首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

The present pilot study investigating the minimum dose for short-course single and double-dose treatment of kala-azar with an apparently new liposomal formulation of amphotericin B, Fungisome, led to identification of immunological components for early detection of success and/or failure to cure.

Methods

Patients were treated with 5, 7.5 (single-dose) and 10 mg/kg body weight (5 mg/kg double-dose) of Fungisome. Immunological investigations involving plasma cytokines and antigen-specific lymphoproliferation and cytokine responses from PBMCs were carried out before, 1 week after Fungisome treatment, at the time of relapse, and again after conventional amphotericin B treatment.

Results

At 1-month follow-up all the patients showed 100% initial cure. However, total doses of 5, 7.5 and 10 mg/kg Fungisome showed 60%, 50% and 90% cure, respectively, at 6-months posttreatment. Patients successfully cured demonstrated downregulation of IL-12 and IL-10 in plasma, and two-fold or more elevation of IFN-γ, IL-12 and TNF, and significant down-regulation of IL-10 and TGF-β in culture supernatants 1-week posttreatment irrespective of drug-dose. A differential immune profile, involving insignificant decline in IL-10 and IL-12 in plasma and negligible elevation of IFN-γ, IL-12 and TNF, and persistence of IL-10, despite decline in TGF-β in culture supernatants, in apparently cured individuals, corresponded with relapse within 6-months of treatment.

Conclusion

Immunological investigations revealed significant curative and non-curative immunomodulation 1-week posttreatment, correlating with successful cure and relapse, respectively. Although immune-correlation was dose-independent, almost consistent curative response in patients treated with the highest dose 10 mg/kg reflected a definitive impact of the higher-dose on the immune response.

Trial registration name and number

Clinical Trials Registry - India (CTRI) CTRI/2009/091/000764  相似文献   

2.

Background

Interleukin (IL)-6 is recognised as an important cytokine involved in inflammatory diseases of the central nervous system (CNS).

Objective

To perform a large retrospective study designed to test cerebrospinal fluid (CSF) IL-6 levels in the context of neurological diseases, and evaluate its usefulness as a biomarker to help discriminate multiple sclerosis (MS) from other inflammatory neurological diseases (OIND).

Patients and Methods

We analyzed 374 CSF samples for IL-6 using a quantitative enzyme-linked immunosorbent assay. Groups tested were composed of demyelinating diseases of the CNS (DD, n = 117), including relapsing-remitting MS (RRMS, n = 65), primary progressive MS (PPMS, n = 11), clinically isolated syndrome (CIS, n = 11), optic neuritis (ON, n = 30); idiopathic transverse myelitis (ITM, n = 10); other inflammatory neurological diseases (OIND, n = 35); and non-inflammatory neurological diseases (NIND, n = 212). Differences between groups were analysed using Kruskal−Wallis test and Mann−Whitney U-test.

Results

CSF IL-6 levels exceeded the positivity cut-off of 10 pg/ml in 18 (51.4%) of the 35 OIND samples, but in only three (3.9%) of the 76 MS samples collected. CSF IL-6 was negative for all NIND samples tested (0/212). IL-6 cut-off of 10 pg/ml offers 96% sensitivity to exclude MS.

Conclusion

CSF IL-6 may help to differentiate MS from its major differential diagnosis group, OIND.  相似文献   

3.

Background

Human strongyloidiasis varies from a chronic but limited infection in normal hosts to hyperinfection in patients treated with corticosteroids or with HTLV-1 co-infection. Regulatory T cells dampen immune responses to infections. How human strongyloidiasis is controlled and how HTLV-1 infection affects this control are not clear. We hypothesize that HTLV-1 leads to dissemination of Strongyloides stercoralis infection by augmenting regulatory T cell numbers, which in turn down regulate the immune response to the parasite.

Objective

To measure peripheral blood T regulatory cells and Strongyloides stercoralis larval antigen-specific cytokine responses in strongyloidiasis patients with or without HTLV-1 co-infection.

