共查询到20条相似文献,搜索用时 15 毫秒
1.
黄花蒿培养细胞中青蒿素合成代谢的体外调节 总被引:6,自引:0,他引:6
黄花蒿培养细胞通过两步培养积累青蒿素.第1步在含有0.2~0.4mg/L6-苄基氨基嘌呤(6-BA)和3~4mg/L吲哚乙酸(IAA)的N6培养基中进行细胞的增殖培养,第2步将培养好的细胞转入含0.2~0.4mg/L6-BA和0.2~0.4mg/LIAA的改良N6培养基中进行青蒿素的合成.青蒿素的合成量为190μg/g干细胞左右.当在第2步培养中加入青蒿素合成前体青蒿酸,青蒿素合成量比仅靠激素诱导提高了3倍多.青蒿素的合成途径是植物固醇合成途径的分支途径,当在青蒿素合成过程即第2步培养中加入固醇生物合成抑制剂双氯苯咪唑和氯化氯胆碱处理,可使代谢向合成青蒿素的方向移动,青蒿素合成量明显提高.经200mg/L氯化氯胆碱处理2d,黄花蒿细胞合成青蒿素量为372μg/g干细胞;经20mg/L双氯苯咪唑处理4d,黄花蒿细胞合成青蒿素量为1540μg/g干细胞,比靠激素诱导提高了8倍多,与诱导脱分化细胞的黄花蒿叶中所含的青蒿素(3000μg/g干细胞)处于同一个数量级.以上结果表明:在通过植物激素调节可以合成青蒿素的黄花蒿培养细胞中,缺乏青蒿素合成前体是青蒿素合成量低的重要原因.因此,在青蒿素合成的过程中通过体外调节, 相似文献
2.
3.
4.
A novel ultrasonic inner-loop bioreactor was used for artemisinin production by adventitious shoots in a multiplate culture of Artemisia annua L. The bioreactor was designed to allow the nutrient mist to uprise along a concentric draught-cylinder until it overflows from the top opening and the side-holes of the central tube downward and out of the annulus, so that the nutrient mist can be fulfilled in the bioreactor within 2 ~ 3 minutes. Under the misting cycles of every 3-minute misting in every 90 minute interval, artemisinin production reached totally 46.9 mg DW/L of culture medium at an airflow rate of 0.5 L/min for 25 d of culture in batches. The product amounted 2.9 and 3.2 folds of those obtained from culturing in solid medium and in shaking flasks respectively. 相似文献
5.
Nicholas Schramek Huahong Wang Werner Römisch-Margl Birgit Keil Tanja Radykewicz Bernhard Winzenhörlein Ludger Beerhues Adelbert Bacher Felix Rohdich Jonathan Gershenzon Benye Liu Wolfgang Eisenreich 《Phytochemistry》2010,71(2-3):179-187
Artemisinin from Artemisia annua has become one of the most important drugs for malaria therapy. Its biosynthesis proceeds via amorpha-4,11-diene, but it is still unknown whether the isoprenoid precursors units are obtained by the mevalonate pathway or the more recently discovered non-mevalonate pathway. In order to address that question, a plant of A. annua was grown in an atmosphere containing 700 ppm of 13CO2 for 100 min. Following a chase period of 10 days, artemisinin was isolated and analyzed by 13C NMR spectroscopy. The isotopologue pattern shows that artemisinin was predominantly biosynthesized from (E,E)-farnesyl diphosphate (FPP) whose central isoprenoid unit had been obtained via the non-mevalonate pathway. The isotopologue data confirm the previously proposed mechanisms for the cyclization of (E,E)-FPP to amorphadiene and its oxidative conversion to artemisinin. They also support deprotonation of a terminal allyl cation intermediate as the final step in the enzymatic conversion of FPP to amorphadiene and show that either of the two methyl groups can undergo deprotonation. 相似文献
6.
7.
