首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In previous papers, the isolation of brain soluble fractions able to modify neuronal Na+, K+-ATPase activity has been described. One of those fractions-peak I-stimulates membrane Na+, K+-ATPase while another-peak II-inhibits this enzyme activity, and has other ouabain-like properties. In the present study, synaptosomal membrane Na+, K+-ATPase was analyzed under several experimental conditions, using ATP orp-nitrophenylphosphate (p-NPP) as substrate, in the absence and presence of cerebral cortex peak II. Peak II inhibited K+-p-NPPase activity in a concentration dependent manner. Double reciprocal plots indicated that peak II uncompetitively inhibits K+-p-NPPase activity regarding substrate, Mg2+ and K+ concentration. Peak II failed to block the known K+-p-NPPase stimulation caused by ATP plus Na+. At various K+ concentrations, percentage K+-p-NPPase inhibition by peak II was similar regardless of the ATP plus Na+ presence, indicating lack of correlation with enzyme phosphorylation. Na+, K+-ATPase activity was decreased by peak II depending on K+ concentration. It is postulated that the inhibitory factor(s) present in peak II interfere(s) with enzyme activation by K+.  相似文献   

2.
The efficiency of (Na+ + K+)-ATPase (i.e. the amount of K+ pumped per ATP hydrolyzed) in intact tumorigenic cells was estimated in this study. This was accomplished by simultaneously measuring the rate of ouabain-sensitive K+ uptake and oxygen consumption in tumorigenic cell suspensions during the reintroduction of K+ to K+-depleted cells. The ATP turnover was then estimated by assuming 5.6–6 ATP/O2 as the stoichiometry of NADH-linked respiration in these cells. In the three cell lines tested (hamster and chick embryo cells transformed with Rous sarcoma virus and Ehrlich ascites cells), the K+/ATP ratio was approximately 2, the same value as that found in normal tissues. Furthermore, only 20% of the total ATP production of these cells was used by (Na+ + K+)-ATPase.  相似文献   

3.
The effects of three amino group reagents on the activity of (Na++K+)-ATPase3 and its component K+-stimulatedp-nitrophenylphosphatase activity from rabbit kidney outer medulla have been studied. All three reagents cause inactivation of the enzyme. Modification of amino groups with trinitrobenzene sulfonic acid yields kinetics of inactivation of both activities, which depend on the type and concentration of the ligands present. In the absence of added ligands, or with either Na+ of Mg2+ present, the enzyme inactivation process follows complicated kinetics. In the presence of K+, Rb+, or Tl+, protection occurs due to a change of the kinetics of inactivation toward a first-order process. ATP protects against inactivation at a much lower concentration in the absence than in the presence of Mg2+ (P 50 6 µM vs. 1.2 mM). Under certain conditions (100 µM reagent, 0.2 M triethanolamine buffer, pH 8.5) modification of only 2% of the amino groups is sufficient to obtain 50% inhibition of the ATPase activity. Modification of amino groups with ethylacetimidate causes a nonspecific type of inactivation of (Na++K+)-ATPase. Mg2+ and K+ have no effects, and ATP only a minor effect, on the degree of modification. The K+-stimulatedp-nitrophenylphosphatase activity is less inhibited than the (Na++K+)-ATPase activity. Half-inhibition of the (Na++K+)-ATPase is obtained only after 25% modification of the amino groups. Modification of amino groups with acetic anhydride also causes nonspecific inactivation of (Na++K+)-ATPase. Mg2+ has no effect, and ATP has only a slight protecting effect. The K+-stimulatedp-nitrophenylphosphatase activity is inhibited in parallel with the (Na++K+)-ATPase activity. Half-inactivation of the (Na++K+)-ATPase activity is obtained after 20% modification of the amino groups.This article is No. 52 in the series Studies on (Na++K+)-Activated ATPase.  相似文献   