Methods

Peripheral blood mononuclear cells (PBMCs) were isolated from newly diagnosed strongyloidiasis patients with or without HTLV-1 co-infection. Regulatory T cells were characterized by flow cytometry using intracellular staining for CD4, CD25 and FoxP3. PBMCs were also cultured with and without Strongyloides larval antigens. Supernatants were analyzed for IL-5 production.

Results

Patients with HTLV-1 and Strongyloides co-infection had higher parasite burdens. Eosinophil counts were decreased in the HTLV-1 and Strongyloides co-infected subjects compared to strongyloidiasis-only patients (70.0 vs. 502.5 cells/mm3, p = 0.09, Mann-Whitney test). The proportion of regulatory T cells was increased in HTLV-1 positive subjects co-infected with strongyloidiasis compared to patients with only strongyloidiasis or asymptomatic HTLV-1 carriers (median = 17.9% vs. 4.3% vs. 5.9 p<0.05, One-way ANOVA). Strongyloides antigen-specific IL-5 responses were reduced in strongyloidiasis/HTLV-1 co-infected patients (5.0 vs. 187.5 pg/ml, p = 0.03, Mann-Whitney test). Reduced IL-5 responses and eosinophil counts were inversely correlated to the number of CD4+CD25+FoxP3+ cells.

Conclusions

Regulatory T cell counts are increased in patients with HTLV-1 and Strongyloides stercoralis co-infection and correlate with both low circulating eosinophil counts and reduced antigen-driven IL-5 production. These findings suggest a role for regulatory T cells in susceptibility to Strongyloides hyperinfection.  相似文献   

4.

Instruction

Interleukin 27 (IL-27) is an important regulator of the proinflammatory T-cell response. In this study, we investigated its role in the pathogenesis of Behçet’s disease (BD).

Methods

IL-27 mRNA in peripheral blood mononuclear cells (PBMCs) was examined by performing RT-PCRs. Cytokine levels in sera or supernatants of PBMCs, naïve CD4+ T cells, dendritic cells (DCs) and DC/T cells were determined by enzyme-linked immunosorbent assay. We used RNA interference in naïve CD4+ T cells to study the role of interferon regulatory factor 8 (IRF8) in the inhibitory effect of IL-27 on Th17 cell differentiation. Flow cytometry was used to evaluate the frequency of IL-17- and interferon γ–producing T cells.

Results

The expression of IL-27p28 mRNA by PBMCs and IL-27 in the sera and supernatants of cultured PBMCs were markedly decreased in patients with active BD. A higher frequency of IL-17-producing CD4+ T (Th17) cells and increased IL-17 production under Th17 polarizing conditions were observed in patients with active BD. IL-27 significantly inhibited Th17 cell differentiation. Downregulation of IRF8 by RNA interference abrogated the suppressive effect of IL-27 on Th17 differentiation. IL-27 inhibited the production of IL-1β, IL-6 and IL-23, but promoted IL-10 production, by DCs. IL-27-treated DCs inhibited both the Th1 and Th17 cell responses.

Conclusions

The results of the present study suggest that a decreased IL-27 expression is associated with disease activity in BD patients. Low IL-27 expression may result in a higher Th1 and Th17 cell response and thereby promote the autoinflammatory reaction observed in BD. Manipulation of IL-27 may offer a new treatment modality for this disease.  相似文献   

5.

Background

Multiple sclerosis (MS) likely results from an imbalance between regulatory and inflammatory immune processes. CD39 is an ectoenzyme that cleaves ATP to AMP and has been suggested as a novel regulatory T cells (Treg) marker. As ATP has numerous proinflammatory effects, its degradation by CD39 has anti-inflammatory influence. The purpose of this study was to explore regulatory and inflammatory mechanisms activated in fingolimod treated MS patients.

