首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Goat antisera against (Na+ + K+)-ATPase and its isolated subunits and against (K+ + H+)-ATPase have been prepared in order to test for immune cross-reactivity between the two enzymes, whose catalytic subunits show great chemical similarity. None of the (Na+ + K+)-ATPase antisera cross-reacted with (K+ + H+)-ATPase or inhibited its enzyme activity. The same was true for the (K+ + H+)-ATPase antiserum with regard to (Na+ + K+)-ATPase and its subunits and its enzyme activity. So not withstanding the chemical similarity of their subunits, there is no immunological cross-reactivity between these two plasma membrane ATPases.Number LIII in the series Studies on (Na+ + K+)-Activated ATPase.  相似文献   

2.
The effects of three amino group reagents on the activity of (Na++K+)-ATPase3 and its component K+-stimulatedp-nitrophenylphosphatase activity from rabbit kidney outer medulla have been studied. All three reagents cause inactivation of the enzyme. Modification of amino groups with trinitrobenzene sulfonic acid yields kinetics of inactivation of both activities, which depend on the type and concentration of the ligands present. In the absence of added ligands, or with either Na+ of Mg2+ present, the enzyme inactivation process follows complicated kinetics. In the presence of K+, Rb+, or Tl+, protection occurs due to a change of the kinetics of inactivation toward a first-order process. ATP protects against inactivation at a much lower concentration in the absence than in the presence of Mg2+ (P 50 6 µM vs. 1.2 mM). Under certain conditions (100 µM reagent, 0.2 M triethanolamine buffer, pH 8.5) modification of only 2% of the amino groups is sufficient to obtain 50% inhibition of the ATPase activity. Modification of amino groups with ethylacetimidate causes a nonspecific type of inactivation of (Na++K+)-ATPase. Mg2+ and K+ have no effects, and ATP only a minor effect, on the degree of modification. The K+-stimulatedp-nitrophenylphosphatase activity is less inhibited than the (Na++K+)-ATPase activity. Half-inhibition of the (Na++K+)-ATPase is obtained only after 25% modification of the amino groups. Modification of amino groups with acetic anhydride also causes nonspecific inactivation of (Na++K+)-ATPase. Mg2+ has no effect, and ATP has only a slight protecting effect. The K+-stimulatedp-nitrophenylphosphatase activity is inhibited in parallel with the (Na++K+)-ATPase activity. Half-inactivation of the (Na++K+)-ATPase activity is obtained after 20% modification of the amino groups.This article is No. 52 in the series Studies on (Na++K+)-Activated ATPase.  相似文献   

3.
The myelin-deficient Shiverer (Shi/Shi) mutant mouse may be a useful model in assessing the dependence of brain (Na++K+)-ATPase concentration and composition on myelin membrane formation. Brain microsomal membranes from age-matched control (+/+) and Shiverer (Shi/Shi) mice were fractionated by differential centrifugation and sucrose gradient sedimentation. No reduction in (Na++K+)-ATPase specific activity was measured in whole homogenates, high-and low-speed fractions or gradient fractions from brains of Shi/Shi mice as compared to those of +/+ mice. In addition, sodium dodecylsulfatepolyacrylamide gel electrophoresis (SDS-PAGE) and immunoblotting with antisera specific for mouse brain (Na++K+)-ATPase revealed no significant difference in catalytic subunit composition between fractions of +/+ and Shi/Shi brains. The similar results obtained for both +/+ and myelin-deficient Shi/Shi mice suggest that myelin contributes little to total brain (Na++K+)-ATPase.  相似文献   