4.
Goat antisera against (Na+ + K+)-ATPase and its isolated subunits and against (K+ + H+)-ATPase have been prepared in order to test for immune cross-reactivity between the two enzymes, whose catalytic subunits show great chemical similarity. None of the (Na+ + K+)-ATPase antisera cross-reacted with (K+ + H+)-ATPase or inhibited its enzyme activity. The same was true for the (K+ + H+)-ATPase antiserum with regard to (Na+ + K+)-ATPase and its subunits and its enzyme activity. So not withstanding the chemical similarity of their subunits, there is no immunological cross-reactivity between these two plasma membrane ATPases.Number LIII in the series Studies on (Na+ + K+)-Activated ATPase.  相似文献   

5.
(Na++K+)-ATPase is a target receptor of digitalis (cardiac glycoside) drugs. It has been demonstrated that the H1-H2 domain of the α-subunit of the (Na++K+)-ATPase is one of the digitalis drug interaction sites of the enzyme. Despite the extensive studies of the inhibitory effect of digitalis on the (Na++K+)-ATPase, the functional property of the H1-H2 domain of the enzyme and its role in regulating enzyme activity is not completely understood. Here we report a surprise finding: instead of inhibiting the enzyme, binding of a specific monoclonal antibody SSA78 to the H1-H2 domain of the (Na++K+)-ATPase elevates the catalytic activity of the enzyme. In the presence of low concentration of ouabain, monoclonal antibody SSA78 significantly protects enzyme function against ouabain-induced inhibition. However, higher concentration of ouabain completely inactivates the (Na++K+)-ATPase even in the presence of SSA78. These results suggest that the H1-H2 domain of the (Na++K+)-ATPase is capable of regulating enzyme function in two distinct ways for both ouabain-sensitive and -resistant forms of the enzyme: it increases the activity of the (Na++K+)-ATPase during its interaction with an activator; it also participates in the mechanism of digitalis or ouabain-induced inhibition of the enzyme. Understanding the dual activity of the H1-H2 domain will help better understand the structure-function relationships of the (Na++K+)-ATPase and the biological processes mediated by the enzyme.  相似文献   

6.
Previous studies have shown that hypoxia induces nitric oxide synthase-mediated generation of nitric oxide free radicals leading to peroxynitrite production. The present study tests the hypothesis that hypoxia results in NO-mediated modification of Na+, K+-ATPase in the fetal brain. Studies were conducted in guinea pig fetuses of 58-days gestation. The mothers were exposed to FiO2 of 0.07% for 1 hour. Brain tissue hypoxia in the fetus was confirmed biochemically by decreased ATP and phosphocreatine levels. P2 membrane fractions were prepared from normoxic and hypoxic fetuses and divided into untreated and treated groups. The membranes were treated with 0.5 mM peroxynitrite at pH 7.6. The Na+, K+-ATPase activity was determined at 37°C for five minutes in a medium containing 100 mM NaCl, 20 mM KCl, 6.0 mM MgCl2, 50 mM Tris HCl buffer pH 7.4, 3.0 mM ATP with or without 10 mM ouabain. Ouabain sensitive activity was referred to as Na+, K+-ATPase activity. Following peroxynitrite exposure, the activity of Na+, K+-ATPase in guinea pig brain was reduced by 36% in normoxic membranes and further 29% in hypoxic membranes. Enzyme kinetics was determined at varying concentrations of ATP (0.5 mM-2.0 mM). The results indicate that peroxynitrite treatment alters the affinity of the active site of Na+, K+-ATPase for ATP and decreases the Vmax by 35% in hypoxic membranes. When compared to untreated normoxic membranes Vmax decreases by 35.6% in treated normoxic membranes and further to 52% in treated hypoxic membranes. The data show that peroxynitrite treatment induces modification of Na+, K+-ATPase. The results demonstrate that peroxynitrite decreased activity of Na+, K+-ATPase enzyme by altering the active sites as well as the microenvironment of the enzyme. We propose that nitric oxide synthase-mediated formation of peroxynitrite during hypoxia is a potential mechanism of hypoxia-induced decrease in Na+, K+-ATPase activity.  相似文献   

