首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The G380R mutation in the transmembrane domain of fibroblast growth factor receptor 3 (FGFR3) causes achondroplasia, the most common form of human dwarfism. Achondroplasia is a heterozygous disorder, and thus the affected individuals express both wild-type and mutant FGFR3. Yet heterodimerization in achondroplasia has not been characterized thus far. To investigate the formation of FGFR3 heterodimers in cellular membranes, we designed an FGFR3 construct that lacks the kinase domain, and we monitored the formation of inactive heterodimers between this construct and wild-type and mutant FGFR3. The formation of the inactive heterodimers depleted the pool of full-length receptors capable of forming active homodimers and ultimately reduced their phosphorylation. By analyzing the effect of the truncated FGFR3 on full-length receptor phosphorylation, we demonstrated that FGFR3 WT/G380R heterodimers form with lower probability than wild-type FGFR3 homodimers at low ligand concentration. These results further our knowledge of FGFR3-associated bone disorders.  相似文献   

2.
LAT (linker for activation of T cells) is a transmembrane adaptor protein that plays an essential role in TCR-mediated signaling and thymocyte development. Because LAT-deficient mice have an early block in thymocyte development, we utilized an inducible system to delete LAT in primary T cells to study LAT function in T cell activation, homeostasis, and survival. Deletion of LAT caused primary T cells to become unresponsive to stimulation from the TCR and impaired T cell homeostatic proliferation and long term survival. Furthermore, deletion of LAT led to reduced expression of Foxp3, CTLA-4, and CD25 in Treg cells and impaired their function. Consequently, mice with LAT deleted developed a lymphoproliferative syndrome similar to that in LATY136F mice, although less severe. Our data implicate that LAT has positive and negative roles in the regulation of mature T cells.  相似文献   

3.
Recepteur d''origine nantais (RON) receptor tyrosine kinase and its ligand, serum macrophage-stimulating protein (MSP), play important roles in inflammation, cell growth, migration, and epithelial to mesenchymal transition during tumor development. The binding of mature MSPαβ (disulfide-linked α- and β-chains) to RON ectodomain modulates receptor dimerization, followed by autophosphorylation of tyrosines in the cytoplasmic receptor kinase domains. Receptor recognition is mediated by binding of MSP β-chain (MSPβ) to the RON Sema. Here we report the structure of RON Sema-PSI-IPT1 (SPI1) domains in complex with MSPβ at 3.0 Å resolution. The MSPβ serine protease-like β-barrel uses the degenerate serine protease active site to recognize blades 2, 3, and 4 of the β-propeller fold of RON Sema. Despite the sequence homology between RON and MET receptor tyrosine kinase and between MSP and hepatocyte growth factor, it is well established that there is no cross-reactivity between the two receptor-ligand systems. Comparison of the structure of RON SPI1 in complex with MSPβ and that of MET receptor tyrosine kinase Sema-PSI in complex with hepatocyte growth factor β-chain reveals the receptor-ligand selectivity determinants. Analytical ultracentrifugation studies of the SPI1-MSPβ interaction confirm the formation of a 1:1 complex. SPI1 and MSPαβ also associate primarily as a 1:1 complex with a binding affinity similar to that of SPI1-MSPβ. In addition, the SPI1-MSPαβ ultracentrifuge studies reveal a low abundance 2:2 complex with ∼10-fold lower binding affinity compared with the 1:1 species. These results support the hypothesis that the α-chain of MSPαβ mediates RON dimerization.  相似文献   

4.
Although the signal transduction mechanisms of the receptor tyrosine kinase MET are well defined, less is known about its close relative RON. MET initiates intracellular signaling by autophosphorylation on specific cytoplasmic tyrosines that form docking sites for the adaptor proteins Grb2 and Gab1. Grb2 binds directly and is essential for all of the biological activities of MET. Gab1 docks either directly or indirectly via Grb2 and controls only a subset of MET functions. Because MET and RON possess similar adaptor binding sites, it was anticipated that their adaptor interactions would be conserved. Here we show that in contrast to MET, RON relies primarily on Gab1 for signal transmission. Surprisingly, disruption of the Grb2 docking site of RON or Grb2 depletion augments activity, whereas enhancement of Grb2 binding attenuates Gab1 recruitment and signaling. Hence, RON and MET differ in their adaptor interactions; furthermore, Grb2 performs a novel antagonistic role in the context of RON signaling.  相似文献   

