.2.1.23) and beta-D-xylosidase (1,4-beta-D-xylan xylohydrolase, EC 3.2.1.37) activities, using the appropriate 4-methylumbelliferyl glycoside. In homogenates of cultured skin fibroblasts, only the acid isozyme was observed which co-electrophoresed with the acidic activity in other tissue homogenates. The acidic activity in tissue and fibroblast homogenates from Type 1 Gaucher disease appeared to co-electrophorese with the acid isozyme in normal tissues, but had markedly reduced activity.  相似文献   

2.
The binding of 22 human liver hydrolase activities by immobilized lectins of six different carbohydrate specificities, namely alpha-D-mannose (glucose), D-N-acetylglucosamine, D-N-acetylgalactosamine, L-fucose, alpha-D-galactose and beta-D-galactose, were examined. Differences in binding among these enzymes and within specific enzymes were observed. For example, the neutral forms of alpha-mannosidase and beta-xylosidase were bound by the Ulex europaeus lectin I (specific for L-fucose), whereas the acidic forms were not. Bandierea simplicifolia lectin (specific for alpha-galactose) bound 65% of beta-glucuronidase activity; recycling experiments demonstrated complete binding of the enzyme that had been eluted with the competitor D-galactose and no binding of the fraction that was not initially bound. These results suggested the presence of two forms of this enzyme. Similar data were obtained for acidic beta-galactosidase activity. These experiments may provide the basis for the expanded use of immobilized lectins for purification and characterization of hydrolases and other glycoproteins.  相似文献   

3.
The inhibition of 2,4-D-induced elongation growth by galactoglucomannan oligosaccharides (GGMOs) in pea stem segments (Pisum sativum L. cv. Tyrkys) after 18 h of incubation results in changes of extracellular, intracellular and cell wall glycosidase activities (beta-D-glucosidase, beta-D-mannosidase, beta-D-galactosidase, beta-D-xylosidase, alpha-D-galactosidase, and alpha-L-arabinosidase). GGMOs lowered the glycosidase activities in the extracellular fraction, while in the cell wall fractions their activities were markedly increased. The intracellular enzyme alpha-d-galactosidase increased while the beta-d-galactosidase decreased in activity in response to the GGMO treatment. Extracellular enzymes showed low values of activities in comparison with intracellular and cell wall glycosidases. It is evident that GGMOs can alter auxin induced elongation and glycosidase activities in different compartments of the cell, however, the mode and site of their action remains unclear.  相似文献   

4.
Our studies with purified human liver acid beta-D-galactosidases (EC 3.2.1.23) indicate that 4-methylumbelliferyl beta-D-galactosidase and G(M1)-ganglioside beta-D-galactosidase activities are identical with lactosylceramidase II activity. Evidence for this includes co-purification of all enzyme activities by affinity chromatography to yield a single band on polyacrylamide-gel electrophoresis and coincident elution from Sepharose 6B of all three enzyme activities.  相似文献   

5.
Artiodactyls possess abundant neutral glycosidase activity in liver, kidney and intestine. This enzyme is cytosolic and displays a more neutral pH optimum, more acidic isoelectric point and broader substrate range than the corresponding acidic β-galactosidases. The neutral glycosidases were more thermolabile than the respective acidic β-galactosidases and displayed a relative molecular mass approximating 60 kDa. This isozyme appeared to be a minor species in both rat and dog liver. The porcine enzyme was studied in more detail. Porcine neutral glycosidase activity was detected in 45-day gestational fetuses in both liver and kidney but not brain. Fetal kidney activities were about half those observed in adult kidney extracts. Porcine neutral glycosidase was immunologically distinct from acidic β-galactosidase and was immunologically similar to the corresponding isozymes from deer, ovine and bovine liver. Porcine neutral glycosidase was moderately inhibited by d-galactonic acid γ-lactone and strongly inhibited by d-gluconic acid δ-lactone; however, acidic β-galactosidase was not inhibited by the δ-lactone. Inhibition by the γ-lactone was competitive for both enzymes. 4-Methylumbelliferyl-β-d-galactoside, -glucoside and -xyloside competed for the same active site. A polymorphism for fast- and slow-migrating isozymes of porcine neutral glycosidase was observed, which appeared to be under genetic control.  相似文献   