7.
Summary Membrane fragments containing the H+K-ATPase from parietal cells have been adsorbed to a planar lipid membrane. The transport activity of the enzyme was determined by measuring electrical currents via the capacitive coupling between the membrane sheets and the planar lipid film. To initiate the pump currents by the ATPase a light-driven concentration jump of ATP from caged ATP was applied as demonstrated previously for Na+K+-ATPase (Fendler, K., Grell, E., Haubs, M., Bamberg, E. 1985.EMBO J. 4:3079–3085). Since H+K+-ATPase is an electroneutrally working enzyme no stationary pump currents were observed in the presence of K+. By separation of the H+ and K+ transport steps of the reaction cycle, however, the electrogenic step of the phosphorylation could be measured. This was achieved in the absence of K+ or at low concentrations of K+. The observed transient current is ATP dependent which can be assigned to the proton movement during the phosphorylation. From this it was conclueded that the K+ transport during dephosphorylation is electrogenic, too, in contrast to the Na+K+-ATPase where the K+ step is electroneutral. The transient current was measured at different ionic conditions and could be blocked by vanadate and by the H+K+-ATPase specific inhibitor omeprazole. An alternative mechanism for activation of this inhibitor is discussed.  相似文献   

8.
Summary The effects of temperature and pressure on Na+/K+-adenosine triphosphatases (Na+/K+-ATPases) from gills of marine teleost fishes were examined over a range of temperatures (10–25°C) and pressures (1–680 atm). The relationship between gill membrane fluidity and Na+/K+-ATPase activity was studied using the fluorescent probe 1,6-diphenyl-1,3,5-hexatriene (DPH). The increase in temperature required to offset the membrane ordering effects of high pressure was 0.015–0.025°C·atm-1, the same coefficient that applied to Na+/K+-ATPase activities. Thus, temperature-pressure combinations yielding the same Na+/K+-ATPase activity also gave similar estimates of membrane fluidity. Substituion of endogenous lipids with lipids of different composition altered the pressure responses of Na+/K+-ATPase. Na+/K+-adenosine triphosphatase became more sensitive to pressure in the presence of chicken egg phosphatidylcholine, but phospholipids isolated from fish gills reduced the inhibition by pressure of Na+/K+-ATPase. Cholesterol increased enzyme pressure sensitivity. Membrane fluidity and pressure sensitivity of Na+/K+-ATPase were correlated, but the effects of pressure also dependent on the source of the enzyme. Our results suggest that pressure adaptation of Na+/K+-ATPase is the result of both changes in the primary structure of the protein and homeoviscous adaptation of the lipid environment.Abbreviations EDTA; DPH 1,6-diphenyl-1,3,5-hexatriene - PC phosphatidylcholine - PL phospholipid - SDH succinate dehydrogenase  相似文献   

9.
Regulation of the Na+/K+-ATPase by insulin: Why and how?   总被引:4,自引:0,他引:4  
The sodium-potassium ATPase (Na+/K+-ATPase or Na+/K+-pump) is an enzyme present at the surface of all eukaryotic cells, which actively extrudes Na+ from cells in exchange for K+ at a ratio of 3:2, respectively. Its activity also provides the driving force for secondary active transport of solutes such as amino acids, phosphate, vitamins and, in epithelial cells, glucose. The enzyme consists of two subunits ( and ) each expressed in several isoforms. Many hormones regulate Na+/K+ -ATPase activity and in this review we will focus on the effects of insulin. The possible mechanisms whereby insulin controls Na+/K+-ATPase activity are discussed. These are tissue- and isoform-specific, and include reversible covalent modification of catalytic subunits, activation by a rise in intracellular Na+ concentration, altered Na+ sensitivity and changes in subunit gene or protein expression. Given the recent escalation in knowledge of insulin-stimulated signal transduction systems, it is pertinent to ask which intracellular signalling pathways are utilized by insulin in controlling Na+/K+-ATPase activity. Evidence for and against a role for the phosphatidylinositol-3-kinase and mitogen activated protein kinase arms of the insulin-stimulated intracellular signalling networks is suggested. Finally, the clinical relevance of Na+/K+-ATPase control by insulin in diabetes and related disorders is addressed.  相似文献   

