首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We are interested in asparagine-linked glycans (N-glycans) of Plasmodium falciparum and Toxoplasma gondii, because their N-glycan structures have been controversial and because we hypothesize that there might be selection against N-glycans in nucleus-encoded proteins that must pass through the endoplasmic reticulum (ER) prior to threading into the apicoplast. In support of our hypothesis, we observed the following. First, in protists with apicoplasts, there is extensive secondary loss of Alg enzymes that make lipid-linked precursors to N-glycans. Theileria makes no N-glycans, and Plasmodium makes a severely truncated N-glycan precursor composed of one or two GlcNAc residues. Second, secreted proteins of Toxoplasma, which uses its own 10-sugar precursor (Glc3Man5GlcNAc2) and the host 14-sugar precursor (Glc3Man9GlcNAc2) to make N-glycans, have very few sites for N glycosylation, and there is additional selection against N-glycan sites in its apicoplast-targeted proteins. Third, while the GlcNAc-binding Griffonia simplicifolia lectin II labels ER, rhoptries, and surface of plasmodia, there is no apicoplast labeling. Similarly, the antiretroviral lectin cyanovirin-N, which binds to N-glycans of Toxoplasma, labels ER and rhoptries, but there is no apicoplast labeling. We conclude that possible selection against N-glycans in protists with apicoplasts occurs by eliminating N-glycans (Theileria), reducing their length (Plasmodium), or reducing the number of N-glycan sites (Toxoplasma). In addition, occupation of N-glycan sites is markedly reduced in apicoplast proteins versus some secretory proteins in both Plasmodium and Toxoplasma.Animals, fungi, and plants synthesize Asn-linked glycans (N-glycans) by means of a lipid-linked precursor containing 14 sugars (dolichol-PP-Glc3Man9GlcNAc2) (26). Recently we used bioinformatics and experimental methods to show that numerous protists are missing sets of glycosyltransferases (Alg1 to Alg14) and so make truncated N-glycan precursors containing 0 to 11 sugars (46). For example, Entamoeba histolytica, which causes dysentery, makes N-glycan precursors that contain seven sugars (Man5GlcNAc2) (33). Giardia lamblia, a cause of diarrhea, makes N-glycan precursors that contain just GlcNAc2 (41). N-glycan precursors may be identified by metabolic labeling with radiolabeled mannose (Entamoeba) or glucosamine (Giardia) (46). Unprocessed N-glycans of each protist may be recognized by wheat germ agglutinin 1 (WGA-1) (GlcNAc2 of Giardia) or by the antiretroviral lectin cyanovirin-N (Man5GlcNAc2 of Entamoeba) (2, 33, 41).N-glycans are transferred from lipid-linked precursors to sequons (Asn-Xaa-Ser or Asn-Xaa-Thr, where Xaa cannot be Pro) on nascent peptides by an oligosaccharyltransferase (OST) (28). For the most part, transfer of N-glycans by the OST is during translocation, although there are human and Trypanosoma OSTs that transfer N-glycans after translocation (34, 45).N-glycan-dependent quality control (QC) systems for protein folding and endoplasmic reticulum (ER)-associated degradation (ERAD), which are present in most eukaryotes, are missing from Giardia and a few other protists that make truncated N-glycans (5, 26, 53). There is positive Darwinian selection for sequons (sites of N-glycans) that contain Thr in secreted and membrane proteins of organisms that have N-glycan-dependent QC (12). This selection occurs for the most part by an increased probability that Asn and Thr will be present in sequons rather than elsewhere in secreted and membrane proteins. In contrast, there is no selection on sequons that contain Ser, and there is no selection on sequons in the secreted proteins of organisms that lack N-glycan-dependent QC.For numerous reasons, we are interested in the N-glycans of Plasmodium falciparum and Toxoplasma gondii, which cause severe malaria and disseminated infections, respectively.(i) There has been controversy for a long time as to whether Plasmodium makes N-glycans. While some investigators identified a 14-sugar Plasmodium N-glycan resembling that of the human host (29), others identified no N-glycans (6, 22).(ii) There is also controversy concerning whether the N-glycans of Toxoplasma, after removal of Glc by glucosidases in the ER lumen, contain either 7 sugars (Man5GlcNAc2), like Entamoeba (32, 33), or 11 sugars (Man9GlcNAc2), like the human host (16, 19, 26). If it is Man5GlcNAc2, then Toxoplasma uses the dolichol-PP-linked glycan predicted by its set of Alg enzymes (32, 46). If it is Man9GlcNAc2, then Toxoplasma uses the dolichol-PP-linked glycan of the host cell (16, 19, 26).(iii) Both Plasmodium and Toxoplasma are missing proteins involved in N-glycan-dependent QC of protein folding (5).(iv) We hypothesize that there may be negative selection against N-glycans in Plasmodium and Toxoplasma, because the N-glycans added in the ER lumen during translocation will likely interfere with threading of nucleus-encoded apicoplast proteins into a nonphotosynthetic, chloroplast-derived organelle called the apicoplast (21, 35, 37, 48, 52, 54). Nucleus-encoded apicoplast proteins have a bipartite signal at the N terminus, which targets proteins first to the lumen of the ER and second to lumen of the apicoplast. This bipartite signal has been used in transformed plasmodia where green fluorescent protein (GFP) is targeted to the apicoplast with the bipartite signal of the acyl carrier protein (ACPleader-GFP), to the secretory system with the signal sequence only (ACPsignal-GFP), and to the cytosol with the organelle-targeting transit peptide only (ACPtransit-GFP) (55). Similar constructs have been used to characterize signals that target nucleus-encoded proteins of Toxoplasma to the apicoplast (11, 25).Here we use a combination of bioinformatic, biochemical, and morphological methods to characterize the N-glycans of Plasmodium and Toxoplasma and to test our hypothesis that there is negative selection against N-glycans in protists with apicoplasts.  相似文献   

3.