4.
Four stable hybridoma cell lines secreting antibodies specific to the membrane (Na+ + K+)-dependent ATPase isolated from lamb kidney medulla have been produced by fusing mouse myeloma cells with spleen cells from immunized mice. These cell lines produce IgG γ1 heavy chain and κ light chain antibodies which are directed against the catalytic or α-subunit of the (Na+ + K+)-ATPase enzyme. Binding studies, using antibodies that were produced by growing hybridomas in vivo and purified by affinity column chromatography, suggest a somewhat higher affinity of these antibodies for the isolated α-subunit than for the ‘native’ holoenzyme. In addition, these monoclonal antibodies show no reactivity with either the glycoprotein (β) subunit of the lamb enzyme nor the (Na+ + K+)-ATPase from rat kidney, an ouabain-insensitive organ. Cotitration binding experiments have shown that the antibodies from two cell lines originally isolated independently from the same culture plate well population of fused cells bind to the same determinant site and are probably the same antibody. Cotitration and competition binding studies with two other antibodies have revealed two additional distinct antibody binding sites which appear to have little overlap with the first site. One of the three different antibodies isolated caused a partial inhibition of the (Na+ + K+)-ATPase activity. This antibody appears to be directed against a specific functionally important site of the α-subunit and is a competitive inhibitor of ATP binding. Under optimum conditions of ATPase activity, this inhibitory effect is not altered by the presence of the other two antibodies.  相似文献   

5.
Enzymes catalyze essential chemical reactions needed for living processes. (Na+ +K+)-ATPase (NKA) is one of the key enzymes that control intracellular ion homeostasis and regulate cardiac function. Little is known about activation of NKA and its biological impact. Here we show that native activity of NKA is markedly elevated when protein-protein interaction occurs at the extracellular DVEDSYGQQWTYEQR (D-R) region in the alpha-subunit of the enzyme. The apparent catalytic turnover of NKA is approximately twice as fast as the controls for both ouabain-resistant and ouabain-sensitive enzymes. Activation of NKA not only markedly protects enzyme function against denaturing, but also directly affects cellular activities by regulating intracellular Ca2+ transients and inducing a positive inotropic effect in isolated rat cardiac myocytes. Immunofluorescent labeling indicates that the D-R region of NKA is not a conventional digitalis-binding site. Our findings uncover a novel activation site of NKA that is capable of promoting the catalytic function of the enzyme and establish a new concept that activating of NKA mediates cardiac contraction.  相似文献   

6.
Summary The initial rate of ATP-dependent proton uptake by hog gastric vesicles was measured at pH's between 6.1 and 6.9 by measuring the loss of protons from the external space with a glass electrode. The apparent rates of proton loss were corrected for scalar proton production due to ATP hydrolysis. For vesicles in 150mm KCl and pH 6.1, corrected rates of proton uptake and ATP hydrolysis were 639±84 and 619±65 nmol/min×mg protein, respectively, giving an H+/ATP ratio of 1.03±0.7. Furthermore, at all pH's tested the ratio of the rate of proton uptake to the rate of ATP hydrolysis was not significantly different than 1.0. No proton uptake (<10 nmol/min×mg protein) was exhibited by vesicles in 150mm NaCl at pH 6.1 despite ATP hydrolysis of 187±46 nmol/min×mg (nonproductive hydrolysis). Comparison of the rates of proton transport and ATP hydrolysis in various mixture of KCl and NaCl showed that the H+/ATP stoichiometries were not significantly different than 1.0 at all concentrations of K+ greater than 10mm. This fact suggests that the nonproductive rate is vanishingly small at these concentrations, implying that the measured H+/ATP stoichiometry is equal to the enzymatic stoichiometry. This result shows that the isolated gastric (K++H+)-ATPase is thermodynamically capable of forming the observed proton gradient of the stomach.  相似文献   