10.
Na+,K+-ATPase activity was determined in fetal guinea pig brain at 35, 40, 45, 50, 55, and 60 days of gestation. The activity remained at a constant level during the early periods (35–45 days) of gestation and increased significantly during 45–60 days. Following maternal hypoxia, the activity of Na+,K+-ATPase in the term (60 days) fetal brain was reduced by 50% whereas the preterm (50 days) brain activity was unaffected. Under identical hypoxic conditions, the enzymatic activity of adult brain was significantly reduced by 20%. Na+,K+-ATPase obtained from fetal brain (50 days of gestation) has both a low and a high affinity for ATP (K m values =0.50 and 0.053 mM and correspondingV max values =10.77 and 2.82 umoles Pi/mg protein/hr), whereas the enzyme in the adult brain has only a low affinity (K m=1.67 mM andV max=20.32 umoles Pi/mg protein/hr). The high and low affinity sites for ATP in the fetal brain suggests a mechanism essential for the maintenance of cellular ionic gradients at low concentrations of ATP and which would provide the fetal brain with a greater tolerance to hypoxia. The high sensitivity of Na+,K+-ATPase activity to hypoxia in guinea pig brain at term suggests that the cell membrane functions of the fetal brain may be more susceptible to hypoxia at term than it is earlier in gestation.  相似文献   

11.
The kinetic properties of a microsomal gill (Na+,K+)-ATPase from the blue crab Callinectes danae were analyzed using the substrate p-nitrophenylphosphate. The (Na+,K+)-ATPase hydrolyzed PNPP obeying cooperative kinetics (n=1.5) at a rate of V=125.4±7.5 U mg−1 with K0.5=1.2±0.1 mmol l−1; stimulation by potassium (V=121.0±6.1 U mg−1; K0.5=2.1±0.1 mmol l−1) and magnesium ions (V=125.3±6.3 U mg−1; K0.5=1.0±0.1 mmol l−1) was cooperative. Ammonium ions also stimulated the enzyme through site–site interactions (nH=2.7) to a rate of V=126.1±4.8 U mg−1 with K0.5=13.7±0.5 mmol l−1. However, K+-phosphatase activity was not stimulated further by K+ plus NH4+ ions. Sodium ions (KI=36.7±1.7 mmol l−1), ouabain (KI=830.3±42.5 μmol l−1) and orthovanadate (KI=34.0±1.4 nmol l−1) completely inhibited K+-phosphatase activity. The competitive inhibition by ATP (KI=57.2±2.6 μmol l−1) of PNPPase activity suggests that both substrates are hydrolyzed at the same site on the enzyme. These data reveal that the K+-phosphatase activity corresponds strictly to a (Na+,K+)-ATPase in C. danae gill tissue. This is the first known kinetic characterization of K+-phosphatase activity in the portunid crab C. danae and should provide a useful tool for comparative studies.  相似文献   

12.
The effect of lipid peroxidation on the affinity of specific active sites of Na+, K+-ATPase for ATP (substrate), K+ and Na+ (activators), and strophanthidin (a specific inhibitor) was investigated. Brain cell membranes were peroxidized in vitro in the presence of 100M ascorbate and 25M FeCl2 at 37°C for time intervals from 0–20 min. The level of thiobarbituric acid reactive substances and the activity of Na+, K+-ATPase were determined. The enzyme activity decreased by 80% in the first min. from 42.0±3.8 to 8.8±0.9 mol Pi/mg protein/hr and remained unchanged thereafter. Lipid peroxidation products increased to a steady state level from 0.2±0.1 to 16.5 ±1.5 nmol malonaldehyde/mg protein by 3 min. In peroxidized membranes, the affinity for ATP and strophanthidin was increased (two and seven fold, respectively), whereas affinity for K+ and Na+ was decreased (to one tenth and one seventh of control values, respectively). Changes in the affinity of active sites will affect the phosphorylation and dephosphorylation mechanisms of Na+, K+-ATPase reaction. The increased affinity for ATP favors the phosphorylation of the enzyme at low ATP concentrations whereas, the decreased affinity for K+ will not favor the dephosphorylation of the enzyme-P complex resulting in unavailability of energy for transmembrane transport processes. The results demonstrate that lipid peroxidation alters Na+, K+-ATPase function by modification at specific active sites in a selective manner, rather than through a non-specific destructive process.  相似文献   