Pamela J. Weathers Shereen Elkholy Kristin K. Wobbe 《In vitro cellular & developmental biology. Plant》2006,42(4):309-317
Summary Artemisinin is a sesquiterpene lactone isolated from the aerial parts of Artemisia annua L. plants. Besides being currently the best therapeutic against both drug-resistant and cerebral malaria-causing strains
of Plasmodium falciparum, the drug has also been shown to be effective against other infections diseases including schistosomiasis and hepatitis.
More recently, it has also been shown to be effective against numerous types of tumors. Although chemical synthesis of artemisinin
is possible, it is not economically feasible. The relatively low yield (0.01–0.8%) of artemisinin in A. annua is a further serious limitation to the commercialization of the drug. Therffore, the enhanced production of artemisinin either
in cell/tissue culture or in the whole plant of A. annua is highly desirable. A better understanding of the biochemical pathway leading to the synthesis of artemisinin and its regulation
by both exogenous and endogenous factors is essential for facilitating increased yield. Two genes of the artemisinin biosynthetic
pathway have now been identified. This critical review covers recent developments related to the biosynthesis of this important
compound and related terpenoids, their regulation, and the production of these compounds both in vitro and in whole plants. 相似文献
8.
利用自制的气升式内环流生物反应器进行青蒿(Artemisia
annua L.)毛状根多层培养生产青蒿素。毛状根培养物在培养过程中均匀分布在生物反应器的筛网间,或以不锈钢网为附着点向四周生长,在25
℃和12 h/d光照周期下,经20 d分批培养获得生物量干重22.57 g/L,青蒿素产量374.4
mg/L,并对培养过程中蔗糖、磷酸盐、硝酸盐和氨盐消耗的动力学进行了分析。 相似文献
9.
利用气升式内环流生物反应器培养青蒿毛状根生产青蒿素 总被引:8,自引:0,他引:8
利用自制的气升式内环流生物反应器进行青蒿(ArtemisiaannuaL.)毛状根多层培养生产青蒿素。毛状根培养物在培养过程中均匀分布在生物反应器的筛网间,或以不锈钢网为附着点向四周生长,在25℃和12h/d光照周期下,经20d分批培养获得生物量干重22.57g/L,青蒿素产量374.4mg/L,并对培养过程中蔗糖、磷酸盐、硝酸盐和氨盐消耗的动力学进行了分析。 相似文献
10.
Minghui Chen Tingxiang Yan Liyun Ji Yu Dong Simone Sidoli Zuofei Yuan Chunlin Cai Jiwei Chen Yueli Tang Qian Shen Qifang Pan Xueqing Fu Xin Ku Lujian Liao Benjamin A. Garcia Wei Yan Kexuan Tang 《Proteomics》2020,20(10)
Artemisia annua is well known for biosynthesizing the antimalarial drug artemisinin. Here, a global proteomic profiling of A. annua is conducted with identification of a total of 13 403 proteins based on the genome sequence annotation database. Furthermore, a spectral library is generated to perform quantitative proteomic analysis using data independent acquisition mass spectrometry. Specifically, proteins between two chemotypes that produce high (HAP) and low (LAP) artemisinin content, respectively, are comprehensively quantified and compared. 182 proteins are identified with abundance significantly different between these two chemotypes means after the statistic use the p‐value and fold change it is found 182 proteins can reach the demand conditions which represent the expression are significantly different between the high artemisnin content plants (HAPs) and the low artemisnin content plants (LAPs). Data are available via ProteomeXchange with identifier PXD015547. Overall, this current study globally identifies the proteome of A. annua and quantitatively compares the targeted sub‐proteomes between the two cultivars of HAP and LAP, providing systematic information on metabolic pathways of A. annua. 相似文献
11.
用RT-PCR方法从青蒿(Artemisia annua L.)中克隆了一个1 539 bp全长鲨烯合酶cDNA.青蒿鲨烯合酶氨基酸序列与拟南芥、烟草、人类、酵母鲨烯合酶的一致性分别为70%、77%、44%和39%.青蒿鲨烯合酶基因组DNA结构很复杂,包括14个外显子和13个内含子.全长的或C末端截短的鲨烯合酶cDNA被克隆进原核表达载体pET30a并在大肠杆菌(Escherichia coli) BL21(DE3)中诱导表达.但在含有全长的鲨烯合酶cDNA的大肠杆菌中并没有观察到预期大小的鲨烯合酶表达,而C末端截短疏水区30个氨基酸的鲨烯合酶可在大肠杆菌中过量表达. 相似文献
12.
