首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《MABS-AUSTIN》2013,5(5):480-499
Hundreds of therapeutic monoclonal antibodies (mAbs) are currently in development, and many companies have multiple antibodies in their pipelines. Current methodology used in recovery processes for these molecules are reviewed here. Basic unit operations such as harvest, Protein A affinity chromatography, and additional polishing steps are surveyed. Alternative processes such as flocculation, precipitation, and membrane chromatography are discussed. We also cover platform approaches to purification methods development, use of high throughput screening methods, and offer a view on future developments in purification methodology as applied to mAbs.  相似文献   

2.
《MABS-AUSTIN》2013,5(3):659-670
An advanced two-dimensional liquid chromatography/mass spectrometry platform was used to quantify individual host cell proteins (HCPs) present at various purification steps for several therapeutic monoclonal antibodies (mAbs) produced in Chinese hamster ovary cells. The methodology produced reproducible identifications and quantifications among replicate analyses consistent with a previously documented individual limit of quantification of ~13 ppm. We were able to track individual HCPs from cell culture fluid to protein A eluate pool to subsequent viral inactivation pool and, in some cases, further downstream. Approximately 500 HCPs were confidently identified in cell culture fluid and this number declined progressively through the purification scheme until no HCPs could be confidently identified in polishing step cation-exchange eluate pools. The protein A eluate pool of nine different mAbs contained widely differing numbers, and total levels, of HCPs, yet the bulk of the total HCP content in each case consisted of a small subset of normally intracellular HCPs highly abundant in cell culture fluid. These observations hint that minimizing cell lysis during cell culture/harvest may be useful in minimizing downstream HCP content. Clusterin and actin are abundant in the protein A eluate pools of most mAbs studied. HCP profiling by this methodology can provide useful information to process developers and lead to the refinement of existing purification platforms.  相似文献   

3.
An advanced two-dimensional liquid chromatography/mass spectrometry platform was used to quantify individual host cell proteins (HCPs) present at various purification steps for several therapeutic monoclonal antibodies (mAbs) produced in Chinese hamster ovary cells. The methodology produced reproducible identifications and quantifications among replicate analyses consistent with a previously documented individual limit of quantification of ~13 ppm. We were able to track individual HCPs from cell culture fluid to protein A eluate pool to subsequent viral inactivation pool and, in some cases, further downstream. Approximately 500 HCPs were confidently identified in cell culture fluid and this number declined progressively through the purification scheme until no HCPs could be confidently identified in polishing step cation-exchange eluate pools. The protein A eluate pool of nine different mAbs contained widely differing numbers, and total levels, of HCPs, yet the bulk of the total HCP content in each case consisted of a small subset of normally intracellular HCPs highly abundant in cell culture fluid. These observations hint that minimizing cell lysis during cell culture/harvest may be useful in minimizing downstream HCP content. Clusterin and actin are abundant in the protein A eluate pools of most mAbs studied. HCP profiling by this methodology can provide useful information to process developers and lead to the refinement of existing purification platforms.  相似文献   

4.
Antigen‐binding fragments (Fabs) are novel formats in the growing pipeline of biotherapeutics. Sharing similar features to monoclonal antibodies (mAbs) with regard to expression, Fabs are considered as unchallenging for upstream development. Yet for downstream processing, the mature mAb downstream purification platform is not directly applicable. New approaches need to be found to achieve a lean purification process that maintains quality, productivity, and timelines while being generically applicable independent of the expression system. In a successful collaboration, BAC BV, GE Healthcare, and Novartis Pharma AG have developed a new affinity chromatography medium (resin) suitable to support cGMP manufacturing of lambda Fabs. We show that using this novel chromatography medium for the capture step, a purification platform for lambda Fabs can be established. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:1311–1318, 2014  相似文献   

5.
Protein A chromatography is widely employed for the capture and purification of monoclonal antibodies (mAbs). Because of the high cost of protein A resins, there is a significant economic driving force to seek new downstream processing strategies. Membrane chromatography has emerged as a promising alternative to conventional resin based column chromatography. However, to date, the application has been limited to mostly ion exchange flow through (FT) mode. Recently, significant advances in Natrix hydrogel membrane has resulted in increased dynamic binding capacities for proteins, which makes membrane chromatography much more attractive for bind/elute operations. The dominantly advective mass transport property of the hydrogel membrane has also enabled Natrix membrane to be run at faster volumetric flow rates with high dynamic binding capacities. In this work, the potential of using Natrix weak cation exchange membrane as a mAb capture step is assessed. A series of cycle studies was also performed in the pilot scale device (> 30 cycles) with good reproducibility in terms of yield and product purities, suggesting potential for improved manufacturing flexibility and productivity. In addition, anion exchange (AEX) hydrogel membranes were also evaluated with multiple mAb programs in FT mode. Significantly higher binding capacity for impurities (support mAb loads up to 10Kg/L) and 40X faster processing speed were observed compared with traditional AEX column chromatography. A proposed protein A free mAb purification process platform could meet the demand of a downstream purification process with high purity, yield, and throughput. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:974–982, 2015  相似文献   