Methods and Findings

Peripheral blood mononuclear cells (PBMCs) were isolated from relapsing-remitting MS patients before starting fingolimod and three months after therapy start. mRNA expression was assessed in ex vivo PBMCs. The proportions of CD8, B cells, CD4 and CD39-expressing cells were analysed by flow cytometry. Treg proportion was quantified by flow cytometry and methylation-specific qPCR. Fingolimod treatment increased mRNA levels of CD39, AHR and CYP1B1 but decreased mRNA expression of IL-17, IL-22 and FOXP3 mRNA in PBMCs. B cells, CD4+ cells and Treg proportions were significantly reduced by this treatment, but remaining CD4+ T cells were enriched in FOXP3+ cells and in CD39-expressing Tregs.

Conclusions

In addition to the decrease in circulating CD4+ T cells and CD19+ B cells, our findings highlight additional immunoregulatory mechanisms induced by fingolimod.  相似文献   

6.

Background

Interleukin (IL)-10 levels are increased in dengue virus (DENV)-infected patients with severe disorders. A hypothetical intrinsic pathway has been proposed for the IL-10 response during antibody-dependent enhancement (ADE) of DENV infection; however, the mechanisms of IL-10 regulation remain unclear.

Principle Finding

We found that DENV infection and/or attachment was sufficient to induce increased expression of IL-10 and its downstream regulator suppressor of cytokine signaling 3 in human monocytic THP-1 cells and human peripheral blood monocytes. IL-10 production was controlled by activation of cyclic adenosine monophosphate response element-binding (CREB), primarily through protein kinase A (PKA)- and phosphoinositide 3-kinase (PI3K)/PKB-regulated pathways, with PKA activation acting upstream of PI3K/PKB. DENV infection also caused glycogen synthase kinase (GSK)-3β inactivation in a PKA/PI3K/PKB-regulated manner, and inhibition of GSK-3β significantly increased DENV-induced IL-10 production following CREB activation. Pharmacological inhibition of spleen tyrosine kinase (Syk) activity significantly decreased DENV-induced IL-10 production, whereas silencing Syk-associated C-type lectin domain family 5 member A caused a partial inhibition. ADE of DENV infection greatly increased IL-10 expression by enhancing Syk-regulated PI3K/PKB/GSK-3β/CREB signaling. We also found that viral load, but not serotype, affected the IL-10 response. Finally, modulation of IL-10 expression could affect DENV replication.

Significance

These results demonstrate that, in monocytes, IL-10 production is regulated by ADE through both an extrinsic and an intrinsic pathway, all involving a Syk-regulated PI3K/PKB/GSK-3β/CREB pathway, and both of which impact viral replication.  相似文献   

7.

Background

While intracellular buffers are widely used to study calcium signaling, no such tool exists for the other major second messenger, cyclic AMP (cAMP).

Methods/Principal Findings

Here we describe a genetically encoded buffer for cAMP based on the high-affinity cAMP-binding carboxy-terminus of the regulatory subunit RIβ of protein kinase A (PKA). Addition of targeting sequences permitted localization of this fragment to the extra-nuclear compartment, while tagging with mCherry allowed quantification of its expression at the single cell level. This construct (named “cAMP sponge”) was shown to selectively bind cAMP in vitro. Its expression significantly suppressed agonist-induced cAMP signals and the downstream activation of PKA within the cytosol as measured by FRET-based sensors in single living cells. Point mutations in the cAMP-binding domains of the construct rendered the chimera unable to bind cAMP in vitro or in situ. Cyclic AMP sponge was fruitfully applied to examine feedback regulation of gap junction-mediated transfer of cAMP in epithelial cell couplets.

Conclusions

This newest member of the cAMP toolbox has the potential to reveal unique biological functions of cAMP, including insight into the functional significance of compartmentalized signaling events.  相似文献   

8.

Background

Abnormalities of vascular smooth muscle cells (VSMCs) contribute to development of vascular disease. Atrial natriuretic peptide (ANP) exerts important effects on VSMCs. A common ANP molecular variant (T2238C/αANP) has recently emerged as a novel vascular risk factor.

Objectives

We aimed at identifying effects of CC2238/αANP on viability, migration and motility in coronary artery SMCs, and the underlying signaling pathways.