7.
(Na++K+)-ATPase is a target receptor of digitalis (cardiac glycoside) drugs. It has been demonstrated that the H1-H2 domain of the α-subunit of the (Na++K+)-ATPase is one of the digitalis drug interaction sites of the enzyme. Despite the extensive studies of the inhibitory effect of digitalis on the (Na++K+)-ATPase, the functional property of the H1-H2 domain of the enzyme and its role in regulating enzyme activity is not completely understood. Here we report a surprise finding: instead of inhibiting the enzyme, binding of a specific monoclonal antibody SSA78 to the H1-H2 domain of the (Na++K+)-ATPase elevates the catalytic activity of the enzyme. In the presence of low concentration of ouabain, monoclonal antibody SSA78 significantly protects enzyme function against ouabain-induced inhibition. However, higher concentration of ouabain completely inactivates the (Na++K+)-ATPase even in the presence of SSA78. These results suggest that the H1-H2 domain of the (Na++K+)-ATPase is capable of regulating enzyme function in two distinct ways for both ouabain-sensitive and -resistant forms of the enzyme: it increases the activity of the (Na++K+)-ATPase during its interaction with an activator; it also participates in the mechanism of digitalis or ouabain-induced inhibition of the enzyme. Understanding the dual activity of the H1-H2 domain will help better understand the structure-function relationships of the (Na++K+)-ATPase and the biological processes mediated by the enzyme.  相似文献   

8.
The in vitro influence of potassium ion modulations, in the concentration range 2 mM–500 mM, on digoxin-induced inhibition of porcine cerebral cortex Na+/K+-ATPase activity was studied. The response of enzymatic activity in the presence of various K+ concentrations to digoxin was biphasic, thereby, indicating the existence of two Na+/K+-ATPase isoforms, differing in the affinity towards the tested drug. Both isoforms showed higher sensitivity to digoxin in the presence of K+ ions below 20 mM in the medium assay. The IC50 values for high/low isoforms 2.77 × 10? 6 M / 8.56 × 10? 5 M and 7.06 × 10? 7 M /1.87 × 10? 5 M were obtained in the presence of optimal (20 mM) and 2 mM K+, respectively. However, preincubation in the presence of elevated K+ concentration (50 – 500 mM) in the medium assay prior to Na+/K+-ATPase exposure to digoxin did not prevent the inhibition, i.e. IC50 values for both isoforms was the same as in the presence of the optimal K+ concentration. On the contrary, addition of 200 mM K+ into the medium assay after 10 minutes exposure of Na+/K+-ATPase to digoxin, showed a time-dependent recovery effect on the inhibited enzymatic activity. Kinetic analysis showed that digoxin inhibited Na+/K+-ATPase by reducing maximum enzymatic velocity (Vmax) and Km, implying an uncompetitive mode of interaction.  相似文献   

9.
Palytoxin (PTX) opens a pathway for ions to pass through Na,K-ATPase. We investigate here whether PTX also acts on nongastric H,K-ATPases. The following combinations of cRNA were expressed in Xenopus laevis oocytes: Bufo marinus bladder H,K-ATPase α2- and Na,K-ATPase β2-subunits; Bufo Na,K-ATPase α1- and Na,K-ATPase β2-subunits; and Bufo Na,K-ATPase β2-subunit alone. The response to PTX was measured after blocking endogenous Xenopus Na,K-ATPase with 10 μm ouabain. Functional expression was confirmed by measuring 86Rb uptake. PTX (5 nm) produced a large increase of membrane conductance in oocytes expressing Bufo Na,K-ATPase, but no significant increase occurred in oocytes expressing Bufo H,K-ATPase or in those injected with Bufo β2-subunit alone. Expression of the following combinations of cDNA was investigated in HeLa cells: rat colonic H,K-ATPase α1-subunit and Na,K-ATPase β1-subunit; rat Na,K-ATPase α2-subunit and Na,K-ATPase β2-subunit; and rat Na,K-ATPase β1- or Na,K-ATPase β2-subunit alone. Measurement of increases in 86Rb uptake confirmed that both rat Na,K and H,K pumps were functional in HeLa cells expressing rat colonic HKα1/NKβ1 and NKα2/NKβ2. Whole-cell patch-clamp measurements in HeLa cells expressing rat colonic HKα1/NKβ1 exposed to 100 nm PTX showed no significant increase of membrane current, and there was no membrane conductance increase in HeLa cells transfected with rat NKβ1- or rat NKβ2-subunit alone. However, in HeLa cells expressing rat NKα2/NKβ2, outward current was observed after pump activation by 20 mm K+ and a large membrane conductance increase occurred after 100 nm PTX. We conclude that nongastric H,K-ATPases are not sensitive to PTX when expressed in these cells, whereas PTX does act on Na,K-ATPase.  相似文献   