13.
Four stable hybridoma cell lines secreting antibodies specific to the membrane (Na+ + K+)-dependent ATPase isolated from lamb kidney medulla have been produced by fusing mouse myeloma cells with spleen cells from immunized mice. These cell lines produce IgG γ1 heavy chain and κ light chain antibodies which are directed against the catalytic or α-subunit of the (Na+ + K+)-ATPase enzyme. Binding studies, using antibodies that were produced by growing hybridomas in vivo and purified by affinity column chromatography, suggest a somewhat higher affinity of these antibodies for the isolated α-subunit than for the ‘native’ holoenzyme. In addition, these monoclonal antibodies show no reactivity with either the glycoprotein (β) subunit of the lamb enzyme nor the (Na+ + K+)-ATPase from rat kidney, an ouabain-insensitive organ. Cotitration binding experiments have shown that the antibodies from two cell lines originally isolated independently from the same culture plate well population of fused cells bind to the same determinant site and are probably the same antibody. Cotitration and competition binding studies with two other antibodies have revealed two additional distinct antibody binding sites which appear to have little overlap with the first site. One of the three different antibodies isolated caused a partial inhibition of the (Na+ + K+)-ATPase activity. This antibody appears to be directed against a specific functionally important site of the α-subunit and is a competitive inhibitor of ATP binding. Under optimum conditions of ATPase activity, this inhibitory effect is not altered by the presence of the other two antibodies.  相似文献   

14.
ATP and adenylylimidodiphosphate (AdoPP[NH]P) bind to (Na+ + K+)-ATPase in the absence of Mg2+ (EDTA present) with a homogeneous but 15-fold different affinity, the Kd values being 0.13 μM and 1.9 μM, respectively. The binding capacities of the two nucleotides are nearly equal and amount to 3.9 and 4 nmol/mg protein or 1.7 and 1.8 mol/mol (Na+ + K+)-ATPase, respectively. The Kd value for ATP is equal to the Km for phosphorylation by ATP (0.05–0.25 μM) and the binding capacity is equivalent to the phosphorylation capacity of 1.8 mol/mol (Na+ + K+)-ATPase. Hence, the enzyme contains two high-affinity nucleotide binding and phosphorylating sites per molecule, or one per α-subunit. Additional low-affinity nucleotide binding sites are elicited in the presence of Mg2+, as shown by binding studies with the non-phosphorylating (AdoPP[NH]P). The Kd and binding capacity for AdoPP[NH]P at these sites is dependent on the Mg2+ concentration. The Kd increases from 0.06 mM at 0.5 mM Mg2+ to a maximum of 0.26 mM at 2 mM Mg2+ and the binding capacity from 1.5 nmol/mg protein at 0.5 mM Mg2+ to 3.3 nmol/mg protein at 4 mM Mg2+. Extrapolation of a double reciprocal plot of binding capacity vs. total Mg2+ concentration yields a maximal binding capacity at infinite Mg2+ concentration of 3.8 nmol/mg protein or 1.7 mol/mol (Na+ + K+)-ATPase. The Kd for Mg2+ at the sites, where it exerts this effect, is 0.8 mM. The Kd for the high-affinity sites increases from 1.5–1.9 μM in the absence of Mg2+ to a maximum of 4.2 μM at 2 mM Mg2+ concentration. The binding capacity of these sites (1.8 mol/mol enzyme) is independent of the Mg2+ concentration. Hence, Mg2+ induces two low-affinity non-phosphorylating nucleotide binding sites per molecule (Na+ + K+)-ATPase in addition to the two high-affinity, phosphorylating nucleotide binding sites.  相似文献   