Methods and Results

Cells were exposed to either TT2238/αANP or CC2238/αANP. At the end of treatment, cell viability, migration and motility were evaluated, along with changes in oxidative stress pathway (ROS levels, NADPH and eNOS expression), on Akt phosphorylation and miR21 expression levels. CC2238/αANP reduced cell vitality, increased apoptosis and necrosis, increased oxidative stress levels, suppressed miR21 expression along with consistent changes of its molecular targets (PDCD4, PTEN, Bcl2) and of phosphorylated Akt levels. As a result of increased oxidative stress, CC2238/αANP markedly stimulated cell migration and increased cell contraction. NPR-C gene silencing with specific siRNAs restored cell viability, miR21 expression, and reduced oxidative stress induced by CC2238/αANP. The cAMP/PKA/CREB pathway, driven by NPR-C activation, significantly contributed to both miR21 and phosphoAkt reduction upon CC2238/αANP. miR21 overexpression by mimic-hsa-miR21 rescued the cellular damage dependent on CC2238/αANP.

Conclusions

CC2238/αANP negatively modulates viability through NPR-C/cAMP/PKA/CREB/miR21 signaling pathway, and it augments oxidative stress leading to increased migratory and vasoconstrictor effects in coronary artery SMCs. These novel findings further support a damaging role of this common αANP variant on vessel wall and its potential contribution to acute coronary events.  相似文献   

9.

Background

Multiple sclerosis (MS) is characterized by a polyspecific B-cell response to neurotropic viruses such as measles, rubella and varicella zoster, with the corresponding antibodies measurable in CSF as the so-called “MRZ reaction” (MRZR). We aimed to evaluate the relevance of MRZR to predict conversion of patients with clinically isolated syndrome (CIS) to MS, and to compare it to oligoclonal bands (OCB) and MRI.

Methodology/Principal Findings

MRZR was determined in a prospective study over 2 years including 40 patients that remained CIS over follow-up (CIS-CIS) and 49 patients that developed MS (CIS-RRMS) using ELISA. Using logistic regression, a score (MRZS) balancing the predictive value of the antibody indices included in MRZR was defined (9 points measles, 8 points rubella, 1 point varicella zoster, cutpoint: sum of scores greater 10).MRZR and MRZS were significantly more frequent in CIS-RRMS as compared to CIS-CIS (p = 0.04 and p = 0.02). MRZS showed the best positive predictive value (PPV) of all parameters investigated (79%, 95%-CI: 54–94%), which could be further increased by combination with MRI (91%, 95%-CI: 59–99%).

Conclusions/Significance

Our data indicate the relevance of MRZR to predict conversion to MS. It furthermore shows the importance of weighting the different antibody indices included in MRZR and suggest that patients with positive MRZR are candidates for an early begin of immunomodulatory therapy.  相似文献   

10.

Background

In vitro and animal studies have suggested that plant sterols and stanols increase cytokine production by T-helper-1 cells. This may be beneficial for patient groups characterized by a T-helper-2 dominant immune response, e.g. asthma patients. (1) to evaluate whether sitostanol induces a T-helper-1 shift in peripheral blood mononuclear cells (PBMCs) from asthma patients, and (2) to unravel the role of regulatory T-cells in this respect.

Methodology/Principal Findings

PBMCs from 10 asthma patients and 10 healthy subjects were isolated and incubated with 1.2 µM sitostanol, while stimulated with 5 µg/ml PHA. Similar amounts of cholesterol were used to determine whether effects were specific for plant stanols or for sterols in general. Changes in cytokine production were measured using antibody arrays and ELISAs. Changes in regulatory T-cell population size were measured by flow cytometry, using intracellular Foxp3 staining. Sitostanol increased production of IFNγ by 6.5% and IL-2 by 6.0% compared to cholesterol (p<0.01). No changes in IL-4 and IL-13 were found. Interestingly, this effect was only present in PBMCs from asthma patients. The number of Foxp3+ cells tended to increase and their activity, measured by IL-10 production, increased after sitostanol treatment in PBMCs from asthma patients compared to controls by 32.3% (p = 0.077) and 13.3% (p<0.05), respectively.