青蒿发根生长及青蒿素生物合成动态的研究 总被引:9,自引:1,他引:9
从747条发根农杆菌ATCC15834转化的青蒿株系025发根中,筛选出7个生长较快的发根系,这7个系在生长速度和青蒿素含量上均有显著差异,其中发根系HR9青蒿素产率最高,达到每月3325mg/L。青蒿发根的生长量和青蒿素含量极显著高于未转化根和愈伤组织。青蒿发根在分批培养中没有明显的迟滞期,接种后第7天进入指数生长期,第11天生长最快,第20天进入稳定期。青蒿发根中青蒿素含量呈明显的“与生长相关”特性,在指数生长期,青蒿素含量缓慢下降,生长速度减缓后,青蒿素含量上升,发根生长停止后,继续延长培养时间,青蒿素含量也不再提高。在分批培养中,青蒿发根适宜的培养时间为21d。 相似文献
13.
真菌诱导子对青蒿发根细胞生长和青蒿素积累的影响 总被引:8,自引:0,他引:8
3种真菌诱导子(大菌丽花轮枝孢(Verticillium dahiae Kleb.)、葡枝根霉(Rhizopus stolonifer(Ehrenb.exFr.)Vuill)和束状刺盘孢(Colletorichum dematium(Pers.)Grove)处理青蒿(Artemisia annuaL.)的发根,均能促进发根中青蒿素的积累,其中以大丽花轮枝孢的诱导效果最好;对细胞生长均没有明显影响, 相似文献
14.
青蒿鲨烯合酶基因的克隆、结构分析与大肠杆菌表达 总被引:1,自引:0,他引:1
用RT-PCR方法从青蒿(Artemisia annua L.)中克隆了一个1539bp全长鲨烯合酶cDNA。青蒿鲨烯合酶氨基酸序列与拟南芥、烟草、人类、酵母鲨烯合酶的一致性分别为70%、77%、44%和39%。青蒿鲨烯合酶基因组DNA结构很复杂,包括14个外显子和13个内含子。全长的或C末端截短的鲨烯合酶cDNA被克隆进原核表达载体pET30a并在大肠杆菌(Escherichia coli)BL21(DE3)中诱导表达。但在含有全长的鲨烯合酶cDNA的大肠杆菌中并没有观察到预期大小的鲨烯合酶表达,而C末端截短疏水区30个氨基酸的鲨烯合酶可在大肠杆菌中过量表达。 相似文献
15.
WANG Hong 《植物学报(英文版)》2000,42(9):905-909
The artemisinin accumulation in the hairy root cultures of Artemisia annua L. was enhanced via a treatment of three fungal elicitors separately ( Verticillium dahliae Kleb., Rhizopus stolonifer (Ehrenb. ex Fr. ) Vuill and Colletotrichum dematium (Pers.) Grove). Among these three elicitors, V. dahliae had the highest inducing efficiency, but none of them manifests any noticeable effects on the cell growth of the hairy root cultures. The artemisinin content of the hairy root cultures treated with V. dahliae elicitor was 1.12 mg/g DW, which was 45% higher than the control (0.77 mg/g DW). The results showed that elicitation was dependent on the elicitor concentration, the incubation period and the physiological stage at which the hairy root cultures were treated. In addition, the authors found that for V. dahliae, the optimum concentration was 0.4 mg carbohydrate per millilitre medium, the strongest response of A. annua hairy root cultures to the elicitation was at the late exponential growth stage, and the highest artemisinin content of the hairy root cultures was on the 4th day post treatment. 相似文献
16.