4.
A polyomavirus mutant (315YF) blocked in binding phosphatidylinositol 3-kinase (PI 3-kinase) has previously been shown to be partially deficient in transformation and to induce fewer tumors and with a significant delay compared to wild-type virus. The role of polyomavirus middle T antigen-activated PI 3-kinase in apoptosis was investigated as a possible cause of this behavior. When grown in medium containing 1d-3-deoxy-3-fluoro-myo-inositol to block formation of 3′-phosphorylated phosphatidylinositols, F111 rat fibroblasts transformed by wild-type polyomavirus (PyF), but not normal F111 cells, showed a marked loss of viability with evidence of apoptosis. Similarly, treatment with wortmannin, an inhibitor of PI 3-kinase, stimulated apoptosis in PyF cells but not in normal cells. Activation of Akt, a serine/threonine kinase whose activity has been correlated with regulation of apoptosis, was roughly twofold higher in F111 cells transformed by either wild-type virus or mutant 250YS blocked in binding Shc compared to cells transformed by mutant 315YF. In the same cells, levels of apoptosis were inversely correlated with Akt activity. Apoptosis induced by serum withdrawal in Rat-1 cells expressing a temperature-sensitive p53 was shown to be at least partially p53 independent. Expression of either wild-type or 250YS middle T antigen inhibited apoptosis in serum-starved Rat-1 cells at both permissive and restrictive temperatures for p53. Mutant 315YF middle T antigen was partially defective for inhibition of apoptosis in these cells. The results indicate that unlike other DNA tumor viruses which block apoptosis by inactivation of p53, polyomavirus achieves protection from apoptotic death through a middle T antigen–PI 3-kinase–Akt pathway that is at least partially p53 independent.Programmed cell death occurs during normal development and under certain pathological conditions. In mammalian cells, apoptosis can be induced by a variety of stimuli, including DNA damage (45), virus infection (54, 57), oncogene activation (25), and serum withdrawal (34, 37). Apoptosis can also be blocked by a number of factors, including adenovirus E1B 55- or 19-kDa proteins (9, 16), baculovirus p35 and iap genes (10), Bcl-2 (36, 61), and survival factors (12, 21). DNA tumor viruses have evolved mechanisms that both trigger and inhibit apoptosis. These frequently involve binding and inactivation of tumor suppressor proteins. E7 in some papillomaviruses (22), E1A in adenovirus (31, 43, 64), and large T antigen in simian virus 40 (SV40) (17) bind Rb and/or p300 and lead to upregulation of p53, which is thought to trigger apoptosis in virus-infected cells. The same viruses also inhibit apoptosis by inactivating p53 by various mechanisms (44, 63, 67). In contrast, the mechanism by which polyomavirus interacts with apoptotic pathways in the cell is not known; no direct interaction with p53 by any of the proteins encoded by this virus has been demonstrated (19, 62).The principal oncoprotein of polyomavirus is the middle T antigen. Neoplastic transformation by polyomavirus middle T antigen has as a central feature its association with and activation of members of the Src family of tyrosine kinases p60c-src (13) and p62c-yes (42). The major known consequence of these interactions is phosphorylation of middle T antigen on specific tyrosine residues creating binding sites for other signaling proteins. Phosphorylation at tyrosines 250, 315, and 322 promotes binding to Shc (18), the p85 regulatory subunit of phosphatidylinositol 3-kinase (PI 3-kinase) (59), and phospholipase Cγ-1 (58), respectively. Recognition of multiple signaling pathways emanating from middle T antigen has led to a keen interest in identifying their downstream biochemical effects, which collectively lead to the emergence of neoplastic transformation and presumably underlie the dramatic ability of the virus to induce many kinds of tumors in the mouse.Previous work has shown that the binding of PI 3-kinase to middle T antigen is essential for full transformation of rat fibroblasts in culture (8) and for rapid development of a broad spectrum of tumors in mice (30), for translocation of the GLUT1 transporter (68), and activation of p70 S6 kinase (14). While the mutant 315YF (blocked in PI 3-kinase activation) was able to induce some tumors, it did so at reduced frequencies and with an average latency three times longer than that of either the wild-type virus or a mutant, 250YS, blocked in binding Shc (4, 30). Recent studies have indicated a role of PI 3-kinase in blocking apoptosis in nonviral systems. Growth factor receptors acting through protein tyrosine kinases may prevent apoptosis by activating PI 3-kinase in PC12 cells, T lymphocytes, hematopoietic progenitors, and rat fibroblasts (7, 48, 56, 65, 66). The failure of mutant 315YF to induce full transformation of cells in culture and to induce the rapid development of tumors in mice could therefore be related, at least in part, to a failure to block apoptosis. In this study, we focus on the question of whether middle T antigen–PI 3-kinase interaction is involved in blocking apoptosis in cells transformed by polyomavirus.  相似文献   