Conclusions/Significance

Altogether, the sitostanol-induced Thelper-1 shift in PBMCs from asthma patients and the stimulating effects of sitostanol on Treg cell numbers and activity indicate a possible novel approach for plant stanol ester enriched functional foods in the amelioration of asthmatic symptoms. Functional effects, however, require further evaluation.  相似文献   

11.
12.

Background

MS pathogenesis seems to involve both genetic susceptibility and environmental risk factors. Three sequential factors are implicated in the environmental risk. The first acts near birth, the second acts during childhood, and the third acts long thereafter. Two candidate factors (vitamin D deficiency and Epstein-Barr viral infection) seem well suited to the first two environmental events.

Methodology/Principal Findings

A mathematical Model for MS pathogenesis is developed, incorporating these environmental and genetic factors into a causal scheme that can explain some of the recent changes in MS-epidemiology (e.g., increasing disease prevalence, a changing sex-ratio, and regional variations in monozygotic twin concordance rates).

Conclusions/Significance

This Model suggests that genetic susceptibility is overwhelmingly the most important determinant of MS pathogenesis. Indeed, over 99% of individuals seem genetically incapable of developing MS, regardless of what environmental exposures they experience. Nevertheless, the contribution of specific genes to MS-susceptibility seems only modest. Thus, despite HLA DRB1*1501 being the most consistently identified genetic marker of MS-susceptibility (being present in over 50% of northern MS patient populations), only about 1% of individuals with this allele are even genetically susceptible to getting MS. Moreover, because genetic susceptibility seems so similar throughout North America and Europe, environmental differences principally determine the regional variations in disease characteristics. Additionally, despite 75% of MS-patients being women, men are 60% more likely to be genetically-susceptible than women. Also, men develop MS at lower levels of environmental exposure than women. Nevertheless, women are more responsive to the recent changes in environmental-exposure (whatever these have been). This explains both the changing sex-ratio and the increasing disease prevalence (which has increased by a minimum of 32% in Canada over the past 35 years). As noted, environmental risk seems to result from three sequential components of environmental exposure. The potential importance of this Model for MS pathogenesis is that, if correct, a therapeutic strategy, designed to interrupt one or more of these sequential factors, has the potential to markedly reduce or eliminate disease prevalence in the future.  相似文献   

13.

Objective

Interleukin (IL)-22 has been reported to be involved in the development of autoimmune diseases. This study aimed to analyze the expression and potential role of IL-22 in the pathogenesis of Behcet’s disease (BD).

Methods

The levels of IL-22 in patient sera or supernatants of cultured peripheral blood mononuclear cells (PBMCs) and CD4+T cells were detected by enzyme-linked immunosorbent assay (ELISA). Flow cytometry was used to evaluate the frequency of IL-22–producing CD4+ T cells. IL-22 mRNA from erythema nodosum skin lesions was examined using real time quantitative RT-PCR.

Results

BD patients with active uveitis showed a significantly higher expression of IL-22 in the supernatants of stimulated PBMCs and CD4+T cells compared with BD patients without active uveitis and normal controls. An increased frequency of IL-22-producing CD4+T cells was also found in BD patients with active uveitis. IL-22 mRNA expression was elevated in erythema nodosum skin lesions. In BD patients, a high IL-22 level in the supernatant of stimulated PBMCs correlated with the presence of retinal vasculitis and erythema nodosum.

Conclusions

IL-22 was associated with disease activity in BD and correlated with the presence of small vessel inflammation, suggesting that it may be involved in its pathogenesis.  相似文献   

14.

Background

Human African trypanosomiasis (HAT), also known as sleeping sickness, is a parasitic tropical disease. It progresses from the first, haemolymphatic stage to a neurological second stage due to invasion of parasites into the central nervous system (CNS). As treatment depends on the stage of disease, there is a critical need for tools that efficiently discriminate the two stages of HAT. We hypothesized that markers of brain damage discovered by proteomic strategies and inflammation-related proteins could individually or in combination indicate the CNS invasion by the parasite.