5.
6.
7.
Disregulation of epidermal growth factor receptor (EGFR) signaling directly promotes bypass of proliferation and survival restraints in a high frequency of epithelia-derived cancer. As such, much effort is currently focused on decoding the molecular architecture supporting EGFR activation and function. Here, we have leveraged high throughput reverse phase protein lysate arrays, with a sensitive fluorescent nanocrystal-based phosphoprotein detection assay, together with large scale siRNA-mediated loss of function to execute a quantitative interrogation of all elements of the human kinome supporting EGF-dependent signaling. This screening platform has captured multiple novel contributions of diverse protein kinases to modulation of EGFR signal generation, signal amplitude, and signal duration. As examples, the prometastatic SNF1/AMPK-related kinase hormonally upregulated Neu kinase was found to support EGFR activation in response to ligand binding, whereas the enigmatic kinase MGC16169 selectively supports coupling of active EGFR to ERK1/2 regulation. Of note, the receptor tyrosine kinase MERTK and the pyrimidine kinase UCK1 were both found to be required for surface accumulation of EGFR and subsequent pathway activation in multiple cancer cell backgrounds and may represent new targets for therapeutic intervention.  相似文献   

8.
Organisms utilize light as energy sources and as signals. Rhodopsins, which have seven transmembrane α-helices with retinal covalently linked to a conserved Lys residue, are found in various organisms as distant in evolution as bacteria, archaea, and eukarya. One of the most notable properties of rhodopsin molecules is the large variation in their absorption spectrum. Sensory rhodopsin I (SRI) and sensory rhodopsin II (SRII) function as photosensors and have similar properties (retinal composition, photocycle, structure, and function) except for their λ(max) (SRI, ~560 nm; SRII, ~500 nm). An expression system utilizing Escherichia coli and the high protein stability of a newly found SRI-like protein, SrSRI, enables studies of mutant proteins. To determine the residue contributing to the spectral shift from SRI to SRII, we constructed various SRI mutants, in which individual residues were substituted with the corresponding residues of SRII. Three such mutants of SrSRI showed a large spectral blue-shift (>14 nm) without a large alteration of their retinal composition. Two of them, A136Y and A200T, are newly discovered color tuning residues. In the triple mutant, the λ(max) was 525 nm. The inverse mutation of SRII (F134H/Y139A/T204A) generated a spectral-shifted SRII toward longer wavelengths, although the effect is smaller than in the case of SRI, which is probably due to the lack of anion binding in the SRII mutant. Thus, half of the spectral shift from SRI to SRII could be explained by only those three residues taking into account the effect of Cl(-) binding.  相似文献   

9.
10.
The transmembrane protein nephrin is an essential component of slit diaphragms, the specialized cell junctions that link podocyte foot processes. Podocytes are epithelial cells that surround the glomerular capillaries in the kidney and are necessary for the organ-filtering function. Nephrin signaling complex transduces extracellular cues to the podocyte cytoskeleton and regulates podocyte shape and function. Vascular endothelial growth factor A (VEGF-A) is a required growth factor produced and secreted by podocytes. Accumulating evidence suggests a cross-talk between VEGF-A and nephrin signaling pathways. We previously showed that in vivo nephrin associates with VEGF receptor-2 (VEGFR2), the signaling receptor for VEGF-A. In the present work, we characterized the interaction between nephrin and VEGFR2 in cultured cells and in vitro. We demonstrate that nephrin-VEGFR2 interaction is direct using mass spectrometry, immunoprecipitation, GST-binding assays, and blot overlay experiments. This interaction occurs through VEGFR2 and nephrin cytoplasmic domains. Nephrin-VEGFR2 interaction is modulated by tyrosine phosphorylation of both cytoplasmic domains. Furthermore, the nephrin-VEGFR2 complex involves Nck and actin. VEGF-A signaling via this complex results in decreased cell size. We provide evidence that this multiprotein interaction occurs in cultured podocytes. We propose that the nephrin-VEGFR2 complex acts as a key mediator to transduce local VEGF-A signals to the podocyte actin cytoskeleton, regulating the foot process structure and glomerular filter integrity.  相似文献   