15.
Two K+ ATP channel blockers, 5-hydroxydecanoate (5-HD) and glyburide, are often used to study cross-talk between Na+/K+-ATPase and these channels. The aim of this work was to characterize the effects of these blockers on purified Na+/K+-ATPase as an aid to appropriate use of these drugs in studies on this cross-talk. In contrast to known dual effects (activating and inhibitory) of other fatty acids on Na+/K+-ATPase, 5-HD only inhibited the enzyme at concentrations exceeding those that block mitochondrial K+ ATP channels. 5-HD did not affect the ouabain sensitivity of Na+/K+-ATPase. Glyburide had both activating and inhibitory effects on Na+/K+-ATPase at concentrations used to block plasma membrane K+ ATP channels. The findings justify the use of 5-HD as specific mitochondrial channel blocker in studies on the relation of this channel to Na+/K+-ATPase, but question the use of glyburide as a specific blocker of plasma membrane K+ ATP channels, when the relation of this channel to Na+/K+-ATPase is being studied.  相似文献   

16.
The arrival of the nerve impulse to the nerve endings leads to a series of events involving the entry of sodium and the exit of potassium. Restoration of ionic equilibria of sodium and potassium through the membrane is carried out by the sodium/potassium pump, that is the enzyme Na+,K+-ATPase. This is a particle-bound enzyme that concentrates in the nerve ending or synaptosomal membranes. The activity of Na+,K+-ATPase is essential for the maintenance of numerous reactions, as demonstrated in the isolated synaptosomes. This lends interest to the knowledge of the possible regulatory mechanisms of Na+,K+-ATPase activity in the synaptic region. The aim of this review is to summarize the results obtained in the author's laboratory, that refer to the effect of neurotransmitters and endogenous substances on Na+,K+-ATPase activity. Mention is also made of results in the field obtained in other laboratories. Evidence showing that brain Na+,K+-ATPase activity may be modified by certain neurotransmitters and insulin have been presented. The type of change produced by noradrenaline, dopamine, and serotonin on synaptosomal membrane Na+,K+-ATPase was found to depend on the presence or absence of a soluble brain fraction. The soluble brain fraction itself was able to stimulate or inhibit the enzyme, an effect that was dependent in turn on the time elapsed between preparation and use of the fraction. The filtration of soluble brain fraction through Sephadex G-50 allowed the separation of two active subfractions: peaks I and II. Peak I increased Na+,K+- and Mg2+-ATPases, and peak II inhibited Na+,K+-ATPase. Other membrane enzymes such as acetylcholinesterase and 5′-nucleotidase were unchanged by peaks I or II. In normotensive anesthetized rats, water and sodium excretion were not modified by peak I but were increased by peak II, thus resembling ouabain effects.3H-ouabain binding was unchanged by peak I but decreased by peak II in some areas of the CNS assayed by quantitative autoradiography and in synaptosomal membranes assayed by a filtration technique. The effects of peak I and II on Na+,K+-ATPase were reversed by catecholamines. The extent of Na+,K+-ATPase inhibition by peak II was dependent on K+ concentration, thus suggesting an interference with the K+ site of the enzyme. Peak II was able to induce the release of neurotransmitter stored in the synaptic vesicles in a way similar to ouabain. Taking into account that peak II inhibits only Na+,K+-ATPase, increases diuresis and natriuresis, blocks high affinity3H-ouabain binding, and induces neurotransmitter release, it is suggested that it contains an ouabain-like substance.  相似文献   

17.
We have already described the separation of two brain soluble fractions by Sephadex G-50, one of which stimulates (peak I) and the other inhibits (peak II) Na+, K+-ATPase and K+-p-nitrophenylphosphatase (K+-p-NPPase) activities. Here we examine the features of synaptosomal membrane p-NPPase activity in the presence and absence of brain peak I. It was observed that stimulation of Mg2+, K+-p-NPPase activity by peak I was concentration dependent, The ability of peak I to stimulate p-NPPase activity was lost by heat treatment followed by brief centrifugation. Pure serum albumin also stimulated enzyme activity. K+-p-NPPase stimulation by peak I proved dependent on K+ concentration but independent of Mg2+ and substrate p-nitrophenylphosphate concentrations. Since our determinations were performed in a non-phosphorylating condition reflecting the Na+, K+-ATPase Na+ site, it is suggested that peak I may stimulate the Na+-dependent enzyme phosphorylation known to take place from the internal cytoplasmic side.  相似文献   