Ri质粒转化的青蒿发根培养及青蒿素的生物合成 总被引:49,自引:2,他引:49
用发根农杆菌(Agrobacterium rhizogenes)转化药用植物青蒿(Artemisia annua L.)并建立了发根体外培养系统。Southern杂交、NPT Ⅱ酶的检测证明Ri质粒的T—DNA转移并整合到植物的核基因组上。在发根培养系统中,检测了青蒿的重要次生代谢物一青蒿素的含量,检测了不同理化因子对发根生长及青蒿素含量的影响。结果表明:光照(日光灯,12h光周期,20001x)有利于次生产物青蒿素的积累。培养基的pH值为5.4。蔗糖浓度为3%不仅促进发根的生长,而且促进青蒿素的积累。低浓度萘乙酸(NAA)对发根生长具有促进作用,但抑制青蒿素的合成。赤霉素GA,对发根的生长及次生产物的合成都具有促进作用,其最适浓度为4.8mg/L。 相似文献
17.
Murashige & Skoog medium was modified for enhancing artemisinin production in Artemisia annua hairy root cultures by altering the ratio of NO
3
–
/NH
4
+
and the total amount of initial nitrogen. Increasing ammonium to 60 mM decreased both growth and artemisinin accumulation in hairy root cultures. With NO
3
–
/NH
4
+
at 5:1 (w/w), the optimum concentration of total initial nitrogen for artemisinin production was 20 mM. After 24 days of cultivation with 16.7 mM nitrate and 3.3 mM ammonium, the maximum artemisinin production of hairy roots was about 14 mg l–1, a 57% increase over that in the standard MS medium. 相似文献
18.
Role of Salicylic Acid in Promoting Salt Stress Tolerance and Enhanced Artemisinin Production in Artemisia annua L. 总被引:1,自引:0,他引:1
Tariq Aftab M. Masroor A. Khan Jaime A. Teixeira da Silva Mohd. Idrees M. Naeem Moinuddin 《Journal of Plant Growth Regulation》2011,30(4):425-435
In the present investigation, the role of salicylic acid (SA) in inducing salinity tolerance was studied in Artemisia annua L., which is a major source of the antimalarial drug artemisinin. SA, when applied at 1.00 mM, provided considerable protection
against salt stress imposed by adding 50, 100, or 200 mM NaCl to soil. Salt stress negatively affected plant growth as assessed
by length and dry weight of shoots and roots. Salinity also reduced the values of photosynthetic attributes and total chlorophyll
content and inhibited the activities of nitrate reductase and carbonic anhydrase. Furthermore, salt stress significantly increased
electrolyte leakage and proline content. Salt stress also induced oxidative stress as indicated by the elevated levels of
lipid peroxidation compared to the control. A foliar spray of SA at 1.00 mM promoted the growth of plants, independent of
salinity level. The activity of antioxidant enzymes, namely, catalase, peroxidase, and superoxide dismutase, was upregulated
by salt stress and was further enhanced by SA treatment. Artemisinin content increased at 50 and 100 mM NaCl but decreased
at 200 mM NaCl. The application of SA further enhanced artemisinin content when applied with 50 and 100 mM NaCl by 18.3 and
52.4%, respectively. These results indicate that moderate saline conditions can be exploited to obtain higher artemisinin
content in A. annua plants, whereas the application of SA can be used to protect plant growth and induce its antioxidant defense system under
salt stress. 相似文献
19.
20.
通过田间小区试验,比较研究了施肥与不施肥条件下,4种土壤环境(沙土、旱地土、水稻土和棕色石灰土)对黄花蒿的生长、生物量分配和青蒿素含量的影响。结果表明:黄花蒿对土壤养分的适应性较强,在沙土、旱地土、水稻土和石灰土上均能生长发育,养分水平低时,分配更多的生物量到根,根生物量分数和根/冠比增大;养分水平高时,分配更多的生物量到叶,叶生物量分数增加。黄花蒿的生长和青蒿素含量显著受土壤养分的影响,不施肥时,石灰土和水稻土栽培黄花蒿的株高、地径、总生物量、叶生物量和青蒿素含量显著大于旱地土,而旱地土又显著大于沙土。但在施肥条件下,以上参数不同土壤间无显著差异,且显著高于不施肥。因此,只要根据土壤养分状况合理施肥,黄花蒿在不同养分土壤栽培均能获得较高的青蒿素产量。 相似文献