共查询到20条相似文献,搜索用时 0 毫秒
1.
Corynebacterium glutamicum, a Gram-positive soil bacterium belonging to the mycolic acids-containing actinomycetes, is able to use the lignin degradation products ferulate, vanillate, and protocatechuate as sole carbon sources. The gene cluster responsible for vanillate catabolism was identified and characterized. The vanAB genes encoding vanillate demethylase are organized in an operon together with the vanK gene, coding for a transport system most likely responsible for protocatechuate uptake. While gene disruption mutagenesis revealed that vanillate demethylase is indispensable for ferulate and vanillate utilization, a vanK mutation does not lead to a complete growth arrest but to a decreased growth rate on protocatechuate, indicating that one or more additional protocatechuate transporter(s) are present in C. glutamicum. 相似文献
2.
Phosphate Starvation Inducible Metabolism in Lycopersicon esculentum: II. Characterization of the Phosphate Starvation Inducible-Excreted Acid Phosphatase 总被引:2,自引:6,他引:2
下载免费PDF全文

Three-day-old suspension cultured cells of Lycopersicon esculentum transferred to a Pi-depleted medium had 2.7 times the excreted acid phosphatase (Apase) activity of cells transferred to a Pi-sufficient medium. Cell growth during this time period was identical for the two treatments. Excreted Apase activity was resolved into two fractions on a Sephadex G-150 column. Most of the phosphate starvation inducible (psi) enhancement in activity was in the lower molecular weight fraction. These two fractions exhibited different substrate versus pH activity profiles. With a native polyacrylamide gel electrophoresis assay, the lower molecular weight fraction resolved into two bands of activity. Both column fractions resolved into the same single band of activity with sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The apparent molecular weight of this enzyme was 57 kilodalton. These data indicate that L. esculentum has at least two isozymes of the psi-excreted Apase and that these isozymes may associate to form high molecular weight aggregates. Labeling studies using [35S]methionine show that the psi response in tomato cells is complex and involves changes in the steady state levels of several excreted proteins. 相似文献
3.
Long-Term Phosphate Starvation and Respiratory Metabolism in Suspension-Cultured Catharanthus roseus Cells 总被引:1,自引:0,他引:1
In order to clarify the metabolic adaptation of respiratorypathways in plants to limited levels of Pi, the effects of long-termstarvation of Pi on the activities of various enzymes relatedto respiratory metabolism were examined in suspension-culturedCatharanthus roseus cells. When the activities were expressedas units per g fresh weight, only those of phosphoenolpyruvate-hydrolyzing(PEP-hydrolyzing) enzyme (which may possibly be equivalent tothe acid phosphatase activity derived from vacuoles) and PEPcarboxylase were higher in the Pi-starved cells than in controlcells. Activities of other enzymes in the Pi-starved cells werelower than or similar to those of the control cells. Time-coursestudies indicated that PEP-hydrolyzing activity was inducibleby starvation of Pi. However, in contrast to the results reportedby Duff et al. [(1989a) Plant Physiol. 90: 1275.], fluctuationsin the activity of PP1:fructose-6-phosphate 1-phosphotransferaseduring starvation of Pi were similar to those in levels of phosphofructokinaseand 6-phosphogluconate dehydrogenase. These data suggest thatthe concept of the phosphate starvation-inducible bypasses,which are engineered via the coarse control (i.e., induction)of specified enzymes and were proposed initially by Duff etal. in Brassica nigra cells, is not directly applicable to Catharanthusroseus cells in suspension. Tracer experiments using [U-14C]glutamineindicated that a significant proportion of respiratory substratescould be supplied from the enlarged pool of amino acids duringstarvation of Pi. These assumptions are supported by the observedfluctuations in levels of free amino acids and of protein inP1-fed and P1-deficient Catharanthus roseus cells.
1Part 41 in the series Metabolic Regulation in PlantCell Cultrue
2Present Address: Morinaga Mild Industry, 5-1-83, Higashihara,Zamma-shi, Kanagawa, 228 Japan 相似文献
4.
5.