18.
The objective of the present study was to investigate the in vitro effects of octanoic acid, which accumulates in medium-chain acyl-CoA dehydrogenase (MCAD) deficiency and in Reye syndrome, on key enzyme activities of energy metabolism in the cerebral cortex of young rats. The activities of the respiratory chain complexes I–IV, creatine kinase, and Na+, K+-ATPase were evaluated. Octanoic acid did not alter the electron transport chain and creatine kinase activities, but, in contrast, significantly inhibited Na+, K+-ATPase activity both in synaptic plasma membranes and in homogenates prepared from cerebral cortex. Furthermore, decanoic acid, which is also increased in MCAD deficiency, and oleic acid strongly reduced Na+, K+-ATPase activity, whereas palmitic acid had no effect. We also examined the effects of incubating glutathione and trolox (-tocopherol) alone or with octanoic acid on Na+, K+-ATPase activity. Tested compounds did not affect Na+, K+-ATPase activity by itself, but prevented the inhibitory effect of octanoic acid. These results suggest that inhibition of Na+, K+-ATPase activity by octanoic acid is possibly mediated by oxidation of essential groups of the enzyme. Considering that Na+, K+-ATPase is critical for normal brain function, it is feasible that the significant inhibition of this enzyme activity by octanoate and also by decanoate may be related to the neurological dysfunction found in patients affected by MCAD deficiency and Reye syndrome.  相似文献   

19.
A protein isolated from goat testis cytosol is found to inhibit Na+,K+-ATPase from rat brain microsomes. The inhibitor has been purified by ammonium sulphate precipitation followed by hydroxyapatite column chromatography. The purified fraction appears as a single polypeptide band on 10% SDS-PAGE of approximate molecular mass of 70 kDa. The concentration at which 50% inhibition (I50) occurs is in the nanomolar range. The inhibitor seems to bind Na+,K+-ATPase reversibly at ATP binding site in a competitive manner with ATP, but away from ouabain binding site. It does not affect p-nitrophenyl-phosphatase activity. The inhibitor is found to inhibit the phosphorylation step of the Na+,K+-ATPase. The enhancement of tryptophan fluorescence and changes in CD pattern suggest conformational changes of Na+,K+-ATPase on binding to the inhibitor. Amino acid sequence of the trypsinised fragments show some homology with aldehyde reductase.  相似文献   

20.
Rat C6 glioma cells were cultured for 4 days in MEM medium supplemented with 10% bovine serum and Na+,K+-ATPase activity was determined in homogenates of harvested cells. Approximately 50% of enzyme activity was attained at 1.5 mM K+ and the maximum (2.76±0.13 mol Pi/h/mg protein) at 5 mM K+. The specific activity of Na+,K+-ATPase was not influenced by freezing the homogenates or cell suspensions before the enzyme assay. Ten minutes' exposure of glioma cells to 10–4 or 10–5 M noradrenaline (NA) remained without any effect on NA+,K+-ATPase activity. Neither did the presence of NA in the incubation medium, during the enzyme assay, influence the enzyme activity. The nonresponsiveness of Na+,K+-ATPase of C6 glioma cells to NA is consistent with the assumption that (+) form of the enzyme may be preferentially sensitive to noradrenaline. Na+,K+-ATPase was inhibited in a dose-dependent manner by vanadate and 50% inhibition was achieved at 2×10–7 M concentration. In spite of the fact that Na+,K+-ATPase of glioma cells was not responsive to NA, the latter could at least partially reverse vanadate-induced inhibition of the enzyme. Although the present results concern transformed glial cells, they suggest the possibility that inhibition of glial Na+,K+-ATPase may contribute to the previously reported inhibition by vanadate of Na+,K+-ATPase of the whole brain tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号