首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Germ cells possess the unique ability to acquire totipotency during development in vivo as well as give rise to pluripotent stem cells under the appropriate conditions in vitro. Recent studies in which somatic cells were experimentally converted into pluripotent stem cells revealed that genes expressed in primordial germ cells (PGCs), such as Oct3/4, Sox2, and Lin28, are involved in this reprogramming. These findings suggest that PGCs may be useful for identifying factors that successfully and efficiently reprogram somatic cells into toti- and/or pluripotent stem cells. Here, we show that Blimp-1, Prdm14, and Prmt5, each of which is crucial for PGC development, have the potential to reprogram somatic cells into pluripotent stem cells. Among them, Prmt5 exhibited remarkable reprogramming of mouse embryonic fibroblasts into which Prmt5, Klf4, and Oct3/4 were introduced. The resulting cells exhibited pluripotent gene expression, teratoma formation, and germline transmission in chimeric mice, all of which were indistinguishable from those induced with embryonic stem cells. These data indicate that some of the factors that play essential roles in germ cell development are also active in somatic cell reprogramming.  相似文献   

2.
3.
4.
MicroRNAs (miRNAs) are emerging critical regulators of cell function that frequently reside in clusters throughout the genome. They influence a myriad of cell functions, including the generation of induced pluripotent stem cells, also termed reprogramming. Here, we have successfully delivered entire miRNA clusters into reprogramming fibroblasts using retroviral vectors. This strategy avoids caveats associated with transient transfection of chemically synthesized miRNA mimics. Overexpression of 2 miRNA clusters, 106a-363 and in particular 302-367, allowed potent increases in induced pluripotent stem cell generation efficiency in mouse fibroblasts using 3 exogenous factors (Sox2, Klf4, and Oct4). Pathway analysis highlighted potential relevant effectors, including mesenchymal-to-epithelial transition, cell cycle, and epigenetic regulators. Further study showed that miRNA cluster 302-367 targeted TGFβ receptor 2, promoted increased E-cadherin expression, and accelerated mesenchymal-to-epithelial changes necessary for colony formation. Our work thus provides an interesting alternative for improving reprogramming using miRNAs and adds new evidence for the emerging relationship between pluripotency and the epithelial phenotype.  相似文献   

5.
6.
7.
8.
Low reprogramming efficiency and reduced pluripotency have been the two major obstacles in induced pluripotent stem (iPS) cell research. An effective and quick method to assess the pluripotency levels of iPS cells at early stages would significantly increase the success rate of iPS cell generation and promote its applications. We have identified a conserved imprinted region of the mouse genome, the Dlk1-Dio3 region, which was activated in fully pluripotent mouse stem cells but repressed in partially pluripotent cells. The degree of activation of this region was positively correlated with the pluripotency levels of stem cells. A mammalian conserved cluster of microRNAs encoded by this region exhibited significant expression differences between full and partial pluripotent stem cells. Several microRNAs from this cluster potentially target components of the polycomb repressive complex 2 (PRC2) and may form a feedback regulatory loop resulting in the expression of all genes and non-coding RNAs encoded by this region in full pluripotent stem cells. No other genomic regions were found to exhibit such clear expression changes between cell lines with different pluripotency levels; therefore, the Dlk1-Dio3 region may serve as a marker to identify fully pluripotent iPS or embryonic stem cells from partial pluripotent cells. These findings also provide a step forward toward understanding the operating mechanisms during reprogramming to produce iPS cells and can potentially promote the application of iPS cells in regenerative medicine and cancer therapy.  相似文献   

9.
The discovery of induced pluripotent stem (iPS) cells provides not only new approaches for cell replacement therapy, but also new ways for drug screening. However, the undefined mechanism and relatively low efficiency of reprogramming have limited the application of iPS cells. In an attempt to further optimize the reprogramming condition, we unexpectedly observed that removing c-Myc from the Oct-4, Sox-2, Klf-4, and c-Myc (OSKM) combination greatly enhanced the generation of iPS cells. The iPS cells generated without c-Myc attained salient pluripotent characteristics and were capable of producing full-term mice through tetraploid complementation. We observed that forced expression of c-Myc induced the expression of many genes involved in cell cycle control and a hyperproliferation state of the mouse embryonic fibroblasts during the early stage of reprogramming. This enhanced proliferation of mouse embryonic fibroblasts correlated negatively to the overall reprogramming efficiency. By applying small molecule inhibitors of cell proliferation at the early stage of reprogramming, we were able to improve the efficiency of iPS cell generation mediated by OSKM. Our data demonstrated that the proliferation rate of the somatic cell plays critical roles in reprogramming. Slowing down the proliferation of the original cells might be beneficial to the induction of iPS cells.  相似文献   