10.
Hickey KD  Buhr MM 《Theriogenology》2012,77(7):1369-1380
Existing as a ubiquitous transmembrane protein, Na+K+-ATPase affects sperm fertility and capacitation through ion transport and a recently identified signaling function. Functional Na+K+-ATPase is a dimer of α and β subunits, each with isoforms (four and three, respectively). Since specific isoform pairings and locations may influence or indicate function, the objective of this study was to identify and localize subunits of Na+K+-ATPase in fresh bull sperm by immunoblotting and immunocytochemistry using antibodies against α1 and 3, and all β isoforms. Relative quantity of Na+K+-ATPase in head plasma membranes (HPM's) from sperm of different bulls was determined by densitometry of immunoblot bands, and compared to bovine kidney. Sperm and kidney specifically bound all antibodies at kDa equivalent to commercial controls, and to additional lower kDa bands in HPM. Immunofluorescence of intact sperm confirmed that all isoforms were present in the head region of sperm and that α3 was also uniformly distributed post-equatorially. Permeabilization exposing internal membranes typically resulted in an increase in fluorescence, indicating that some antibody binding sites were present on the inner surface of the HPM or the acrosomal membrane. Deglycosylation of β1 reduced the kDa of bands in sperm, rat brain and kidney, with the kDa of the deglycosylated bands differing among tissues. Two-dimensional blots of β1 revealed three distinct spots. Based on the unique quantity, location and structure Na+K+-ATPase subunits in sperm, we inferred that this protein has unique functions in sperm.  相似文献   

11.
The arrival of the nerve impulse to the nerve endings leads to a series of events involving the entry of sodium and the exit of potassium. Restoration of ionic equilibria of sodium and potassium through the membrane is carried out by the sodium/potassium pump, that is the enzyme Na+,K+-ATPase. This is a particle-bound enzyme that concentrates in the nerve ending or synaptosomal membranes. The activity of Na+,K+-ATPase is essential for the maintenance of numerous reactions, as demonstrated in the isolated synaptosomes. This lends interest to the knowledge of the possible regulatory mechanisms of Na+,K+-ATPase activity in the synaptic region. The aim of this review is to summarize the results obtained in the author's laboratory, that refer to the effect of neurotransmitters and endogenous substances on Na+,K+-ATPase activity. Mention is also made of results in the field obtained in other laboratories. Evidence showing that brain Na+,K+-ATPase activity may be modified by certain neurotransmitters and insulin have been presented. The type of change produced by noradrenaline, dopamine, and serotonin on synaptosomal membrane Na+,K+-ATPase was found to depend on the presence or absence of a soluble brain fraction. The soluble brain fraction itself was able to stimulate or inhibit the enzyme, an effect that was dependent in turn on the time elapsed between preparation and use of the fraction. The filtration of soluble brain fraction through Sephadex G-50 allowed the separation of two active subfractions: peaks I and II. Peak I increased Na+,K+- and Mg2+-ATPases, and peak II inhibited Na+,K+-ATPase. Other membrane enzymes such as acetylcholinesterase and 5′-nucleotidase were unchanged by peaks I or II. In normotensive anesthetized rats, water and sodium excretion were not modified by peak I but were increased by peak II, thus resembling ouabain effects.3H-ouabain binding was unchanged by peak I but decreased by peak II in some areas of the CNS assayed by quantitative autoradiography and in synaptosomal membranes assayed by a filtration technique. The effects of peak I and II on Na+,K+-ATPase were reversed by catecholamines. The extent of Na+,K+-ATPase inhibition by peak II was dependent on K+ concentration, thus suggesting an interference with the K+ site of the enzyme. Peak II was able to induce the release of neurotransmitter stored in the synaptic vesicles in a way similar to ouabain. Taking into account that peak II inhibits only Na+,K+-ATPase, increases diuresis and natriuresis, blocks high affinity3H-ouabain binding, and induces neurotransmitter release, it is suggested that it contains an ouabain-like substance.  相似文献   