11.
Colony-stimulating factor-1 (CSF-1)-stimulated CSF-1 receptor (CSF-1R) tyrosine phosphorylation initiates survival, proliferation, and differentiation signaling pathways in macrophages. Either activation loop Y807F or juxtamembrane domain (JMD) Y559F mutations severely compromise CSF-1-regulated proliferation and differentiation. YEF, a CSF-1R in which all eight tyrosines phosphorylated in the activated receptor were mutated to phenylalanine, lacks in vitro kinase activity and in vivo CSF-1-regulated tyrosine phosphorylation. The addition of Tyr-807 alone to the YEF backbone (Y807AB) led to CSF-1-independent but receptor kinase-dependent proliferation, without detectable activation loop Tyr-807 phosphorylation. The addition of Tyr-559 alone (Y559AB) supported a low level of CSF-1-independent proliferation that was slightly enhanced by CSF-1, indicating that Tyr-559 has a positive Tyr-807-independent effect. Consistent with the postulated autoinhibitory role of the JMD Tyr-559 and its relief by ligand-induced Tyr-559 phosphorylation, the addition of Tyr-559 to the Y807AB background suppressed proliferation in the absence of CSF-1, but restored most of the CSF-1-stimulated proliferation. Full restoration of kinase activation and proliferation required the additional add back of JMD Tyr-544. Inhibitor experiments indicate that the constitutive proliferation of Y807AB macrophages is mediated by the phosphatidylinositol 3-kinase (PI3K) and ERK1/2 pathways, whereas proliferation of WT and Y559,807AB macrophages is, in addition, contributed to by Src family kinase (SFK)-dependent pathways. Thus Tyr-807 confers sufficient kinase activity for strong CSF-1-independent proliferation, whereas Tyr-559 maintains the receptor in an inactive state. Tyr-559 phosphorylation releases this restraint and may also contribute to the CSF-1-regulated proliferative response by activating Src family kinase.  相似文献   

12.
13.
Fms-like tyrosine kinase 3 (FLT3) plays an important role in hematopoietic differentiation, and constitutively active FLT3 mutant proteins contribute to the development of acute myeloid leukemia. Little is known about the protein-tyrosine phosphatases (PTP) affecting the signaling activity of FLT3. To identify such PTP, myeloid cells expressing wild type FLT3 were infected with a panel of lentiviral pseudotypes carrying shRNA expression cassettes targeting different PTP. Out of 20 PTP tested, expressed in hematopoietic cells, or presumed to be involved in oncogenesis or tumor suppression, DEP-1 (PTPRJ) was identified as a PTP negatively regulating FLT3 phosphorylation and signaling. Stable 32D myeloid cell lines with strongly reduced DEP-1 levels showed site-selective hyperphosphorylation of FLT3. In particular, the sites pTyr-589, pTyr-591, and pTyr-842 involved in the FLT3 ligand (FL)-mediated activation of FLT3 were hyperphosphorylated the most. Similarly, acute depletion of DEP-1 in the human AML cell line THP-1 caused elevated FLT3 phosphorylation. Direct interaction of DEP-1 and FLT3 was demonstrated by "substrate trapping" experiments showing association of DEP-1 D1205A or C1239S mutant proteins with FLT3 by co-immunoprecipitation. Moreover, activated FLT3 could be dephosphorylated by recombinant DEP-1 in vitro. Enhanced FLT3 phosphorylation in DEP-1-depleted cells was accompanied by enhanced FLT3-dependent activation of ERK and cell proliferation. Stable overexpression of DEP-1 in 32D cells and transient overexpression with FLT3 in HEK293 cells resulted in reduction of FL-mediated FLT3 signaling activity. Furthermore, FL-stimulated colony formation of 32D cells expressing FLT3 in methylcellulose was induced in response to shRNA-mediated DEP-1 knockdown. This transforming effect of DEP-1 knockdown was consistent with a moderately increased activation of STAT5 upon FL stimulation but did not translate into myeloproliferative disease formation in the 32D-C3H/HeJ mouse model. The data indicate that DEP-1 is negatively regulating FLT3 signaling activity and that its loss may contribute to but is not sufficient for leukemogenic cell transformation.  相似文献   

14.
The possible roles of Src family kinases in the enhanced malignant properties of melanomas related to GD3 expression were analyzed. Among Src family kinases only Yes, not Fyn or Src, was functionally involved in the increased cell proliferation and invasion of GD3-expressing transfectant cells (GD3+). Yes was located upstream of p130Cas and paxillin and at an equivalent level to focal adhesion kinase. Yes underwent autophosphorylation even before serum treatment and showed stronger kinase activity in GD3+ cells than in GD3- cells following serum treatment. Coimmunoprecipitation experiments revealed that Yes bound to focal adhesion kinase or p130Cas more strongly in GD3+ cells than in GD3- cells. As a possible mechanism for the enhancing effects of GD3 on cellular phenotypes, it was shown that majority of Yes was localized in glycolipid-enriched microdomain/rafts in GD3+ cells even before serum treatment, whereas it was scarcely detected in glycolipid-enriched microdomain/rafts in GD3- cells. An in vitro kinase assay of Yes revealed that coexistence of GD3 with Yes in membranous environments enhances the kinase activity of GD3- cell-derived Yes toward enolase, p125, and Yes itself. Knockdown of GD3 synthase resulted in the alleviation of tumor phenotypes and reduced activation levels of Yes. Taken together, these results suggest a role of GD3 in the regulation of Src family kinases.  相似文献   