Methods

Cerebrospinal fluid (CSF) originated from parasitologically confirmed Trypanosoma brucei gambiense patients. Patients were staged on the basis of CSF white blood cell (WBC) count and presence of parasites in CSF. One hundred samples were analysed: 21 from stage 1 (no trypanosomes in CSF and ≤5 WBC/µL) and 79 from stage 2 (trypanosomes in CSF and/or >5 WBC/µL) patients. The concentration of H-FABP, GSTP-1 and S100β in CSF was measured by ELISA. The levels of thirteen inflammation-related proteins (IL-1ra, IL-1β, IL-6, IL-9, IL-10, G-CSF, VEGF, IFN-γ, TNF-α, CCL2, CCL4, CXCL8 and CXCL10) were determined by bead suspension arrays.

Results

CXCL10 most accurately distinguished stage 1 and stage 2 patients, with a sensitivity of 84% and specificity of 100%. Rule Induction Like (RIL) analysis defined a panel characterized by CXCL10, CXCL8 and H-FABP that improved the detection of stage 2 patients to 97% sensitivity and 100% specificity.

Conclusion

This study highlights the value of CXCL10 as a single biomarker for staging T. b. gambiense-infected HAT patients. Further combination of CXCL10 with H-FABP and CXCL8 results in a panel that efficiently rules in stage 2 HAT patients. As these molecules could potentially be markers of other CNS infections and disorders, these results should be validated in a larger multi-centric cohort including other inflammatory diseases such as cerebral malaria and active tuberculosis.  相似文献   

15.

Background

Little is known about the immunopathogenesis of Chikungunya virus. Circulating levels of immune mediators and growth factors were analyzed from patients infected during the first Singaporean Chikungunya fever outbreak in early 2008 to establish biomarkers associated with infection and/or disease severity.

Methods and Findings

Adult patients with laboratory-confirmed Chikungunya fever infection, who were referred to the Communicable Disease Centre/Tan Tock Seng Hospital during the period from January to February 2008, were included in this retrospective study. Plasma fractions were analyzed using a multiplex-microbead immunoassay. Among the patients, the most common clinical features were fever (100%), arthralgia (90%), rash (50%) and conjunctivitis (40%). Profiles of 30 cytokines, chemokines, and growth factors were able to discriminate the clinical forms of Chikungunya from healthy controls, with patients classified as non-severe and severe disease. Levels of 8 plasma cytokines and 4 growth factors were significantly elevated. Statistical analysis showed that an increase in IL-1β, IL-6 and a decrease in RANTES were associated with disease severity.

Conclusions

This is the first comprehensive report on the production of cytokines, chemokines, and growth factors during acute Chikungunya virus infection. Using these biomarkers, we were able to distinguish between mild disease and more severe forms of Chikungunya fever, thus enabling the identification of patients with poor prognosis and monitoring of the disease.  相似文献   

16.

Background

Elevated IL-10 has been shown to be associated with severe dengue infection (DI). We proceeded to investigate the role of IL-10 in the pathogenesis of acute DI.

Materials and methods

Ex vivo and cultured IFNγ ELISpot assays for dengue virus (DENV) NS3 protein and non dengue viral proteins were carried out in 26 patients with acute DI (16 with dengue haemorrhagic fever) and 12 healthy dengue seropositive individuals from Sri Lanka. DENV serotype specific (SS) responses were determined by using a panel of SS peptides.

Results

Serum IL-10 level were significantly higher (p = 0.02) in those who did not have in vitro responses to DENV-SS peptides (mean 144.2 pg/ml) when compared to those who responded (mean 75.7 pg/ml). DENV-NS3 specific ex vivo IFNγ ELISpot responses were also significantly lower (p = 0.0001) in those who did not respond to DENV-SS peptides (mean 42 SFU/million PBMCs) when compared to those who responded to DENV-SS peptides (mean 1024 SFU/million PBMCs). Serum IL-10 levels correlated significantly (p = 0.03) and inversely (Spearmans R = −0.45) with ex vivo DENV-NS3 specific responses but not with ex vivo non DENV specific responses (Spearmans R = −014, p = 0.52). Blockage of IL-10 in vitro significantly increased (p = 0.04) the ex vivo IFNγ ELISpot DENV-NS3 specific responses but had no effect on responses to non DENV proteins.