Impact of Heterologous Expression of Escherichia coli UDP-Glucose Pyrophosphorylase on Trehalose and Glycogen Synthesis in Corynebacterium glutamicum
下载免费PDF全文

Leandro Padilla Susanne Morbach Reinhard Krmer Eduardo Agosin 《Applied microbiology》2004,70(7):3845-3854
Trehalose is a disaccharide with a wide range of applications in the food industry. We recently proposed a strategy for trehalose production based on improved strains of the gram-positive bacterium Corynebacterium glutamicum. This microorganism synthesizes trehalose through two major pathways, OtsBA and TreYZ, by using UDP-glucose and ADP-glucose, respectively, as the glucosyl donors. In this paper we describe improvement of the UDP-glucose supply through heterologous expression in C. glutamicum of the UDP-glucose pyrophosphorylase gene from Escherichia coli, either expressed alone or coexpressed with the E. coli ots genes (galU otsBA synthetic operon). The impact of such expression on trehalose accumulation and excretion, glycogen accumulation, and the growth pattern of new recombinant strains is described. Expression of the galU otsBA synthetic operon resulted in a sixfold increase in the accumulated and excreted trehalose relative to that in a wild-type strain. Surprisingly, single expression of galU also resulted in an increase in the accumulated trehalose. This increase in trehalose synthesis was abolished upon deletion of the TreYZ pathway. These results proved that UDP-glucose has an important role not only in the OtsBA pathway but also in the TreYZ pathway. 相似文献
6.
Jose M. Irimia Vincent S. Tagliabracci Catalina M. Meyer Dyann M. Segvich Anna A. DePaoli-Roach Peter J. Roach 《The Journal of biological chemistry》2015,290(37):22686-22698
Glycogen, the repository of glucose in many cell types, contains small amounts of covalent phosphate, of uncertain function and poorly understood metabolism. Loss-of-function mutations in the laforin gene cause the fatal neurodegenerative disorder, Lafora disease, characterized by increased glycogen phosphorylation and the formation of abnormal deposits of glycogen-like material called Lafora bodies. It is generally accepted that the phosphate is removed by the laforin phosphatase. To study the dynamics of skeletal muscle glycogen phosphorylation in vivo under physiological conditions, mice were subjected to glycogen-depleting exercise and then monitored while they resynthesized glycogen. Depletion of glycogen by exercise was associated with a substantial reduction in total glycogen phosphate and the newly resynthesized glycogen was less branched and less phosphorylated. Branching returned to normal on a time frame of days, whereas phosphorylation remained suppressed over a longer period of time. We observed no change in markers of autophagy. Exercise of 3-month-old laforin knock-out mice caused a similar depletion of glycogen but no loss of glycogen phosphate. Furthermore, remodeling of glycogen to restore the basal branching pattern was delayed in the knock-out animals. From these results, we infer that 1) laforin is responsible for glycogen dephosphorylation during exercise and acts during the cytosolic degradation of glycogen, 2) excess glycogen phosphorylation in the absence of laforin delays the normal remodeling of the branching structure, and 3) the accumulation of glycogen phosphate is a relatively slow process involving multiple cycles of glycogen synthesis-degradation, consistent with the slow onset of the symptoms of Lafora disease. 相似文献
7.
Nicholas Cianciotto Terry Serwold-Davis Neal Groman Giulio Ratti Rino Rappuoli 《FEMS microbiology letters》1990,66(1-3):299-301
Chromosomal restriction fragments of Corynebacterium ulcerans and C. diphtheriae, containing an integration site for corynephages of the beta family, show homology on Southern blots. Homologous DNA in also found in the soil isolate C. glutamicum, although this strain is not susceptible to beta-corynephages. Three of these DNA fragments, one for each bacterial strain, and a fragment of gamma-corynephage DNA previously shown to contain the phage integration site, were cloned and sequenced. Alignment of the 3 bacterial sequences shows a very high degree of homology in a stretch of ca 120 nucleotides, whereas the rest of the sequences is generally non-homologous. Within this common bacterial portion, a segment of ca. 96 nucleotides (core sequence) is also highly homologous to the phage sequence. The first half (ca. 50 bp) of the core sequence is identical in all aligned sequences whereas the second half, which is largely occupied by a stem-and-loop structure, contains point mutations peculiar to each clone. The described sequences are likely to be involved in phage integration/excision processes. 相似文献
8.