6.
Isoelectric focusing of the acid beta-D-galactosidases (beta-D-galactoside galactohydrolase, EC 3.2.1.23) in normal crude liver supernatant fluids demonstrated multiple isoelectric forms in the pH range 4.58-5.15, while corresponding I-cell disease samples showed an absence of isoelectric forms in the pH range 4.99-5.15. Concanavalin A-Sepharose 4B chromatography of the I-cell disease mutant C.A. demonstrated a 31% and 37% decrease in the binding of 4-methyl-umbelliferyl-beta-D-galactosidase and GM1 beta-D-galactosidase activities, respectively, when compared to normal samples. Isoelectric focusing profiles of the concanavalin A-Sepharose 4B alpha-methyl-D-mannoside effluents containing normal and I-cell disease acid beta-D-galactosidase were generally similar, but the unadsorbed I-cell disease enzyme from concanavalin A-Sepharose 4B demonstrated more activity in the pH range 4.21-4.49 than normals. Normal and I-cell disease acid beta-D-galactosidase "A" and "B", separated by gel column chromatography were found to have similar properties with respect to apparent molecular weights pH vs. activity profiles and apparent Km values for the 4 methylumbelliferyl-beta-D-galactopyranoside, GM1-ganglioside and asialofetuin (ASF) substrates. However, the apparent V values for the ICD samples were consistently reduced when compared to the results obtained with the corresponding normal fractions. The greatest decreases in apparent V were obtained for acid beta-D-galactosidase activities in I-cell disease crude supernatant fluids, and for the separated I-cell disease "B" enzyme. The differences in the isoelectric focusing profiles, the altered binding to concanavalin A-Sepharose 4B, and the reduced V values with natural and synthetic substrates may be related to changes in carbohydrate composition of I-cell disease acid beta-D-galactosidase.  相似文献   

7.
Imino- and azasugar glycosidase inhibitors display pH dependant inhibition reflecting that both the inhibitor and the enzyme active site have groups that change protonation state with pH. With the enzyme having two acidic groups and the inhibitor one basic group, enzyme–inhibitor complexes with three (EH3I), two (EH2I), one (EHI), or no protons (EI), are possible. In the present work an analysis method is presented that from pH-inhibition data allows one to distinguish between the different complexes and determine which protonation state is preferred. It is also possible to determine the pH-independent binding constants of the inhibitor. Analysis of pH data for imino- and azasugar inhibition of β-glucosidases revealed that basic glycosidase inhibitors bind as the monoprotonated (EHI) complex. Three neutral inhibitors were also studied and two of these were also bound exclusively as the EHI complex while a third bound both as a EHI and a EH2I complex.  相似文献   

8.
By means of a simple procedure involving two gel filtrations and an ion-exchange chromatography, alpha-N-acetylgalactosaminidase was purified to an electrophoretically homogeneous form from skipjack liver, in which the enzyme is the dominant glycosidase. The final alpha-N-acetylgalactosaminidase preparation contained practically no other glycosidase activities except alpha-galactosidase activity, which amounted to 0.8% of the alpha-N-acetylgalactosaminidase activity and may be an intrinsic activity of the enzyme. The molecular weight of the enzyme was estimated to be 80,000 at pH 4.2 and 40,000 at pH 7.2 by molecular sieve chromatography, and to be 35,000 by SDS-polyacrylamide gel electrophoresis. The enzyme was most active at pH 4 and was inactive above pH 7. These results suggest that skipjack alpha-N-acetylgalactosaminidase exists as an active dimer at acidic pH and as inactive monomer at neutral or alkaline pH. The enzyme efficiently liberated the N-acetylgalactosamine unit from ovine submaxillary glycoprotein which had been desialylated by neuraminidase. The Km value and maximum velocity were 4.28 mM and 409 mumol/min X mg for p-nitrophenyl alpha-N-acetylgalactosaminide, and 0.0543 mM and 1.19 mumol/min X mg for ovine submaxillary asialoglycoprotein.  相似文献   