12.
In the present study a polystyrene microtiter plate was tested as a support material for synaptic plasma membrane (SPM) immobilization by adsorption. The adsorption was carried out by an 18-h incubation at +4 degrees C of SPM with a polystyrene matrix, at pH 7.4. Evaluation of the efficiency of the applied immobilization method revealed that 10% protein fraction of initially applied SPM was bound to the support and that two SPM enzymes, Na(+)/K(+)-ATPase and Mg(2+)-ATPase, retained 70-80% activity after the adsorption. In addition, adsorption stabilizes Na(+)/K(+)-ATPase and Mg(2+)-ATPase, since the activities are substantial 3 weeks after the adsorption. Parallel kinetic analysis showed that adsorption does not alter significantly the kinetic properties of Na(+)/K(+)-ATPase and Mg(2+)-ATPase and their sensitivity to and mechanism of Cd(2+)- or Hg(2+)-induced inhibition. The only exception is the "high affinity" Mg(2+)-ATPase moiety, whose affinity for ATP and sensitivity toward Cd(2+) were increased by the adsorption. The results show that such system may be used as a practical and comfortable model for the in vitro toxicological investigations.  相似文献   

13.
The present study aimed to identify the presence of protein kinase C-like (PKC-like) in Leishmania amazonensis and to elucidate its possible role in the modulation of the (Na(+)+K(+))ATPase activity. Immunoblotting experiments using antibody against a consensus sequence (Ac 543-549) of rabbit protein kinase C (PKC) revealed the presence of a protein kinase of 80 kDa in L. amazonensis. Measurements of protein kinase activity showed the presence of both (Ca(2+)-dependent) and (Ca(2+)-independent) protein kinase activity in plasma membrane and cytosol. Phorbol ester (PMA) activation of the Ca(2+)-dependent protein kinase stimulated the (Na(+)+K(+))ATPase activity, while activation of the Ca(2+)-independent protein kinase was inhibitory. Both effects of protein kinase on the (Na(+)+K(+))ATPase of the plasma membrane were lower than that observed in intact cells. PMA induced the translocation of protein kinase from cytosol to plasma membrane, indicating that the maximal effect of protein kinase on the (Na(+)+K(+))ATPase activity depends on the synergistic action of protein kinases from both plasma membrane and cytosol. This is the first demonstration of a protein kinase activated by PMA in L. amazonensis and the first evidence for a possible role in the regulation of the (Na(+)+K(+))ATPase activity in this trypanosomatid. Modulation of the (Na(+)+K(+))ATPase by protein kinase in a trypanosomatid opens up new possibilities to understand the regulation of ion homeostasis in this parasite.  相似文献   

14.
Na+,K+-ATPase and Mg2+-ATPase activities were determined in the synaptic plasma membranes from hippocampus of rats subjected to chronic and acute proline administration. Na+,K+-ATPase activity was significantly reduced in chronic and acute treatment by 33% and 40%, respectively. Mg2+-ATPase activity was not altered by any treatment. In another set of experiments, synaptic plasma membranes were prepared from hippocampus and incubated with proline or glutamate at final concentrations ranging from 0.2 to 2.0 mM. Na+,K+-ATPase, but not Mg2+-ATPase was inhibited (30%) by the two amino acids. In addition, competition between proline and glutamate for the enzyme activity was observed, suggesting a common binding site for these amino acids. Considering that Na+,K+-ATPase activity is critical for normal brain function, the results of the present study showing a marked inhibition of this enzyme by proline may be associated with the neurological dysfunction found in patients affected by type II hyperprolinemia.  相似文献   

