首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chloroperoxidase,a peroxidase with potential   总被引:1,自引:0,他引:1  
Summary Chloroperoxidase is an extracellular heme glycoprotein produced by the imperfect fungusCaldariomyces fumago. The enzyme can catalyse chlorination reactions as well as act as a catalase or a peroxidase. As a peroxidase, it has a wide substrate specificity and we are interested in some applied aspects of this activity, requiring the production and purification of moderate quantities of the enzyme. High levels of chloroperoxidase are produced in a fructose synthetic medium, and highest enzyme production occurs in a low-shear environment. fungal pellets produce enzyme continuously at low medium replacement rates and at up to 0.6 g enzyme per 1: chloroperoxidase is essentially the only extracellular enzyme produced. Enzyme purification is uncomplicated and gives good yields of high purity. Pure enzyme is stable for weeks at room temperature and under pH control. Chloroperoxidase can be ionically bound to aminopropyl glass, then covalently immobilized by glutaraldehyde crosslinking. Immobilized preparations have been washed and re-used five times, and are most stable at pH 5.5-6. Like many peroxidases, chloroperoxidase will oxidize phenols and phenolics, often causing a precipitate, and can totally remove phenols at low aqueous concentrations. Chloroperoxidase incubation with the petroporphyrin component of crude oil asphaltene (fraction 5) causes a reduction or removal of the Soret band (410 nm) and the -peak (573 nm). This petroporphyrin fraction is enriched with vanadium which poisons the chemical catalyst used in cracking crude oil.  相似文献   

2.
Reversible inhibition, irreversible inhibition, and activation of calf intestinal alkaline phosphatase (EC 3.1.3.1) have been studied by capillary electrophoresis. The capillary electrophoretic enzyme-inhibitor assays were based on electrophoretic mixing of inhibitor and enzyme zones in a substrate-filled capillary. Enzyme inhibition was indicated by a decrease in product formation detected in the capillary by laser-induced fluorescence. Reversible enzyme inhibitors could be quantified by Michaelis-Menten treatment of the electrophoretic data. Reversible, competitive inhibition of alkaline phosphatase by sodium vanadate and sodium arsenate has been examined, and reversible, noncompetitive inhibition by theophylline has been studied. The K(i) values determined for these reversible inhibitors using capillary electrophoresis are within the range of values reported in the literature for the same enzyme-inhibitor combinations. Irreversible inhibition of alkaline phosphatase by EDTA at concentrations of 1.0mM and above has been observed. Activation of alkaline phosphatase has also been observed for EDTA at concentrations from 20 to 400 microM.  相似文献   

3.
The shikimate pathway, responsible for aromatic amino acid biosynthesis, is required for the growth of Mycobacterium tuberculosis and is a potential drug target. The first reaction is catalyzed by 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase (DAH7PS). Feedback regulation of DAH7PS activity by aromatic amino acids controls shikimate pathway flux. Whereas Mycobacterium tuberculosis DAH7PS (MtuDAH7PS) is not inhibited by the addition of Phe, Tyr, or Trp alone, combinations cause significant loss of enzyme activity. In the presence of 200 μm Phe, only 2.4 μm Trp is required to reduce enzymic activity to 50%. Reaction kinetics were analyzed in the presence of inhibitory concentrations of Trp/Phe or Trp/Tyr. In the absence of inhibitors, the enzyme follows Michaelis-Menten kinetics with respect to substrate erythrose 4-phosphate (E4P), whereas the addition of inhibitor combinations caused significant homotropic cooperativity with respect to E4P, with Hill coefficients of 3.3 (Trp/Phe) and 2.8 (Trp/Tyr). Structures of MtuDAH7PS/Trp/Phe, MtuDAH7PS/Trp, and MtuDAH7PS/Phe complexes were determined. The MtuDAH7PS/Trp/Phe homotetramer binds four Trp and six Phe molecules. Binding sites for both aromatic amino acids are formed by accessory elements to the core DAH7PS (β/α)8 barrel that are unique to the type II DAH7PS family and contribute to the tight dimer and tetramer interfaces. A comparison of the liganded and unliganded MtuDAH7PS structures reveals changes in the interface areas associated with inhibitor binding and a small displacement of the E4P binding loop. These studies uncover a previously unrecognized mode of control for the branched pathways of aromatic amino acid biosynthesis involving synergistic inhibition by specific pairs of pathway end products.  相似文献   