6.
7.
Anion exchange (AEX) chromatography in the flow-through mode is a widely employed purification process for removal of process/product-related impurities and exogenous/endogenous viruses from monoclonal antibodies (mAbs). The pH of the mobile phase for AEX chromatography is typically set at half a unit below the isoelectric point (pI) of each mAb (i.e., pI − 0.5) or lower and, in combination with a low ionic strength, these conditions are usually satisfactory for both the recovery of the mAb and removal of impurities. However, we have recently encountered a tight binding of mAb1 to AEX resins under these standard chromatographic conditions. This anomalous adsorption behavior appears to be an effect of the asymmetric charge distribution on the surface of the mAb1. We found that mAb1 did not bind to the AEX resins if the mobile phase has a much lower pH and higher ionic strength, but those conditions would not allow adequate virus removal. We predicted that the use of membrane adsorbers might provide effective mAb1 purification, since the supporting matrix has a network structure that would be less susceptible to interactions with the asymmetric charge distribution on the protein surface. We tested the Natriflo HD-Q AEX membrane adsorber under standard chromatographic conditions and found that mAb1 flowed through the membrane adsorber, resulting in successful separation from murine leukemia virus. This AEX membrane adsorber is expected to be useful for process development because mAbs can be purified under similar standard chromatographic conditions regardless of their charge distributions.  相似文献   

8.
Downstream purification processes for monoclonal antibody production typically involve multiple steps; some of them are conventionally performed by bead-based column chromatography. Affinity chromatography with Protein A is the most selective method for protein purification and is conventionally used for the initial capturing step to facilitate rapid volume reduction as well as separation of the antibody. However, conventional affinity chromatography has some limitations that are inherent with the method, it exhibits slow intraparticle diffusion and high pressure drop within the column. Membrane-based separation processes can be used in order to overcome these mass transfer limitations. The ligand is immobilized in the membrane pores and the convective flow brings the solute molecules very close to the ligand and hence minimizes the diffusional limitations associated with the beads. Nonetheless, the adoption of this technology has been slow because membrane chromatography has been limited by a lower binding capacity than that of conventional columns, even though the high flux advantages provided by membrane adsorbers would lead to higher productivity. This review considers the use of membrane adsorbers as an alternative technology for capture and polishing steps for the purification of monoclonal antibodies. Promising industrial applications as well as new trends in research will be addressed.  相似文献   

9.
The biotech industry is, nowadays, facing unparalleled challenges due to the enhanced demand for biotechnology-based human therapeutic products, such as monoclonal antibodies (mAbs). This has led companies to improve substantially their upstream processes, with the yield of monoclonals increasing to titers never seen before. The downstream processes have, however, been overlooked, leading to a production bottleneck. Although chromatography remains the workhorse of most purification processes, several limitations, such as low capacity, scale-related packing problems, low chemical and proteolytic stability and resins' high cost, have arisen. Aqueous two-phase extraction (ATPE) has been successfully revisited as a valuable alternative for the capture of antibodies. One of the important remaining questions for this technology to be adopted by the biotech industries is, now, how it compares to the currently established platforms in terms of costs and environmental impact. In this report, the economical and environmental sustainability of the aqueous two-phase extraction process is evaluated and compared to the currently established protein A affinity chromatography. Accordingly, the ATPE process was shown to be considerably advantageous in terms of process economics, especially when processing high titer cell culture supernatants. This alternative process is able to purify continuously the same amount of mAbs reducing the annual operating costs from 14.4 to 8.5 million (US$/kg) when cell culture supernatants with mAb titers higher than 2.5 g/L are processed.  相似文献   

10.
Ceramic hydroxyapatite (CHT) high-performance liquid chromatography (HPLC) is used to purify a variety of classes of monoclonal antibodies (mAbs) from crude murine ascites fluids. We report here that this method is also applicable for simple and efficient purification of many mAb fragments that are generated by pepsin treatment of crude ascites. F(ab')(2) fragments were quantitatively generated from IgG(1) mAbs in ascitic fluids by incubation with pepsin for 6 h at pH 3.9-4.1. Under the same conditions, pepsin also cleaved unwanted ascites components, such as albumin and transferrin to very low molecular weight polypeptides. The F(ab')(2) fragments, but not the low molecular weight products, selectively bound to and were eluted from the CHT column using a linear gradient of phosphate ion concentration over 15 min. The recovery of the F(ab')(2) fragments by CHT-HPLC was >90%. This method also allowed single-step purification of mAb fragments from distinct IgG subclasses (IgG(2a) and IgG(2b)) and IgM directly from crude digested ascitic samples. This CHT-HPLC method combined with direct pepsinolysis of murine ascites is a useful strategy for rapid purification and characterization of many types of mAb fragments.  相似文献   