15.
The EGF receptor is a classical receptor-tyrosine kinase. In the absence of ligand, the receptor adopts a closed conformation in which the dimerization arm of subdomain II interacts with the tethering arm in subdomain IV. Following the binding of EGF, the receptor opens to form a symmetric, back-to-back dimer. Although it is clear that the dimerization arm of subdomain II is central to the formation of receptor dimers, the role of the tethering arm of subdomain IV (residues 561-585) in this configuration is not known. Here we use (125)I-EGF binding studies to assess the functional role of the tethering arm in the EGF receptor dimer. Mutation of the three major residues that contribute to tethering (D563A,H566A,K585A-EGF receptor) did not significantly alter either the ligand binding properties or the signaling properties of the EGF receptor. By contrast, breaking the Cys(558)-Cys(567) disulfide bond through double alanine replacements or deleting the loop entirely led to a decrease in the negative cooperativity in EGF binding and was associated with small changes in downstream signaling. Deletion of the Cys(571)-Cys(593) disulfide bond abrogated cooperativity, resulting in a high affinity receptor and increased sensitivity of downstream signaling pathways to EGF. Releasing the Cys(571)-Cys(593) disulfide bond resulted in extreme negative cooperativity, ligand-independent kinase activity, and impaired downstream signaling. These data demonstrate that the tethering arm plays an important role in supporting cooperativity in ligand binding. Because cooperativity implies subunit-subunit interactions, these results also suggest that the tethering arm contributes to intersubunit interactions within the EGF receptor dimer.  相似文献   

16.
NPM-ALK is a chimeric tyrosine kinase detected in most anaplastic large cell lymphomas that results from the reciprocal translocation t(2,5)(p23;q35) that fuses the N-terminal domain of nucleophosmin (NPM) to the catalytic domain of the anaplastic lymphoma kinase (ALK) receptor. The constitutive activity of the kinase is responsible for its oncogenicity through the stimulation of several downstream signaling pathways, leading to cell proliferation, migration, and survival. We demonstrated previously that the high level of phosphatidylinositol 5-phosphate measured in NPM-ALK-expressing cells is controlled by the phosphoinositide kinase PIKfyve, a lipid kinase known for its role in vesicular trafficking. Here, we show that PIKfyve associates with NPM-ALK and that the interaction involves the 181-300 region of the oncogene. Moreover, we demonstrate that the tyrosine kinase activity of the oncogene controls PIKfyve lipid kinase activity but is dispensable for the formation of the complex. Silencing or inhibition of PIKfyve using siRNA or the PIKfyve inhibitor YM201636 have no effect on NPM-ALK-mediated proliferation and migration but strongly reduce invasive capacities of NPM-ALK-expressing cells and their capacity to degrade the extracellular matrix. Accordingly, immunofluorescence studies confirm a perturbation of matrix metalloproteinase 9 localization at the cell surface and defect in maturation. Altogether, these results suggest a role for PIKfyve in NPM-ALK-mediated invasion.  相似文献   

17.
Calmodulin (CaM) is the major component of calcium signaling pathways mediating the action of various effectors. Transient increases in the intracellular calcium level triggered by a variety of stimuli lead to the formation of Ca(2+)/CaM complexes, which interact with and activate target proteins. In the present study the role of Ca(2+)/CaM in the regulation of the ligand-dependent activation of the epidermal growth factor receptor (EGFR) has been examined in living cells. We show that addition of different cell permeable CaM antagonists to cultured cells or loading cells with a Ca(2+) chelator inhibited ligand-dependent EGFR auto(trans)phosphorylation. This occurred also in the presence of inhibitors of protein kinase C, CaM-dependent protein kinase II and calcineurin, which are known Ca(2+)- and/or Ca(2+)/CaM-dependent EGFR regulators, pointing to a direct effect of Ca(2+)/CaM on the receptor. Furthermore, we demonstrate that down-regulation of CaM in conditional CaM knock out cells stably transfected with the human EGFR decreased its ligand-dependent phosphorylation. Substitution of six basic amino acid residues within the CaM-binding domain (CaM-BD) of the EGFR by alanine resulted in a decreased phosphorylation of the receptor and of its downstream substrate phospholipase Cγ1. These results support the hypothesis that Ca(2+)/CaM regulates the EGFR activity by directly interacting with the CaM-BD of the receptor located at its cytosolic juxtamembrane region.  相似文献   