4.
Ferredoxin-NADP reductase from Euglena gracilis Klebs var. Bacillaris Cori purified to apparent homogeneity, yields a typical 36 kDa and an unusual 15 kDa polypeptide on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, exhibits a typical flavoprotein spectrum, contains FAD, and catalyzes NADPH-dependent iodonitrotetrazolium-violet diaphorase, NADPH-specific ferredoxin-dependent cytochrome-c-550 reductase and NADPH-NAD transhydrogenase activities. Rabbit antibody to the purified FNR blocks these activities specifically and also blocks the iodonitrotetrazolium-violet diaphorase activity of Euglena chloroplasts completely. The low iodonitrotetrazolium-violet diaphorase activity in the plastidless mutant, W10BSmL, is mitochondrial and is not specifically blocked by the ferredoxin-NADP reductase antibody. Dark-grown non-dividing (resting) wild-type Euglena cells show a 4-fold increase in ferredoxin-NADP reductase activity during greening at 970 lx. Half of the low ferredoxin-NADP reductase activity in dark-grown cells is initially soluble, but by the end of chloroplast development nearly all of the enzyme is membrane-bound. The binding of ferredoxin-NADP reductase on exposure to light correlates with the extent of thylakoid membrane formation. Immunoblots of wild-type extracts during greening indicate that the 15 kDa polypeptide increases in the same manner as the extent of reductase binding to thylakoid membranes.  相似文献   

5.
Sphingosine kinase 1 (SK1) catalyzes the conversion of sphingosine to the bioactive lipid sphingosine 1-phosphate. We have previously demonstrated that FTY720 and (S)-FTY720 vinylphosphonate are novel inhibitors of SK1 activity. Here, we show that (S)-FTY720 vinylphosphonate binds to a putative allosteric site in SK1 contingent on formation of the enzyme-sphingosine complex. We report that SK1 is an oligomeric protein (minimally a dimer) containing noncooperative catalytic sites and that the allosteric site exerts an autoinhibition of the catalytic site. A model is proposed in which (S)-FTY720 vinylphosphonate binding to and stabilization of the allosteric site might enhance the autoinhibitory effect on SK1 activity. Further evidence for the existence of allosteric site(s) in SK1 was demonstrated by data showing that two new FTY720 analogues (a conjugate of sphingosine with a fluorophore and (S)-FTY720 regioisomer) increased SK1 activity, suggesting relief of autoinhibition of SK1 activity. Comparisons with the SK1 inhibitor, SKi or siRNA knockdown of SK1 indicated that (S)-FTY720 vinylphosphonate and FTY720 behave as typical SK1 inhibitors in preventing sphingosine 1-phosphate-stimulated rearrangement of actin in MCF-7 cells. These findings are discussed in relation to the anticancer properties of SK1 inhibitors.  相似文献   

6.
Optimisation of a novel series of osteoclast ATPase inhibitors led to (2Z,4E)-5-(5,6-dichloro-2-indolyl)-2-methoxy-N-(1,2,2,6,6-pentamethylpiperidin-4-yl)-2,4-pentadienamide (1) that was the most potent compound in an in vitro osteoclast ATPase assay and in human bone resorption assays. Two of the possible geometric isomers have also been prepared and shown to be significantly less potent than 1.  相似文献   

7.
Abstract: A cDNA for Drosophila choline acetyltransferase (EC 2.3.1.6; ChAT) was fused with a polyhistidine sequence and expressed in Escherichia coli. The recombinant enzyme was purified to a specific activity of 500 μmol/min/mg of protein using metal affinity chromatography and ion exchange chromatography. Kinetic properties of the recombinant enzyme did not differ significantly from those previously determined. Circular dichroism (CD) spectra revealed that the secondary structure of the enzyme is largely μ-helical. Intrinsic fluorescence spectra of the enzyme indicate that its tryptophan residues are buried. Neither CD nor fluorescence spectra changed significantly in the presence of substrates. The cysteine content of the recombinant Drosophila ChAT was determined to be 16 in the absence and 22 in the presence of 6 M guanidine hydrochloride. Finally, crystallization of recombinant Drosophila ChAT was achieved.  相似文献   