11.
Polymer monoliths are an efficient platform for antibody purification. The use of monoclonal antibodies (mAbs) and engineered antibody structures as therapeutics has increased exponentially over the past few decades. Several approaches use polymer monoliths to purify large quantities of antibody with defined clinical and performance requirements. Functional monolithic supports have attracted a great deal of attention as they offer practical advantages for antibody purification, such as more rapid analysis, smaller sample volume requirements and the opportunity for a greater target molecule enrichment. This review focuses on the development of synthetic and natural polymer-based monoliths for antibody purification. The materials and methods employed in monolith production are discussed, highlighting the properties of each system. We also review the structural characterization techniques available using monolithic systems and their performance under different chromatographic approaches to antibody capture and release. Finally, a summary of monolithic platforms developed for antibody separation is presented, as well as expected trends in research to solve current and future challenges in this field. This review comprises a comprehensive analysis of proposed solutions highlighting the remarkable potential of monolithic platforms.  相似文献   

12.
Anion exchange (AEX) is a common downstream purification operation for biotechnology products manufactured in cell culture such as therapeutic monoclonal antibodies (mAbs) and Fc‐fusion proteins. We present a head‐to‐head comparison of the viral clearance efficiency of AEX adsorbers and column chromatography using the same process fluids and comparable run conditions. We also present overall trends from the CDER viral clearance database. In our comparison of multiple brands of resins and adsorbers, clearance of three model viruses (PPV, X‐MuLV, and PR772) was largely comparable, with some exceptions which may reflect run conditions that had not been optimized on a resin/membrane specific basis. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 30:124–131, 2014  相似文献   

13.
This article presents the use of caprylic acid (CA) to precipitate impurities from the protein A capture column elution pool for the purification of monoclonal antibodies (mAbs) with the objective of developing a two chromatography step antibody purification process. A CA‐induced impurity precipitation in the protein A column elution pool was evaluated as an alternative method to polishing chromatography techniques for use in the purification of mAbs. Parameters including pH, CA concentrations, mixing time, mAb concentrations, buffer systems, and incubation temperatures were evaluated on their impacts on the impurity removal, high‐molecular weight (HMW) formation and precipitation step yield. Both pH and CA concentration, but not mAb concentrations and buffer systems, are key parameters that can affect host–cell proteins (HCPs) clearance, HMW species, and yield. CA precipitation removes HCPs and some HMW species to the acceptable levels under the optimal conditions. The CA precipitation process is robust at 15–25°C. For all five mAbs tested in this study, the optimal CA concentration range is 0.5–1.0%, while the pH range is from 5.0 to 6.0. A purification process using two chromatography steps (protein A capture column and ion exchange polishing column) in combination with CA‐based impurity precipitation step can be used as a robust downstream process for mAb molecules with a broad range of isoelectric points. Residual CA can be effectively removed by the subsequent polishing cation exchange chromatography. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:1515–1525, 2015  相似文献   

14.
The widespread use of monoclonal antibodies (mAbs) as a platform for therapeutic drug development in the pharmaceutical industry has led to an increased interest in robust experimental approaches for assessment of mAb structure, stability and dynamics. The ability to enrich proteins with stable isotopes is a prerequisite for the in-depth application of many structural and biophysical methods, including nuclear magnetic resonance (NMR), small angle neutron scattering, neutron reflectometry, and quantitative mass spectrometry. While mAbs can typically be produced with very high yields using mammalian cell expression, stable isotope labeling using cell culture is expensive and often impractical. The most common and cost-efficient approach to label proteins is to express proteins in Escherichia coli grown in minimal media; however, such methods for mAbs have not been reported to date. Here we present, for the first time, the expression and purification of a stable isotope labeled mAb from a genetically engineered E. coli strain capable of forming disulfide bonds in its cytoplasm. It is shown using two-dimensional NMR spectral fingerprinting that the unlabeled mAb and the mAb singly or triply labeled with 13C, 15N, 2H are well folded, with only minor structural differences relative to the mammalian cell-produced mAb that are attributed to the lack of glycosylation in the Fc domain. This advancement of an E. coli-based mAb expression platform will facilitate the production of mAbs for in-depth structural characterization, including the high resolution investigation of mechanisms of action.  相似文献   

15.
Four monoclonal antibodies (mAbs), G6, F9, H8, and B2, against human alpha-1-microglobulin (A1M) have been produced and characterized. The parameters of affinity (Kp ~ 109 M?1), epitope specificity (the additively binding G6/F9, G6/H8, G6/B2, F9/H8, and F9/B2 pairs), and the observed effect of reversibility of structural changes induced by chemical agents allow use of these mAbs in biospecific methods of A1M purification and quantitative determination. The application of mAbs to an A1M enzyme immunoassay (analytical sensitivity—0.5 μg/l) and one step isolation of pure A1M by immunoaffinity chromatography was described.  相似文献   