9.
A procedure is described for the preparation of extensively purified beta-D-glucosidase (EC 3.2.1.21) from the cytosol fraction of rat kidney. The specific activity of the beta-glucosidase in the high speed supernatant (100 000 X g, 90 min) fraction of rat kidney homogenate is 700-fold greater than that in the same fraction from heart, skeletal muscle, lung, spleen, brain or liver. beta-Glucosidase activity co-chromatographs with beta-D-galactosidase, beta-D-fucosidase, alpha-L-arabinosidase and beta-D-xylosidase activities through the last four column steps of the purification and their specific activities are 0.26, 0.39, 0.028 and 0.017 relative to that of beta-glucosidase, respectively. The specific activity of the apparently homogeneous beta-glucosidase is 115 000 nmol of glucose released from 4-methylumbelliferyl-beta-D-glucopyranoside per mg protein per h. All five glycosidase activities possess similar pH dependency (pH optimum, 6--7) and heat lability, and co-migrate on polyacrylamide disc gels at pH 8.9 (RF, 0.67). beta-Glucosidase acitivity is inhibited competitively by glucono-(1 leads to 5)-lactone (KI, 0.61 mM) and non-competitively by a variety of sulfhydryl reagents including N-ethylmaleimide, p-chloromercuribenzoate, 5,5'-dithio-bis(2-nitrobenzoic acid), and iodoacetic acid. Although the enzyme will release glucose from p-nitrophenyl and 4-methylumbelliferyl derivatives of beta-D-glucose, it will not hydrolyze xylosyl-O-serine, beta-D-glucocerebroside, lactose, galactosylovalbumin or trehalose. The enzyme consists of a single polypeptide chain with a molecular weight of 50 000--58 000, has a sedimentation coefficient of 4.41 S and contains a relatively large number of acidic amino acids. A study of the distribution of beta-glucosidase activity in various regions of the dissected rat kidney indicates that the enzyme is probably contained in cells of the proximal convoluted tubule. The enzyme is also present in relatively large amounts in the villus cells, but not crypt cells, of the intestine. The physiological substrate and function of the enzyme are unknown.  相似文献   

10.
The residual beta-D-galactosidase activity (10% of normal) present in an autopsy sample of liver derived from an I-cell patient has been characterized. The pH optima for both I-cell and normal acid 4-methylumbelliferyl beta-D-galactoside activities were 4.35. The adsorption and elution profiles of the I-cell enzyme from Con A-Sepharose were similar to those of normal liver beta-D-galactosidase. Although starch gel electrophoresis revealed the presence of beta-D-galactosidase A and B in I-cell disease liver, the A band was more diffuse and migrated less anodally than the A band from normal liver. The electrophoretic mobilities of both I-cell and normal beta-D-galactosidase A appeared to decrease after treatment with neuraminidase. Kinetic studies of the I-cell and normal level beta-D-galactosidase demonstrated similar apparent Km values with respect to the 4-methylumbelliferyl beta-D-galactoside and Gm1 ganglioside, whereas the Vmax values obtained for the I-cell enzyme were 10- to 12-fold lower than those of the normal enzyme for both substrates.  相似文献   

11.
The pH profiles of crystalline quinolinate phosphoribosyltransferase (EC 2.4.2.19) activities from hog kidney and hog liver were found to vary according to 5-phosphoribosyl-1-pyrophosphate concentration. Both the kidney and liver enzyme activities were inhibited by 5-phosphoribosyl-1-pyrophosphate at an alkaline pH and physiological pH (pH 7.4) but not at an acidic pH. The inhibition by 5-phosphoribosyl-1-pyrophosphate was competitive for quinolinic acid. In the presence of 30% glycerol, both the kidney and liver enzyme activities were inhibited by 5-phosphoribosyl-1-pyrophosphate, even at an acidic pH.  相似文献   