18.
Whether RET is able to directly phosphorylate and activate downstream targets independently of the binding of proteins that contain Src homology 2 or phosphotyrosine binding domains and whether mechanisms in trans by cytoplasmic kinases can modulate RET function and signaling remain largely unexplored. In this study, oligopeptide arrays were used to screen substrates directly phosphorylated by purified recombinant wild-type and oncogenic RET kinase domain in the presence or absence of small molecule inhibitors. The results of the peptide array were validated by enzyme kinetics, in vitro kinase, and cell-based experiments. The identification of focal adhesion kinase (FAK) as a direct substrate for RET kinase revealed (i) a RET-FAK transactivation mechanism consisting of direct phosphorylation of FAK Tyr-576/577 by RET and a reciprocal phosphorylation of RET by FAK, which crucially is able to rescue the kinase-impaired RET K758M mutant and (ii) that FAK binds RET via its FERM domain. Interestingly, this interaction is abolished upon RET phosphorylation, indicating that RET binding to the FERM domain of FAK is a priming step for RET-FAK transactivation. Finally, our data indicate that FAK inhibitors could be used as potential therapeutic agents for patients with multiple endocrine neoplasia type 2 tumors because both, treatment with the FAK kinase inhibitor NVP-TAE226 and FAK down-regulation by siRNA reduced RET phosphorylation and signaling as well as the proliferation and survival of tumor and transfected cell lines expressing oncogenic RET.  相似文献   

19.
Receptor tyrosine kinase (RTK) activation involves ligand-induced receptor dimerization and transphosphorylation on tyrosine residues. Colony-stimulating factor-1 (CSF-1)-induced CSF-1 receptor (CSF-1R) tyrosine phosphorylation and ubiquitination were studied in mouse macrophages. Phosphorylation of CSF-1R Tyr-559, required for the binding of Src family kinases (SFKs), was both necessary and sufficient for these responses and for c-Cbl tyrosine phosphorylation and all three responses were inhibited by SFK inhibitors. In c-Cbl-deficient macrophages, CSF-1R ubiquitination and tyrosine phosphorylation were substantially inhibited. Reconstitution with wild-type, but not ubiquitin ligase-defective C381A c-Cbl rescued these responses, while expression of C381A c-Cbl in wild-type macrophages suppressed them. Analysis of site-directed mutations in the CSF-1R further suggests that activated c-Cbl-mediated CSF-1R ubiquitination is required for a conformational change in the major kinase domain that allows amplification of receptor tyrosine phosphorylation and full receptor activation. Thus the results indicate that CSF-1-mediated receptor dimerization leads to a Tyr-559/SFK/c-Cbl pathway resulting in receptor ubiquitination that permits full receptor tyrosine phosphorylation of this class III RTK in macrophages.  相似文献   

20.
The discoidin domain receptors, DDR1 and DDR2, are receptor tyrosine kinases that are activated by collagen. DDR activation does not appear to occur by the common mechanism of ligand-induced receptor dimerization: the DDRs form stable noncovalent dimers in the absence of ligand, and ligand-induced autophosphorylation of cytoplasmic tyrosines is unusually slow and sustained. Here we sought to identify functionally important dimer contacts within the extracellular region of DDR1 by using cysteine-scanning mutagenesis. Cysteine substitutions close to the transmembrane domain resulted in receptors that formed covalent dimers with high efficiency, both in the absence and presence of collagen. Enforced covalent dimerization did not result in constitutive activation and did not affect the ability of collagen to induce receptor autophosphorylation. Cysteines farther away from the transmembrane domain were also cross-linked with high efficiency, but some of these mutants could no longer be activated. Furthermore, the extracellular juxtamembrane region of DDR1 tolerated large deletions as well as insertions of flexible segments, with no adverse effect on activation. These findings indicate that the extracellular juxtamembrane region of DDR1 is exceptionally flexible and does not constrain the basal or ligand-activated state of the receptor. DDR1 transmembrane signaling thus appears to occur without conformational coupling through the juxtamembrane region, but requires specific receptor interactions farther away from the cell membrane. A plausible mechanism to explain these findings is signaling by DDR1 clusters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号