15.
Na+,K(+)-ATPase is a ubiquitous plasmalemmal membrane protein essential for generation and maintenance of transmembrane Na+ and K+ gradients in virtually all animal cell types. Activity and polarized distribution of renal Na+,(+)-ATPase appears to depend on connection of ankyrin to the spectrin-based membrane cytoskeleton as well as on association with actin filaments. In a previous study we showed copurification and codistribution of renal Na+,K(+)-ATPase not only with ankyrin, spectrin and actin, but also with two further peripheral membrane proteins, pasin 1 and pasin 2. In this paper we show by sequence analysis through mass spectrometry as well as by immunoblotting that pasin 2 is identical to moesin, a member of the FERM (protein 4.1, ezrin, radixin, moesin) protein family, all members of which have been shown to serve as cytoskeletal adaptor molecules. Moreover, we show that recombinant full-length moesin as well as its FERM domain bind to Na+,K(+)-ATPase and that this binding can be inhibited by an antibody specific for the ATPase activity-containing cytoplasmic loop (domain 3) of the Na+,K(+)-ATPase alpha-subunit. This loop has been previously shown to be a site essential for ankyrin binding. These observations indicate that moesin might not only serve as direct linker molecule of Na+,K(+)-ATPase to actin filaments but also modify ankyrin binding at domain 3 of Na+,K(+)-ATPase in a way similar to protein 4.1 modifying the binding of ankyrin to the cytoplasmic domain of the erythrocyte anion exchanger (AE1).  相似文献   

16.
It is reported that CNS hemorrage causes membrane dysfunction and may exacerbate this damage as a result of secondary ischemia or hypoxia. Since hyperbaric oxygenation improves oxygen metabolism, it may reduce this membrane damage. The present study was conducted to reveal whether hyperbaric oxygenation influences membrane alteration after hemorrhage. Thirty minutes after subarachnoid hemorrhage induction, rats were treated with hyperbaric oxygenation 2 ATA for 1 hour. Rats were decapitated 2 hours after subarachnoid hemorrhage induction. Na+, K+-ATPase activity measurement, and spin-label studies were performed on crude synpatosomal membranes. Subarachnoid hemorrhage decreased Na+, K+-ATPase activity. Spin label studies showed that hydrophobic portions of near the membrane surface became more rigid and the mobility of the membrane protein labeled sulfhydryl groups decreased after subarachnoid hemorrhage. Hyperbaric oxygenation significantly ameliorated most of the subarachnoid hemorrhage induced alterations. We conclude that hyperbaric oxygenation may be a beneficial treatment for acute subarachnoid hemorrhage.  相似文献   

17.
OBJECTIVE: We have recently identified an activation site on (Na+ + K+)-ATPase and found that binding of antibody SSA412 to this specific site of the enzyme markedly augments (Na+ + K+)-ATPase catalytic activity. Demonstration of whether activation of (Na+ + K+)-ATPase affects heart function in animal in vivo was the object of this investigation. METHODS: Male wild-type CD-1 mouse and specific antibody SSA412 were used for the study. A pressure-volume micromanometer-conductance catheter in anesthetized mouse assessed in vivo cardiac functions. RESULTS: Specific antibody SSA412 infusion in mouse shifted pressure-volume loop leftward with increased stroke volume and enhanced end-systolic elastance. Global systolic parameters such as ejection fraction and cardiac output, and load independent contractile parameters including dP/dtmax/IP, PMX/EDV, Ees, and PRSW, were all increased without any effect on relaxation following administration of SSA412. Cardiac preload indexed by EDV and afterload by ESP did not alter, suggesting that SSA412-enhanced myocardial performance is a direct cardiac effect caused by the activation of (Na+ + K+)-ATPase. CONCLUSION: Our study provides the first in vivo physiological evidence to demonstrate that activation of (Na+ + K+)-ATPase induces significant positive inotropic effect in intact animal heart. The finding may lead to new therapeutic strategies for the treatment of heart failure.  相似文献   