12.
The phosphotyrosyl [Tyr(P)]-immunoglobulin G (IgG) phosphatase activity in the extracts of bovine heart, bovine brain, human kidney, and rabbit liver can be separated by DEAE-cellulose at neutral pH into two fractions. The unbound fraction exhibits a higher activity at acidic than neutral pH while the reverse is true for the bound fraction. Of all tissues examined, the Tyr(P)-IgG phosphatase activity in the unbound fraction measured at pH 5.0 is higher than that in the bound fraction measured at pH 7.2. The acid Tyr(P)-IgG phosphatase activity has been extensively purified from bovine heart. It copurified with an acid phosphatase activity (p-nitrophenyl phosphate (PNPP) as a substrate) throughout the purification procedure. These two activities coelute from various ion-exchange and gel filtration chromatographies and comigrate on polyacrylamide gel electrophoresis, indicating that they reside on the same protein molecule. The phosphatase has a Mr = 15,000 by gel filtration and exhibits an optimum between pH 5.0 and 6.0 when either Tyr(P)-IgG-casein or PNPP is the substrate. It is highly specific for Tyr(P)-protein with little activities toward phosphoseryl [Ser(P)]- or phosphothreonyl [Thr(P)]-protein. The enzyme activities toward Tyr(P)-casein and PNPP are strongly inhibited by microM molybdate and vanadate but insensitive to inhibition by L(+)-tartrate, NaF, or Zn2+. The molecular and catalytic properties of the acid Tyr(P)-protein phosphatase purified from bovine heart are very similar to those of the low-molecular-weight acid phosphatases of Mr = 14,000 previously identified and purified from the cytosolic fraction of human liver, placenta, and other animal tissues.  相似文献   

13.
1. Peripheral blood serum alpha-D-galactosidase, beta-D-galactosidase, beta-D-glucosidase, alpha-D-mannosidase, beta-D-xylosidase and beta-D-glucuronidase have been studied with a comparative point of view from several mammalian species: Bos taurus L. (bull), Capra hircus L. (goat), Sus scropha var. domestica L. (pig) and man. 2. Fluorimetric and spectrophotometric procedures were used for determination of enzyme activities and pH optima. 3. Glycosidase activity was generally higher with fluorescent substrates than with chromogenic substrates. 4. alpha-D-mannosidase was the most active with both fluorescent and chromogenic substrates. 5. All the studied enzymes had the same pH optimum (4.0) when the chromogenic substrates were used. 6. pH optima of these glycosidases ranged from 3.0 to 5.5 when the fluorescent substrates were used.  相似文献   

14.
GM1 gangliosidosis (type 1) in a cat.   总被引:1,自引:0,他引:1       下载免费PDF全文
A kitten with clinical and morphological symptoms of a neurovisceral lysosomal-storage disease has been shown to have a marked deficiency of acidic beta-D-galactosidase in the brain, kidney and spleen. Chromatography on concanavalin A-Sepharose and inhibition studies with 2,5-dihydroxymethyl-3,4-dihydroxypyrrolidine, a selective inhibitor of the neutral broad-specificity beta-D-galactosidase, have shown that the residual beta-D-galactosidase at pH 4.0 in the tissues of the affected cat is due to the neutral beta-D-galactosidase and that there is a complete deficiency of the acidic (lysosomal) beta-D-galactosidase. There is marked accumulation in all tissues and excretion in the urine of neutral oligosaccharides. Analysis of these oligosaccharides by fast-atom-bombardment mass spectrometry and g.l.c. suggests that they arise from the incomplete catabolism of N-glycans of glycoproteins. The ganglioside content of all the tissues is elevated, and it has been shown by t.l.c. that the concentration of a ganglioside fraction with a mobility similar to that of GM1 ganglioside is particularly increased. There is also some evidence of accumulation of glycosaminoglycans in the brain. The clinical symptoms, the complete deficiency of acidic beta-D-galactosidase and the storage products in visceral organs all suggest that this is a case of feline GM1-type gangliosidosis comparable with the severe infantile (Type 1) form of the disease in humans.  相似文献   