10.
11.
12.
13.
14.
15.
Epithelial cell adhesion molecule (EpCAM) is a transmembrane glycoprotein that is highly expressed in embryonic stem cells (ESCs) and its role in maintenance of pluripotency has been suggested previously. In epithelial cancer cells, activation of the EpCAM surface-to-nucleus signaling transduction pathway involves a number of membrane proteins. However, their role in somatic cell reprogramming is still unknown. Here we demonstrate that EpCAM and its associated protein, Cldn7, play a critical role in reprogramming. Quantitative RT-PCR analysis of Oct4, Sox2, Klf4, and c-Myc (OSKM) infected mouse embryonic fibroblasts (MEFs) indicated that EpCAM and Cldn7 were up-regulated during reprogramming. Analysis of numbers of alkaline phosphatase- and Nanog-positive clones, and the expression level of pluripotency-related genes demonstrated that inhibition of either EpCAM or Cldn7 expression resulted in impairment in reprogramming efficiency, whereas overexpression of EpCAM, EpCAM plus Cldn7, or EpCAM intercellular domain (EpICD) significantly enhanced reprogramming efficiency in MEFs. Furthermore, overexpression of EpCAM or EpICD significantly repressed the expression of p53 and p21 in the reprogramming MEFs, and both EpCAM and EpICD activated the promoter activity of Oct4. These observations suggest that EpCAM signaling may enhance reprogramming through up-regulation of Oct4 and possible suppression of the p53-p21 pathway. In vitro and in vivo characterization indicated that the EpCAM-reprogrammed iPSCs exhibited similar molecular and functional features to the mouse ESCs. In summary, our studies provide additional insight into the molecular mechanisms of reprogramming and suggest a more effective means of induced pluripotent stem cell generation.  相似文献   

16.
17.
18.
19.
Human induced pluripotent stem (iPS) cells have the potential to establish a new field of promising regenerative medicine. Therefore, the safety and the efficiency of iPS-derived cells must be tested rigorously using appropriate animal models before human trials can commence. Here, we report the establishment of rabbit iPS cells as the first human-type iPS cells generated from a small laboratory animal species. Using lentiviral vectors, four human reprogramming genes (c-MYC, KLF4, SOX2, and OCT3/4) were introduced successfully into adult rabbit liver and stomach cells. The resulting rabbit iPS cells closely resembled human iPS cells; they formed flattened colonies with sharp edges and proliferated indefinitely in the presence of basic FGF. They expressed the endogenous pluripotency markers c-MYC, KLF4, SOX2, OCT3/4, and NANOG, whereas the introduced human genes were completely silenced. Using in vitro differentiating conditions, rabbit iPS cells readily differentiated into ectoderm, mesoderm, and endoderm. They also formed teratomas containing a variety of tissues of all three germ layers in immunodeficient mice. Thus, the rabbit iPS cells fulfilled all of the requirements for the acquisition of the fully reprogrammed state, showing high similarity to their embryonic stem cell counterparts we generated recently. However, their global gene expression analysis revealed a slight but rigid difference between these two types of rabbit pluripotent stem cells. The rabbit model should enable us to compare iPS cells and embryonic stem cells under the same standardized conditions in evaluating their ultimate feasibility for pluripotent cell-based regenerative medicine in humans.  相似文献   

20.
Acquisition of the pluripotent state coincides with epigenetic reprogramming of the X-chromosome. Female embryonic stem cells are characterized by the presence of two active X-chromosomes, cell differentiation by inactivation of one of the two Xs, and induced pluripotent stem cells by reactivation of the inactivated X-chromosome in the originating somatic cell. The tight linkage between X- and stem cell reprogramming occurs through pluripotency factors acting on noncoding genes of the X-inactivation center. This review article will discuss the latest advances in our understanding at the molecular level. Mouse embryonic stem cells provide a standard for defining the pluripotent ground state, which is characterized by low levels of the noncoding Xist RNA and the absence of heterochromatin marks on the X-chromosome. Human pluripotent stem cells, however, exhibit X-chromosome epigenetic instability that may have implications for their use in regenerative medicine. XIST RNA and heterochromatin marks on the X-chromosome indicate whether human pluripotent stem cells are developmentally ‘naïve’, with characteristics of the pluripotent ground state. X-chromosome status and determination thereof via noncoding RNA expression thus provide valuable benchmarks of the epigenetic quality of pluripotent stem cells, an important consideration given their enormous potential for stem cell therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号