16.
By the end of 2017, the Food and Drug Administration had approved a total of 77 therapeutic monoclonal antibodies (mAbs), most of which are still manufactured today. Furthermore, global sales of mAbs topped $90 billion in 2017 and are projected to reach $125 billion by 2020. The mAbs approved for human therapy are mostly produced using Chinese hamster ovary (CHO) cells, which require expensive infrastructure for production and purification. Molecular pharming in plants is an alternative approach with the benefits of lower costs, greater scalability, and intrinsic safety. For some platforms, the production cycle is also much quicker. But do these advantages really stack up in economic terms? Earlier techno-economic evaluations have focused on specific platforms or processes and have used different methods, making direct comparisons challenging and the overall benefits of molecular pharming difficult to gauge. Here, we present a simplified techno-economic model for the manufacturing of mAbs, which can be applied to any production platform by focusing on the most important factors that determine the efficiency and cost of bulk drug manufacturing. This model develops economic concepts to identify variables that can be used to achieve cost savings by simultaneously modeling the dynamic costs of upstream production at different scales and the corresponding downstream processing costs for different manufacturing modes (sequential, serial, and continuous). The use of simplified models will help to achieve meaningful comparisons between diverse manufacturing technologies.  相似文献   

17.
Bispecific monoclonal antibodies (bsMAb) are unique macromolecules functioning as cross-linkers with two different predetermined binding specificities. A wide range of potential applications employing these probes can be envisioned in immunodiagnostics and immunotherapy. One of the major limitations for the use of bsMAbs produced by hybrid-hybridomas is the production of parental monospecific antibodies along with bsMAbs. Hence, the purification of desired bsMAb free from both parental mAbs and other possible promiscuous combinations is essential. Purification of antibodies is the single greatest obstacle in obtaining an immunoprobe with high specific activity. This review describes the affinity purification and affinity co-purification techniques for the separation of bsMAb as a pre-formed immune complex or as a pure species. The use of immobilized ligands is the basis of affinity chromatography. Affinity chromatography can be classified into three different categories depending on the properties of the immobilized ligand. The ligand-specific affinity chromatography is based on the extremely specific immobilized ligand, directed towards the protein or antibody of interest. Using a dual, sequential affinity chromatography, bsMAb can be purified from a mixture of bispecific and monospecific monoclonal antibodies with a ligand specific for each antibody. Thiophilic adsorption is a group-specific affinity method that can be successfully used to separate monospecific forms from bispecific species by salt gradient elution. Affinity co-chromatography offers a convenient one-step method for purification of bulk amounts of immunoconjugates for diagnostic applications by exploiting several dye-ligands known to bind certain enzymes. The same method could be potentially used for quality control and quality assurance purposes in industrial biotechnology.  相似文献   

18.
19.
Up to now, the productivity of mammalian cell culture has been perceived as limiting the productivity of the industrial manufacture of therapeutic monoclonal antibodies. Dramatic improvements in cell culture performance have changed this picture, and the throughput of antibody purification processes is gaining increasing attention. Although chromatographic separations currently are the centerpiece of antibody purification, mostly due to their high resolving power, it becomes more and more apparent that there may be limitations at the very large scale. This review will discuss a number of alternatives to chromatographic antibody purification, with a particular emphasis on the ability to increase throughput and overcome traditional drawbacks of column chromatography. Specifically, precipitation, membrane chromatography, high-resolution ultrafiltration, crystallization, and high-pressure refolding will be evaluated as potential large scale unit operations for industrial antibody production.  相似文献   

20.
Brian Kelley 《MABS-AUSTIN》2009,1(5):443-452
Manufacturing processes for therapeutic monoclonal antibodies (mAbs) have evolved tremendously since the first licensed mAb product in 1986. The rapid growth in product demand for mAbs triggered parallel efforts to increase production capacity through construction of large bulk manufacturing plants as well as improvements in cell culture processes to raise product titers. This combination has led to an excess of manufacturing capacity, and together with improvements in conventional purification technologies, promises nearly unlimited production capacity in the foreseeable future. The increase in titers has also led to a marked reduction in production costs, which could then become a relatively small fraction of sales price for future products which are sold at prices at or near current levels. The reduction of capacity and cost pressures for current state-of-the-art bulk production processes may shift the focus of process development efforts and have important implications for both plant design and product development strategies for both biopharmaceutical and contract manufacturing companies.Key words: bioprocessing, cell culture, purification, economics, capacity, manufacturing, production, facility, biopharmaceutical  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号