8.
Uba6 is a homolog of the ubiquitin-activating enzyme, Uba1, and activates two ubiquitin-like proteins (UBLs), ubiquitin and FAT10. In this study, biochemical and biophysical experiments were performed to understand the mechanisms of how Uba6 recognizes two distinct UBLs and catalyzes their activation and transfer. Uba6 is shown to undergo a three-step activation process and form a ternary complex with both UBLs, similar to what has been observed for Uba1. The catalytic mechanism of Uba6 is further supported by inhibition studies using a mechanism-based E1 inhibitor, Compound 1, which forms covalent adducts with both ubiquitin and FAT10. In addition, pre-steady state kinetic analysis revealed that the rates of UBL-adenylate (step 1) and thioester (step 2) formation are similar between ubiquitin and FAT10. However, distinct kinetic behaviors were also observed for ubiquitin and FAT10. FAT10 binds Uba6 with much higher affinity than ubiquitin while demonstrating lower catalytic activity in both ATP-PP(i) exchange and E1-E2 transthiolation assays. Also, Compound 1 is less potent with FAT10 as the UBL compared with ubiquitin in ATP-PP(i) exchange assays, and both a slow rate of covalent adduct formation and weak adduct binding to Uba6 contribute to the diminished potency observed for FAT10. Together with expression level analysis in IM-9 cells, this study sheds light on the potential role of cytokine-induced FAT10 expression in regulating Uba6 pathways.  相似文献   

9.
The crystal structure of SO1698 protein from Shewanella oneidensis was determined by a SAD method and refined to 1.57 Å. The structure is a β sandwich that unexpectedly consists of two polypeptides; the N-terminal fragment includes residues 1–116, and the C-terminal one includes residues 117–125. Electron density also displayed the Lys-98 side chain covalently linked to Asp-116. The putative active site residues involved in self-cleavage were identified; point mutants were produced and characterized structurally and in a biochemical assay. Numerical simulations utilizing molecular dynamics and hybrid quantum/classical calculations suggest a mechanism involving activation of a water molecule coordinated by a catalytic aspartic acid.  相似文献   

10.
The enzymes of the β-decarboxylating dehydrogenase superfamily catalyze the oxidative decarboxylation of d-malate-based substrates with various specificities. Here, we show that, in addition to its natural function affording bacterial growth on d-malate as a carbon source, the d-malate dehydrogenase of Escherichia coli (EcDmlA) naturally expressed from its chromosomal gene is capable of complementing leucine auxotrophy in a leuB strain lacking the paralogous isopropylmalate dehydrogenase enzyme. To our knowledge, this is the first example of an enzyme that contributes with a physiologically relevant level of activity to two distinct pathways of the core metabolism while expressed from its chromosomal locus. EcDmlA features relatively high catalytic activity on at least three different substrates (l(+)-tartrate, d-malate, and 3-isopropylmalate). Because of these properties both in vivo and in vitro, EcDmlA may be defined as a generalist enzyme. Phylogenetic analysis highlights an ancient origin of DmlA, indicating that the enzyme has maintained its generalist character throughout evolution. We discuss the implication of these findings for protein evolution.  相似文献   