18.
This study is designed to examine the participation of the major red cell membrane protein, band 3 protein, in the chain which transmits information from the cardiac glycoside site on the external face of the cell (Na+ + K+)-ATPase to the megadalton glycolytic enzyme complex within the cell. The experiments show that the anion transport inhibitor, 4,4′-diisothiocyano-2,2′-stilbenedisulfonic acid, affects the resonance of 2,3-diphosphoglycerate, as does the cardiac glycoside cation transport inhibitor, ouabain. Resonance shifts induced by the cardiac glycoside alone are modulated by addition of the anion transport inhibitor which indicates that there is coupling in the red cell between the (Na+ + K+)-ATPase and band 3 protein. Band 3 protein was separated from the membrane and partially purified following the technique of Yu and Steck ((1975) J. Biol. Chem. 250, 9170–9175). When glyceraldehyde-3-phosphate dehydrogenase was added to the separated band 3 protein preparation, addition of cardiac glycosides caused shifts in the 31P resonance of glyceraldehyde 3-phosphate. These experiments indicate that there is coupling between the (Na+ + K+)-ATPase and band 3 protein in the separated preparation and suggest that the anion and cation transport systems may be closely related spatially and functionally in the intact red cell.  相似文献   

19.
In previous papers, the isolation of brain soluble fractions able to modify neuronal Na+, K+-ATPase activity has been described. One of those fractions-peak I-stimulates membrane Na+, K+-ATPase while another-peak II-inhibits this enzyme activity, and has other ouabain-like properties. In the present study, synaptosomal membrane Na+, K+-ATPase was analyzed under several experimental conditions, using ATP orp-nitrophenylphosphate (p-NPP) as substrate, in the absence and presence of cerebral cortex peak II. Peak II inhibited K+-p-NPPase activity in a concentration dependent manner. Double reciprocal plots indicated that peak II uncompetitively inhibits K+-p-NPPase activity regarding substrate, Mg2+ and K+ concentration. Peak II failed to block the known K+-p-NPPase stimulation caused by ATP plus Na+. At various K+ concentrations, percentage K+-p-NPPase inhibition by peak II was similar regardless of the ATP plus Na+ presence, indicating lack of correlation with enzyme phosphorylation. Na+, K+-ATPase activity was decreased by peak II depending on K+ concentration. It is postulated that the inhibitory factor(s) present in peak II interfere(s) with enzyme activation by K+.  相似文献   

20.
Two K+ ATP channel blockers, 5-hydroxydecanoate (5-HD) and glyburide, are often used to study cross-talk between Na+/K+-ATPase and these channels. The aim of this work was to characterize the effects of these blockers on purified Na+/K+-ATPase as an aid to appropriate use of these drugs in studies on this cross-talk. In contrast to known dual effects (activating and inhibitory) of other fatty acids on Na+/K+-ATPase, 5-HD only inhibited the enzyme at concentrations exceeding those that block mitochondrial K+ ATP channels. 5-HD did not affect the ouabain sensitivity of Na+/K+-ATPase. Glyburide had both activating and inhibitory effects on Na+/K+-ATPase at concentrations used to block plasma membrane K+ ATP channels. The findings justify the use of 5-HD as specific mitochondrial channel blocker in studies on the relation of this channel to Na+/K+-ATPase, but question the use of glyburide as a specific blocker of plasma membrane K+ ATP channels, when the relation of this channel to Na+/K+-ATPase is being studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号