5.
Membrane fusion without lysis has been reconstituted with purified yeast vacuolar SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptors), the SNARE chaperones Sec17p/Sec18p and the multifunctional HOPS complex, which includes a subunit of the SNARE-interactive Sec1-Munc18 family, and vacuolar lipids: phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI), phosphatidylserine (PS), phosphatidic acid (PA), cardiolipin (CL), ergosterol (ERG), diacylglycerol (DAG), and phosphatidylinositol 3-phosphate (PI3P). We now report that many of these lipids are required for rapid and efficient fusion of the reconstituted SNARE proteoliposomes in the presence of SNARE chaperones. Omission of either PE, PA, or PI3P from the complete set of lipids strongly reduces fusion, and PC, PE, PA, and PI3P constitute a minimal set of lipids for fusion. PA could neither be replaced by other lipids with small headgroups such as DAG or ERG nor by the acidic lipids PS or PI. PA is needed for full association of HOPS and Sec18p with proteoliposomes having a minimal set of lipids. Strikingly, PA and PE are as essential for SNARE complex assembly as for fusion, suggesting that these lipids facilitate functional interactions among SNAREs and SNARE chaperones.Biological membrane fusion is the regulated rearrangement of the lipids in two apposed sealed membranes to form one bilayer while mixing lumenal contents without leakage or lysis. It is fundamental for intracellular vesicular traffic, cell growth and division, regulated secretion of hormones and other blood proteins, and neurotransmission and thus has attracted wide and sustained study (1, 2). Its fundamental mechanisms are conserved and employ a Rab-family GTPase, proteins which bind to the GTP-bound form of a Rab, termed its “effectors” (3), and SNARE3 (soluble N-ethylmaleimide-sensitive factor attachment protein receptors) proteins (4) with their attendant chaperones. SNAREs are integral or peripheral membrane proteins with characteristic heptad-repeat domains, which can associate in 4-helical coiled-coils (5), termed “cis-SNARE complexes,” if they are all anchored to the same membrane bilayer, or “trans-SNARE complexes” if they are anchored to apposed membranes.Stable membrane proximity (docking) does not suffice for fusion. Studies in model systems have shown that fusion can be promoted by any of several agents, which promote bilayer rearrangement, such as diacylglycerol (6), high levels of calcium (7), viral-encoded fusion proteins (8, 9), or SNAREs (10, 11). These studies frequently employed liposomes or proteoliposomes of simple lipid composition, suggesting that fusion may not have stringent requirements of lipid head group species. However, each of these model fusion reactions is accompanied by substantial lysis (1215), whereas the preservation of subcellular compartments is a hallmark of physiological membrane fusion.We have studied membrane fusion with the vacuole (lysosome) of Saccharomyces cerevisiae (reviewed in Ref. 16). The fusion of isolated vacuoles requires the Rab Ypt7p, 4 SNAREs (Vam3p, Vti1p, Vam7p, and Nyv1p), the SNARE chaperones Sec17p (α-soluble N-ethylmaleimide-sensitive factor attachment protein)/Sec18p (N-ethylmaleimide-sensitive factor) and the hexameric HOPS complex (17), and key “regulatory” lipids including ERG, phosphoinositides, and DAG (18). HOPS interacts physically or functionally with each component of this fusion system. HOPS stably associates with Ypt7p in its GTP-bound state (19). One HOPS subunit, Vps33p, is a member of the Sec1-Munc18 family of SNARE-binding proteins, and HOPS exhibits direct affinity for SNAREs (17, 2022) and proofreads correct vacuolar SNARE pairing (23). HOPS also has direct affinity for phosphoinositides (17). The SNAREs on isolated vacuoles are in cis-complexes, which are disassembled by Sec17p, Sec18p, and ATP (24). Docking requires Ypt7p (25) and HOPS (17). During docking, vacuoles are drawn against each other until each has a substantial membrane domain tightly apposed