11.
The Pseudomonas aeruginosa elastase (PAE), produced by Pseudomonas aeruginosa (P. aeruginosa), is a promising biocatalyst for peptide synthesis in organic solvents. As P. aeruginosa is an opportunistic pathogen, the enzyme has been heterologously over-expressed in the safe and efficient host, Pichia pastoris (P. pastoris) for its industrial application. The recombinant elastase (rPAE) contains three potential N-glycosylation sites (Asn-Xaa-Ser/Thr consensus sequences), and is heterogeneously N-glycosylated. To investigate the role of N-glycosylation in the activity, stability, and expression of rPAE, these potential N-glycosylation sites (N43, N212, and N280) were mutated using site-directed mutagenesis. Specifically the asparagine (Asn, N) residues were converted to glutamine (Gln, Q). The enzymatic activity and stability of non-glycosylated and glycosylated rPAE were then compared. The results indicated that the influence of N-glycosylation on its activity was insignificant. The non- and glycosylated isoforms of rPAE displayed similar kinetic parameters for hydrolyzing casein in aqueous medium, and when catalyzing bipeptide synthesis in 50% (v/v) DMSO, they exhibited identical substrate specificity and activity, and produced similar yields. However, N-glycosylation improved rPAE stability both in aqueous medium and in 50% (v/v) organic solvents. The half-lives of the glycosylated and non-glycosylated forms of rPAE at 70 °C were 32.2 and 23.1 min, respectively. Mutation of any potential N-glycosylation site was detrimental to its expression in P. pastoris. There was a 23.9% decrease in expression of the N43Q mutant, 63.6% of the N212Q mutant, and 63.7% of the N280Q mutant compared with the wild type. Furthermore, combined mutation of these sites resulted in an additional decrease in the caseinolytic activities of the mutants. These results indicated that all of the N-glycosylation sites were necessary for high-level expression of rPAE.  相似文献   

12.
Kelvin considered it unlikely that sufficient time had elapsed on the earth for life to have reached its present level of complexity. In the warm surroundings in which life first appeared, however, elevated temperatures would have reduced the kinetic barriers to reaction. Recent experiments disclose the profound extent to which very slow reactions are accelerated by elevated temperatures, collapsing the time that would have been required for early events in primordial chemistry before the advent of enzymes. If a primitive enzyme, like model catalysts and most modern enzymes, accelerated a reaction by lowering its enthalpy of activation, then the rate enhancement that it produced would have increased automatically as the environment cooled, quite apart from any improvements in catalytic activity that arose from mutation and natural selection. The chemical events responsible for spontaneous mutation are also highly sensitive to temperature, furnishing an independent mechanism for accelerating evolution.  相似文献   

13.
Glycogen phosphorylase genes or messages from four amitochondriate eukaryotes, Trichomonas vaginalis, Mastigamoeba balamuthi, Entamoeba histolytica (two genes) and Giardia intestinalis, have been isolated and sequenced. The sequences of the amitochondriate protist enzymes appear to share a most recent common ancestor. The clade containing these sequences is closest to that of another protist, the slime mold (Dictyostelium discoideum), and is more closely related to fungal and plant phosphorylases than to mammalian and eubacterial homologs. Structure-based amino acid alignment shows conservation of the residues and domains involved in catalysis and allosteric regulation by glucose 6-phosphate but high divergence at domains involved in phosphorylation-dependent regulation and AMP binding in fungi and animals. Protist phosphorylases, as their prokaryotic and plant counterparts, are probably not regulated by phosphorylation.  相似文献   

14.
Nicotinate mononucleotide adenylyltransferase NadD is an essential enzyme in the biosynthesis of the NAD cofactor, which has been implicated as a target for developing new antimycobacterial therapies. Here we report the crystal structure of Mycobacterium tuberculosis NadD (MtNadD) at a resolution of 2.4 Å. A remarkable new feature of the MtNadD structure, compared with other members of this enzyme family, is a 310 helix that locks the active site in an over-closed conformation. As a result, MtNadD is rendered inactive as it is topologically incompatible with substrate binding and catalysis. Directed mutagenesis was also used to further dissect the structural elements that contribute to the interactions of the two MtNadD substrates, i.e. ATP and nicotinic acid mononucleotide (NaMN). For inhibitory profiling of partially active mutants and wild type MtNadD, we used a small molecule inhibitor of MtNadD with moderate affinity (Ki ∼ 25 μm) and antimycobacterial activity (MIC80) ∼ 40–80 μm). This analysis revealed interferences with some of the residues in the NaMN binding subsite consistent with the competitive inhibition observed for the NaMN substrate (but not ATP). A detailed steady-state kinetic analysis of MtNadD suggests that ATP must first bind to allow efficient NaMN binding and catalysis. This sequential mechanism is consistent with the requirement of transition to catalytically competent (open) conformation hypothesized from structural modeling. A possible physiological significance of this mechanism is to enable the down-regulation of NAD synthesis under ATP-limiting dormancy conditions. These findings point to a possible new strategy for designing inhibitors that lock the enzyme in the inactive over-closed conformation.  相似文献   