ABSTRACT: BACKGROUND: Corynebacterium glutamicum contains the glycosylated C50 carotenoid decaprenoxanthin as yellow pigment. Starting from isopentenyl pyrophosphate, which is generated in the non-mevalonate pathway, decaprenoxanthin is synthesized via the intermediates farnesyl pyrophosphate, geranylgeranyl pyrophosphate, lycopene and flavuxanthin. RESULTS: Here, we showed that the genes of the carotenoid gene cluster crtE-cg0722-crtBIYeYfEb are co-transcribed and characterized defined gene deletion mutants. Gene deletion analysis revealed that crtI, crtEb, and crtYeYf, respectively, code for the only phytoene desaturase, lycopene elongase, and carotenoid C45/C50 epsilon-cyclase, respectively. However, the genome of C. glutamicum also encodes a second carotenoid gene cluster comprising crtB2I2-1/2 shown to be co-transcribed, as well. Ectopic expression of crtB2 could compensate for the lack of phytoene synthase CrtB in C. glutamicum DeltacrtB, thus, C. glutamicum possesses two functional phytoene synthases, namely CrtB and CrtB2. Genetic evidence for a crtI2-1/2 encoded phytoene desaturase could not be obtained since plasmid-borne expression of crtI2-1/2 did not compensate for the lack of phytoene desaturase CrtI in C. glutamicum DeltacrtI. The potential of C. glutamicum to overproduce carotenoids was estimated with lycopene as example. Deletion of the gene crtEb prevented conversion of lycopene to decaprenoxanthin and entailed accumulation of lycopene to 0.03 +/- 0.01 mg/g cell dry weight (CDW). When the genes crtE, crtB and crtI for conversion of geranylgeranyl pyrophosphate to lycopene were overexpressed in C. glutamicum DeltacrtEb intensely red-pigmented cells and an 80 fold increased lycopene content of 2.4 +/- 0.3 mg/g CDW were obtained. CONCLUSION: C. glutamicum possesses a certain degree of redundancy in the biosynthesis of the C50 carotenoid decaprenoxanthin as it possesses two functional phytoene synthase genes. Already metabolic engineering of only the terminal reactions leading to lycopene resulted in considerable lycopene production indicating that C. glutamicum may serve as a potential host for carotenoid production. 相似文献
9.
10.
Expression, secretion, and processing of staphylococcal nuclease by Corynebacterium glutamicum. 总被引:5,自引:0,他引:5
下载免费PDF全文

The gene for staphylococcal nuclease (SNase), an extracellular enzyme of Staphylococcus aureus, was introduced into Corynebacterium glutamicum. The heterologous gene was expressed in this host organism, and SNase was efficiently exported to the culture medium. Amino-terminal sequencing of SNase secreted by C. glutamicum revealed that the signal peptide was apparently cleaved off at precisely the same position as in the original host, S. aureus. As with S. aureus, a second smaller form of SNase (A form), whose appearance is presumably the result of a secondary processing step, was found in the culture medium of the recombinant C. glutamicum strain. The A form was one residue shorter than the mature nuclease A produced by S. aureus. Variation of the sodium chloride concentration in the growth medium had a marked influence on the location and the processing of SNase by C. glutamicum. In a complex growth medium containing 4% sodium chloride, SNase was exclusively located in the supernatant, but a significant amount of the enzyme remained cell associated if the strain was grown in a low-salt medium. Also, high salt concentrations seemed to inhibit processing of the high-molecular-weight form of SNase (B form) to the smaller A form. Similarities and differences in the export and modes of processing of SNase by three different, nonrelated gram-positive host organisms are discussed. Finally, a versatile Escherichia coli-C. glutamicum tac-lacIq expression shuttle vector was constructed. With this vector, it was possible to achieve isopropyl-beta-D-galactopyranoside (IPTG)-inducible overexpression and secretion of SNase in C. glutamicum, whereby the expression level was dependent on the concentration of the inducer. 相似文献
11.
Andrea Trochine Darren J. Creek Paula Faral-Tello Michael P. Barrett Carlos Robello 《PLoS neglected tropical diseases》2014,8(5)
Background
The first line treatment for Chagas disease, a neglected tropical disease caused by the protozoan parasite Trypanosoma cruzi, involves administration of benznidazole (Bzn). Bzn is a 2-nitroimidazole pro-drug which requires nitroreduction to become active, although its mode of action is not fully understood. In the present work we used a non-targeted MS-based metabolomics approach to study the metabolic response of T. cruzi to Bzn.Methodology/Principal findings
Parasites treated with Bzn were minimally altered compared to untreated trypanosomes, although the redox active thiols trypanothione, homotrypanothione and cysteine were significantly diminished in abundance post-treatment. In addition, multiple Bzn-derived metabolites were detected after treatment. These metabolites included reduction products, fragments and covalent adducts of reduced Bzn linked to each of the major low molecular weight thiols: trypanothione, glutathione, γ-glutamylcysteine, glutathionylspermidine, cysteine and ovothiol A. Bzn products known to be generated in vitro by the unusual trypanosomal nitroreductase, TcNTRI, were found within the parasites, but low molecular weight adducts of glyoxal, a proposed toxic end-product of NTRI Bzn metabolism, were not detected.Conclusions/significance
Our data is indicative of a major role of the thiol binding capacity of Bzn reduction products in the mechanism of Bzn toxicity against T. cruzi. 相似文献12.