to the other. Each of the proteins (26) and lipids (18) required for fusion becomes enriched in a ring-shaped microdomain, the “vertex ring,” which surrounds the two tightly apposed membrane domains. Not only do the proteins depend on each other, in a cascade fashion, for vertex ring enrichment, and the lipids depend on each other for their vertex ring enrichment as well, but the lipids and proteins are mutually interdependent for their enrichment at this ring-shaped microdomain (18, 27). Fusion occurs around the ring, joining the two organelles. The fusion of vacuoles bearing physiological fusion constituents does not cause measurable organelle lysis, although fusion supported exclusively by higher levels of SNARE proteins is accompanied by massive lysis (28), in accord with model liposome studies (14). Thus fusion microdomain assembly and the coordinate action of SNAREs with other proteins and lipids to promote fusion without lysis are central topics in membrane fusion studies.Reconstitution of fusion with pure components allows chemical definition of essential elements of this biologically important reaction. Although SNAREs can drive a slow fusion of PC/PS proteoliposomes (29), this was not stimulated by HOPS and Sec17p/Sec18p (30). SNARE proteoliposomes bearing all the vacuolar lipids (18, 3133), PC, PE, PI, PS, CL, PA, ERG, DAG, PI3P, and phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), showed rapid and efficient fusion that was fully dependent on Sec17p/Sec18p and HOPS (30). The omission of either DAG, ERG, or phosphoinositide from the liposomes caused a marked reduction in fusion (30). We now report that PE and PA are also necessary for rapid and efficient fusion, function in distinct manners, and are required for efficient assembly of newly formed SNARE complexes by the SNARE chaperones Sec17p/Sec18p and HOPS.  相似文献   

6.
Fluorescent liposomal nanovesicles (liposomes) are commonly used for lipid research and/or signal enhancement. However, the problem of self-quenching with conventional fluorescent liposomes limits their applications because these liposomes must be lysed to detect the fluorescent signals. Here, we developed a nonquenched fluorescent (NQF)1 liposome by optimizing the proportion of sulforhodamine B (SRB) encapsulant and lissamine rhodamine B-dipalmitoyl phosphatidylethanol (LRB-DPPE) on a liposomal surface for signal amplification. Our study showed that 0.3% of LRB-DPPE with 200 μm of SRB provided the maximal fluorescent signal without the need to lyse the liposomes. We also observed that the NQF liposomes largely eliminated self-quenching effects and produced greatly enhanced signals than SRB-only liposomes by 5.3-fold. To show their application in proteomics research, we constructed NQF liposomes that contained phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2) and profiled its protein interactome using a yeast proteome microarray. Our profiling led to the identification of 162 PI(3,5)P2-specific binding proteins (PI(3,5)P2-BPs). We not only recovered many proteins that possessed known PI(3,5)P2-binding domains, but we also found two unknown Pfam domains (Pfam-B_8509 and Pfam-B_10446) that were enriched in our dataset. The validation of many newly discovered PI(3,5)P2-BPs was performed using a bead-based affinity assay. Further bioinformatics analyses revealed that the functional roles of 22 PI(3,5)P2-BPs were similar to those associated with PI(3,5)P2, including vesicle-mediated transport, GTPase, cytoskeleton, and kinase. Among the 162 PI(3,5)P2-BPs, we found a novel motif, HRDIKP[ES]NJLL that showed statistical significance. A docking simulation showed that PI(3,5)P2 interacted primarily with lysine or arginine side chains of the newly identified PI(3,5)P2-binding kinases. Our study showed that this new tool would greatly benefit profiling lipid–protein interactions in high-throughput studies.Cell viability and physiological functions are maintained through a complex biomolecular interaction network. One of the key components in the regulatory system includes lipid–protein interactions that mediate various cell responses and metabolisms. Increasing evidence shows that such interactions have profound influences on cell polarization, the cell cycle, and other cellular processes. To date, in vitro characterizations of lipid interactions with other biomolecules are often conducted using artificial membrane models, such as liposomal nanovesicles, to mimic biological membranes. Liposomal nanovesicles, termed liposomes, are spherical vesicles that are surrounded by phospholipid bilayers in which the lipid