15.
Six novel inhibitors of Vibrio harveyi chitinase A (VhChiA), a family-18 chitinase homolog, were identified by in vitro screening of a library of pharmacologically active compounds. Unlike the previously identified inhibitors that mimicked the reaction intermediates, crystallographic evidence from 14 VhChiA-inhibitor complexes showed that all of the inhibitor molecules occupied the outer part of the substrate-binding cleft at two hydrophobic areas. The interactions at the aglycone location are well defined and tightly associated with Trp-397 and Trp-275, whereas the interactions at the glycone location are patchy, indicating lower affinity and a loose interaction with two consensus residues, Trp-168 and Val-205. When Trp-275 was substituted with glycine (W275G), the binding affinity toward all of the inhibitors dramatically decreased, and in most structures two inhibitor molecules were found to stack against Trp-397 at the aglycone site. Such results indicate that hydrophobic interactions are important for binding of the newly identified inhibitors by the chitinase. X-ray data and isothermal microcalorimetry showed that the inhibitors occupied the active site of VhChiA in three different binding modes, including single-site binding, independent two-site binding, and sequential two-site binding. The inhibitory effect of dequalinium in the low nanomolar range makes this compound an extremely attractive lead compound for plausible development of therapeutics against human diseases involving chitinase-mediated pathologies.  相似文献   

16.
N,N-Dicyclohexylcarbodiimide (DCCD) is a classical inhibitor of the F0F1-ATP synthase (F0F1), which covalently binds to the highly conserved carboxylic acid of the proteolipid subunit (c subunit) in F0. Although it is well known that DCCD modification of the c subunit blocks proton translocation in F0 and the coupled ATP hydrolysis activity of F1, how DCCD inhibits the rotary dynamics of F0F1 remains elusive. Here, we carried out single-molecule rotation assays to characterize the DCCD inhibition of Escherichia coli F0F1. Upon the injection of DCCD, rotations irreversibly terminated with first order reaction kinetics, suggesting that the incorporation of a single DCCD moiety is sufficient to block the rotary catalysis of the F0F1. Individual molecules terminated at different angles relative to the three catalytic angles of F1, suggesting that DCCD randomly reacts with one of the 10 c subunits. DCCD-inhibited F0F1 sometimes showed transient activation; molecules abruptly rotated and stopped after one revolution at the original termination angle, suggesting that hindrance by the DCCD moiety is released due to thermal fluctuation. To explore the mechanical activation of DCCD-inhibited molecules, we perturbed inhibited molecules using magnetic tweezers. The probability of transient activation increased upon a forward forcible rotation. Interestingly, during the termination F0F1, showed multiple positional shifts, which implies that F1 stochastically changes the angular position of its rotor upon a catalytic reaction. This effect could be caused by balancing the angular positions of the F1 and the F0 rotors, which are connected via elastic elements.  相似文献   

17.
Enzymes released extracellularly by micro-organisms have major functions in nutrient acquisition and organic matter degradation. Clay particles, common in many surface waters, can modify enzyme activity. Clay minerals are known to form aggregates with organic molecules, and the formation of enzyme-clay complexes could alter the level of activity. Montmorillonite clay and clay extracted from Elledge Lake (Tuscaloosa, Alabama) basin soil were combined with alkaline phosphatase, glucosidase, protease, and xylosidase solutions to assess adsorption and the effect of this adsorption on enzyme activity. Adsorption to Elledge Lake basin clay decreased alkaline phosphatase activity, and adsorption to montmorillonite was observed for all four enzymes with reductions in enzyme activities. Adsorption of substrate onto clay surfaces resulted in a concentration effect and increased enzyme activity associated with the particles. When enzyme-clay complexes were exposed to natural sunlight there was a decrease in enzyme activity, but this decrease was usually not significantly different from the adsorption only treatment. The formation of enzyme-clay complexes may serve to protect the enzymes from natural in situ photodegradation. The results indicate the complex interactive effects adsorption of enzymes to clay particles can have on the availability and capability of hydrolysis – reduction of enzyme reactivity, storage attached to clay particles with changes in transport and distribution, and protection from photodegradation.  相似文献   