15.
The bulk of rat brain neutral beta-N-acetylhexosaminidases (2-acetamido-2-deoxy-beta-D-hexoside acetamidodeoxyhexohydrolase, EC 3.2.1.52) were present in the cytosol fraction. They were not bound by concanavalin A-Sepharose while the acid beta-N-acetylhexosaminidases were all bound. The neutral beta-N-acetylgalactosaminidase had a pH optimum of 5.2 and Km of 0.57 mM, while the neutral beta-N-acetylgalactosaminidase had the highest reaction rate at lost more than 90% of the activity in 30 min at 50 degrees C. The galactosaminidase pH 6.0 with a Km of 0.12 mM. No divalent ions activated either of the enzymes. The galactosaminidase was heat-stable and lost only 10--20% of its activity after 3 h at 50 degrees C. The neutral glucosaminidase was inhibited by free N-acetylglucosamine but not by N-acetylgalactosamine. The reverse was found for the neutral beta-galactosaminidase. Two enzymes were separated almost completely by hydroxyapatite chromatography. Heat stability of the separated activity peaks suggested that the neutral beta-N-acetylgalactosaminidase, which was not bound to hydroxyapatite, may be specific to the galactosaminide substrate. The neutral beta-N-acetylglucosaminidase may, on the other hand, have some activity toward the galactosaminide substrate. Both of the neutral enzyme activities were highest during the first postnatal week in rat brain in contrast to the acidic enzyme which showed peak activities during the second and third weeks. These results confirmed and expanded earlier observations by Frohwein and Gatt in calf brain. The relationship of these enzymes to the hexosaminidase C in human tissues is less certain at the present time.  相似文献   

16.
The physicochemical and binding properties of succinylated wheat germ agglutinin are described in comparison with these of unmodified wheat germ agglutinin. Succinylated wheat germ agglutinin is an acidic protein with a pI of 4.0 +/- 0.2 while the native lectin is basic, pI of 8.5. The solubility of succinylated wheat germ agglutinin is about 100 times higher than that of the unmodified lectin at neutral pH. Both lectins are dimeric at pH down to 5, and the dissociation occurs at pH lower than 4.5. The binding of oligosaccharides of N-acetylglucosamine to both lectins is very similar on the basis of fluorescence and phosphorescence studies. The minimal concentration required to agglutinate rabbit red blood cells is about 2 microgram/ml with both lectins and the concentrations of N-acetylglucosamine and di-N-acetylchitobiose which inhibit agglutination are similar with both lectins. The number of succinylated wheat germ agglutinin molecules bound to the surface of mouse thymocytes was ten times lower than that of the unmodified lectin although the apparent binding constant was only slightly different between the two lectins. The dramatic decrease of the apparent number of cell surface receptors upon succinylation of the lectin is discussed on the basis of the decrease of the isoelectric point and of the acidic properties of the cell surface.  相似文献   

17.
The catalytic amino acid residues of the extracellular beta-D-xylosidase (beta-D-xyloside xylohydrolase, EC 3.2.1.37) from Aspergillus carbonarius was investigated by the pH dependence of reaction kinetic parameters and chemical modifications of the enzyme. The pH dependence curves gave apparent pK values of 2.7 and 6.4 for the free enzyme, while pK value of 4.0 was obtained for the enzyme-substrate complex using p-nitrophenyl beta-D-xyloside as a substrate. These results suggested that a carboxylate group and a protonated group--presumably a histidine residue--took part in the binding of the substrate but only a carboxylate group was essential in the substrate cleavage. Carbodiimide- and Woodward's reagent K-mediated chemical modifications of the enzyme also supported that a carboxylate residue, located in the active center, was fundamental in the catalysis. The pH dependence of inactivation revealed the involvement of a group with pK value of 4.4, proving that a carboxylate residue relevant for hydrolysis was modified. During modification V(max) decreased to 10% of that of the unmodified enzyme and K(m) remained unchanged, supporting that the modified carboxylate group participated in the cleavage and not in the binding of the substrate. We synthesized and tested a new, potential affinity label, N-bromoacetyl-beta-d-xylopyranosylamine for beta-D-xylosidase. The A. carbonarius beta-D-xylosidase was irreversible inactivated by N-bromoacetyl-beta-D-xylopyranosylamine. The competitive inhibitor beta-D-xylopyranosyl azide protected the enzyme from inactivation proving that the inactivation took place in the active center. Kinetic analysis indicated that one molecule of reagent was necessary for inactivation of one molecule of the enzyme.  相似文献   