13.
14.
15.
16.
Genes encoding the basic protease of Dichelobacter nodosus (bprV) and the subtilisin of Bacillus subtilis (aprE) were cloned and expressed in Corynebacterium glutamicum. In each case, enzymatically active protein was detected in the supernatants of liquid cultures. While the secretion of subtilisin was directed by its own signal peptide, the natural signal peptide of the bprV basic protease did not facilitate secretion. A hybrid aprE-bprV gene in which the promoter and signal peptide coding sequences of subtilisin replaced those of bprV could be expressed, and basic protease was secreted by C. glutamicum. Expression of these proteases in C. glutamicum provides an opportunity to compare protein secretion from this gram-positive host with that from other gram-positive and gram-negative bacteria. 相似文献
17.
Plasmids in Corynebacterium glutamicum and their molecular classification by comparative genomics 总被引:3,自引:0,他引:3
Endogenous plasmids and selectable resistance markers are a fundamental prerequisite for the development of efficient recombinant DNA techniques in industrial microorganisms. In this article, we therefore summarize the current knowledge about endogenous plasmids in amino acid-producing Corynebacterium glutamicum isolates. Screening studies identified a total of 24 different plasmids ranging in size from 2.4 to 95 kb. Although most of the C. glutamicum plasmids were cryptic, four plasmids carried resistance determinants against the antibiotics chloramphenicol, tetracycline, streptomycin-spectinomycin, and sulfonamides. Considerable information is now available on the molecular genetic organization of 12 completely sequenced plasmid genomes from C. glutamicum. The deduced mechanism of plasmid DNA replication and the degree of amino acid sequence similarity among replication initiator proteins was the basis for performing a classification of the plasmids into four distinct C. glutamicum plasmid families. 相似文献
18.
The gram-positive bacterium Corynebacterium glutamicum is used for the industrial production of amino acids, e.g. of L-glutamate and L-lysine. During the last 15 years, genetic engineering and amplification of genes have become fascinating methods for studying metabolic pathways in greater detail and for the construction of strains with the desired genotypes. In order to obtain a better understanding of the central metabolism and to quantify the in vivo fluxes in C. glutamicum, the [13C]-labelling technique was combined with metabolite balancing to achieve a unifying comprehensive pathway analysis. These methods can determine the flux distribution at the branch point between glycolysis and the pentose phosphate pathway. The in vivo fluxes in the oxidative part of the pentose phosphate pathway calculated on the basis of intracellular metabolite concentrations and the kinetic constants of the purified glucose-6-phosphate and 6-phosphogluconate dehydrogenases determined in vitro were in full accordance with the fluxes measured by the [13C]-labelling technique. These data indicate that the oxidative pentose phosphate pathway in C. glutamicum is mainly regulated by the ratio of NADPH/NADP concentrations and the specific activity of glucose-6-phosphate dehydrogenase. The carbon flux via the oxidative pentose phosphate pathway correlated with the NADPH demand for L-lysine synthesis. Although it has generally been accepted that phosphoenolpyruvate carboxylase fulfills a main anaplerotic function in C. glutamicum, we recently detected that a biotin-dependent pyruvate carboxylase exists as a further anaplerotic enzyme in this bacterium. In addition to the activities of these two carboxylases three enzymes catalysing the decarboxylation of the C4 metabolites oxaloacetate or malate are also present in this bacterium. The individual flux rates at this complex anaplerotic node were investigated by using [13C]-labelled substrates. The results indicate that both carboxylation and decarboxylation occur simultaneously in C. glutamicum so that a high cyclic flux of oxaloacetate via phosphoenolpyruvate to pyruvate was found. Furthermore, we detected that in C. glutamicum two biosynthetic pathways exist for the synthesis of DL-diaminopimelate and L-lysine. As shown by NMR spectroscopy the relative use of both pathways in vivo is dependent on the ammonium concentration in the culture medium. Mutants defective in one pathway are still able to synthesise enough L-lysine for growth, but the L-lysine yields with overproducers were reduced. The luxury of having these two pathways gives C. glutamicum an increased flexibility in response to changing environmental conditions and is also related to the essential need for DL-diaminopimelate as a building block for the synthesis of the murein sacculus. 相似文献
19.
Gerstmeir R Wendisch VF Schnicke S Ruan H Farwick M Reinscheid D Eikmanns BJ 《Journal of biotechnology》2003,104(1-3):99-122