18.
6-Pyruvoyltetrahydropterin synthase (PTPS) homologs in both mammals and bacteria catalyze distinct reactions using the same 7,8-dihydroneopterin triphosphate substrate. The mammalian enzyme converts 7,8-dihydroneopterin triphosphate to 6-pyruvoyltetrahydropterin, whereas the bacterial enzyme catalyzes the formation of 6-carboxy-5,6,7,8-tetrahydropterin. To understand the basis for the differential activities we determined the crystal structure of a bacterial PTPS homolog in the presence and absence of various ligands. Comparison to mammalian structures revealed that although the active sites are nearly structurally identical, the bacterial enzyme houses a His/Asp dyad that is absent from the mammalian protein. Steady state and time-resolved kinetic analysis of the reaction catalyzed by the bacterial homolog revealed that these residues are responsible for the catalytic divergence. This study demonstrates how small variations in the active site can lead to the emergence of new functions in existing protein folds.  相似文献   

19.
The survival of Mycobacterium tuberculosis depends on mycolic acids, very long α-alkyl-β-hydroxy fatty acids comprising 60–90 carbon atoms. However, despite considerable efforts, little is known about how enzymes involved in mycolic acid biosynthesis recognize and bind their hydrophobic fatty acyl substrates. The condensing enzyme KasA is pivotal for the synthesis of very long (C38–42) fatty acids, the precursors of mycolic acids. To probe the mechanism of substrate and inhibitor recognition by KasA, we determined the structure of this protein in complex with a mycobacterial phospholipid and with several thiolactomycin derivatives that were designed as substrate analogs. Our structures provide consecutive snapshots along the reaction coordinate for the enzyme-catalyzed reaction and support an induced fit mechanism in which a wide cavity is established through the concerted opening of three gatekeeping residues and several α-helices. The stepwise characterization of the binding process provides mechanistic insights into the induced fit recognition in this system and serves as an excellent foundation for the development of high affinity KasA inhibitors.  相似文献   

20.
Hydrogenases are metalloenzymes that catalyze 2H+ + 2e ↔ H2. A multisubunit, bidirectional [NiFe]-hydrogenase has been identified and characterized in a number of bacteria, including cyanobacteria, where it is hypothesized to function as an electron valve, balancing reductant in the cell. In cyanobacteria, this Hox hydrogenase consists of five proteins in two functional moieties: a hydrogenase moiety (HoxYH) with homology to heterodimeric [NiFe]-hydrogenases and a diaphorase moiety (HoxEFU) with homology to NuoEFG of respiratory Complex I, linking NAD(P)H ↔ NAD(P)+ as a source/sink for electrons. Here, we present an extensive study of Hox hydrogenase in the cyanobacterium Synechocystis sp. PCC 6803. We identify the presence of HoxEFUYH, HoxFUYH, HoxEFU, HoxFU, and HoxYH subcomplexes as well as association of the immature, unprocessed large subunit (HoxH) with other Hox subunits and unidentified factors, providing a basis for understanding Hox maturation and assembly. The analysis of mutants containing individual and combined hox gene deletions in a common parental strain reveals apparent alterations in subunit abundance and highlights an essential role for HoxF and HoxU in complex/subcomplex association. In addition, analysis of individual and combined hox mutant phenotypes in a single strain background provides a clear view of the function of each subunit in hydrogenase activity and presents evidence that its physiological function is more complicated than previously reported, with no outward defects apparent in growth or photosynthesis under various growth conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号