18.
Lysosomal membrane fractions were prepared from lysosomes of mouse liver by freeze-thawing in a hypotonic buffer: 54% of beta-glucosidase [EC 3.2.1.45] in lysosomes was associated with the membrane fractions, whereas 96% of beta-glucuronidase [EC 3.2.1.31] was recovered in the soluble fractions of lysosomes. beta-glucosidase was solubilized by pH 9.5 treatment or by Triton treatment of membranes. The enzyme solubilized with alkali and concentrated with (NH4)2SO4 was rapidly inactivated in a solution of pH 9.5, but could be protected against inactivation by acidic detergent. Gel filtration analysis indicated that beta-glucosidase was in an aggregated form at neutral pH and could be disaggregated by alkali and detergents. The enzyme dissociated with detergents also showed a higher activity than the alkali-treated enzyme. These results suggested that beta-glucosidase is a peripheral enzyme bound to acidic lipids in membranes. beta-Glucosidase was purified to apparent homogeneity by (NH4)2SO4 fractionation and chromatographies with Sephacryl S-300, hydroxylapatite and cation exchangers in the presence of detergents. The catalytic activity of the purified enzyme was maximally stimulated by phosphatidylserine and heat-stable protein in the presence of a low concentration of Triton X-100. The stimulation was mainly due to an increase in Vmax.  相似文献   

19.
A beta-D-glucosidase (linamarase) was purified 11,700-fold from the butter bean, Phaseolus lunatus L., by means of successive procedures including extraction, ammonium sulfate fractionation, acetone treatment, and chromatographies on CM-Sephadex, DEAE-Sephadex, and Sephadex G-200. The final preparation gave a single protein band on both disc polyacrylamide gel electrophoresis and SDS-polyacrylamide gel electrophoresis. In spite of its electrophoretic purity, the final enzyme preparation showed four glycosidase activities; beta-D-glucosidase, beta-D-galactosidase, beta-D-fucosidase, and beta-D-xylosidase. The molecular weight of the enzyme was determined to be 124,000 +/- 9,000 by Sephadex G-200 gel filtration, and 59,000 +/- 2,400 by SDS-disc gel electrophoresis. The enzyme showed a pH optimum in the range of 5.1 to 6.0 with p-nitrophenyl beta-D-glucoside, 4-methylumbelliferyl beta-D-glucoside, and linamarin. Among natural substrates containing a beta-glucosyl terminal, linamarin, prunasin, and salicin were hydrolyzed by the enzyme from butter beans, but amygdalin, cellobiose, gentiobiose, and laminarin were hardly hydrolyzed.  相似文献   

20.
A perfused rat liver was used to study the effects of 5-diazo-4-oxo-L-norvaline on lysosomal glycoprotein catabolism. Addition of this compound (1.0 mM) to the perfusate reduced activity of beta-aspartyl-N-acetylglucosylamine amidohydrolase by 99% in 1 h. Treated livers were unable to completely degrade endocytosed N-acetyl[14C]glucosamine-labeled asialo-alpha 1-acid glycoprotein as evidenced by a 50% reduction in radiolabeled serum glycoprotein secretion compared to controls. This decreased degradation was matched by a lysosomal accumulation of glycopeptides with the structure: GlcNAc beta(1-4)GlcNAc-Asn. The result suggested the presence of an unrecognized glycosidase in rat liver lysosomes, since this remnant was extended by one more GlcNAc residue than would have been expected after specific inactivation of the amidohydrolase. Such a novel enzyme would therefore catalyze cleavage of the N-acetylglucosamine residue at the reducing end of alpha 1-acid glycoprotein oligosaccharides only following removal of the linking Asn. The activity was then detected in lysosomal extracts by using intact asialo-biantennary oligosaccharides labeled with [3H] galactose or N-acetyl[14C]glucosamine residues as a substrate. To prevent simultaneous digestion of the material from its nonreducing end, beta-D-galactosidase in the enzyme extract was first inactivated with the irreversible active site-directed inhibitor, beta-D-galactopyranosylmethyl-p-nitrophenyltriazene. The observed di-N-acetylchitobiose cleaving activity worked optimally at pH 3.4 and was uniquely associated with the lysosomal fraction of the liver homogenate. The enzyme also cleaved triantennary chains and di-N-acetylchitobiose, but failed to hydrolyze substrates that had been reduced with NaBH4. The new glycosidase was well separated from N-acetyl-beta-D-glucosaminidase (assayed with p-nitrophenyl-beta-D-glucosaminide) by gel filtration chromatography and had an apparent molecular weight of 37,000. A similar enzyme that hydrolyzes di-N-acetylchitobiose had previously been found in extracts of human liver (Stirling, J. L. (1974) FEBS Lett. 39, 171-175).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号