Conclusion

IL-10 appears to contribute to the pathogenesis of acute dengue infections by inhibiting DENV-specific T cell responses, which can be restored by blocking IL-10.  相似文献   

17.

Background

The cyclic nucleotides cyclic adenosine-3′,5′-monophosphate (cAMP) and cyclic guanosine-3′,5′-monophosphate (cGMP) are important second messengers and are potential biomarkers for Parkinson''s disease (PD), amyotrophic lateral sclerosis (ALS) and Creutzfeldt-Jakob disease (CJD).

Methodology/Principal Findings

Here, we investigated by liquid chromatography/tandem mass spectrometry (LC-MS/MS) the cerebrospinal fluid (CSF) concentrations of cAMP and cGMP of 82 patients and evaluated their diagnostic potency as biomarkers. For comparison with a well-accepted biomarker, we measured tau concentrations in CSF of CJD and control patients. CJD patients (n = 15) had lower cAMP (−70%) and cGMP (−55%) concentrations in CSF compared with controls (n = 11). There was no difference in PD, PD dementia (PDD) and ALS cases. Receiver operating characteristic (ROC) curve analyses confirmed cAMP and cGMP as valuable diagnostic markers for CJD indicated by the area under the curve (AUC) of 0.86 (cAMP) and 0.85 (cGMP). We calculated a sensitivity of 100% and specificity of 64% for cAMP and a sensitivity of 67% and specificity of 100% for cGMP. The combination of both nucleotides increased the sensitivity to 80% and specificity to 91% for the term cAMPxcGMP (AUC 0.92) and to 93% and 100% for the ratio tau/cAMP (AUC 0.99).

Conclusions/Significance

We conclude that the CSF determination of cAMP and cGMP may easily be included in the diagnosis of CJD and could be helpful in monitoring disease progression as well as in therapy control.  相似文献   

18.

Background

Obesity is characterized by a low grade chronic inflammation state. Indeed circulating pro-inflammatory cytokines, such as TNF-α and IL-6, are elevated in obese subjects, while anti-inflammatory cytokines, such as IL-10, appear to be reduced. Cytokines profile improves after weight loss, but how visceral or subcutaneous fat loss respectively affect pro- or anti-inflammatory cytokines plasma levels has not been precisely assessed. Therefore in the present study we correlated changes in circulating cytokine profile with quantitative changes in visceral and subcutaneous adipose tissue depots measured by an ad hoc Magnetic Resonance Imaging (MRI) protocol before and after weight loss.

Materials and Methods

In 14 obese subjects, MRI determination of visceral and subcutaneous fat and plasma glucose, insulin, TNF-α IL-6, and IL-10 measurements were performed before and after a caloric restriction induced weight loss of at least 5% of the original body weight.

Results

Weight loss improved insulin sensitivity (QUICKI Index: 0.35±0.03 vs 0.37±0.04; P<0.05), increased IL-10 (3.4±1.9 vs 4.6±1.0 pg/mL; P<0.03), and reduced TNF-α and IL-6 plasma levels (2.5±1.3 vs 1.6±1.5 pg/mL, P<0.0015, 2.3±0.4 vs 1.6±0.6 pg/mL, P<0.02 respectively). A significant correlation was observed between the amount of visceral fat loss and the percentage reduction in both TNF-α (r = 0.56, p<0.05) and IL-6 (r = 0.19 p<0.05) plasma levels. In a multiple regression analysis, the amount of visceral fat loss independently correlated with the increase in IL-10 plasma levels.

Conclusion

The reduction in visceral adipose tissue is the main driver of the improved inflammatory profile induced by weight loss.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号