of interest can be incorporated. An important benefit of liposomes is the ease in which a large number of fluorescent molecules can be encapsulated so that the liposome binding signals can be greatly enhanced for detection (14). Therefore, liposomes have become a practical and popular tool for use as a model membrane or fluorophore-loaded vehicle to study signal amplification (14) and/or lipid research (59).In general, liposomes are capable of encapsulating hundreds of millions of fluorescent dye molecules, thereby providing greatly enhanced signals (14). However, high concentrations of fluorophores often lead to self-quenching, and as a result, the fluorescent signals cannot be detected without first lysing the liposomes (14). This issue has limited their applications for real-time detection and high-density chip assays. To solve this problem, we developed a novel non-quenched fluorescent (NQF) liposome with the capability of signal amplification. During the fabrication procedure, we used sulforhodamine B (SRB) as an encapsulant and incorporated lissamine rhodamine B-dipalmitoyl phosphatidylethanol (LRB-DPPE) within the liposomal bilayer.Profiling phosphatidylinositide-protein interactions is of particular interest because these lipids have been implicated in a wide variety of cell functions, including cell signaling, actin cytoskeletal reorganization, exocytosis, and intracellular trafficking (1014). Among the phosphatidylinositides, phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2) is one of the most important mediators of signal transduction (15, 16). Intensive studies over the past decade have shown that PI(3,5)P2 is involved in protein sorting into multivesicular bodies (MVBs), membrane recycling/turnover, and the vacuole acidification (1719). Like other phosphatidylinositides, PI(3,5)P2 may regulate downstream pathways through the binding of the myo-inositol head group to proteins containing phosphoinositide-binding domains (20, 21). Thus far, a handful of modular phosphoinositide-binding domains have been identified, including C2 (Protein Kinase C homology 2) (22), a WD-40 motif (tryptophan-aspartic acid repeats) that folds as β-propellers (23), ARRB1 (β-arrestin 1), and a number of actin regulatory domains (e.g. the gelsolin/villin family, cofilin, and profilin) (20).To globally profile PI(3,5)P2-binding proteins as the foundation for a better understanding of the biology of PI(3,5)P2, we employed the newly developed PI(3,5)P2-NQF liposomes to probe the Saccharomyces cerevisiae proteome microarray. We not only recovered many proteins that contained known PI(3,5)P2-binding domains, but we also validated many newly discovered PI(3,5)P2-binding proteins using a bead-based affinity assay. Representing both a signal and an analyte carrier, the NQF liposomes should provide a new research model for studying lipid–protein interactions in the future.  相似文献   

7.
8.
9.
10.
Sphingosine 1-phosphate (S1P) is a bioactive lipid signal transmitter present in blood. Blood plasma S1P is supplied from erythrocytes and plays an important role in lymphocyte egress from lymphoid organs. However, the S1P export mechanism from erythrocytes to blood plasma is not well defined. To elucidate the mechanism of S1P export from erythrocytes, we performed the enzymatic characterization of S1P transporter in rat erythrocytes. Rat erythrocytes constitutively released S1P without any stimulus. The S1P release was reduced by an ABCA1 transporter inhibitor, glyburide, but not by a multidrug resistance-associated protein inhibitor, MK571, or a multidrug resistance protein inhibitor, cyclosporine A. Furthermore, we measured S1P transport activity using rat erythrocyte inside-out membrane vesicles (IOVs). Although the effective S1P transport into IOVs was observed in the presence of ATP, this activity was also supported by dATP and adenosine 5′-(β,γ-imido)triphosphate. The rate of S1P transport increased depending on S1P concentration, with an apparent Km value of 21 μm. Two phosphorylated sphingolipids, dihydrosphingosine 1-phosphate and ceramide 1-phosphate, did not inhibit S1P transport. Similar to the intact erythrocytes, the uptake of S1P into IOVs was inhibited by glyburide and vanadate but not by the other ABC transporter inhibitors. These results suggest that S1P is exported from the erythrocytes by a novel ATP-dependent transporter.Sphingosine 1-phosphate (S1P),2 a bioactive lipid molecule present in the blood, plays an important role in diverse cellular responses, such as migration, proliferation, and differentiation (1, 2). These processes are triggered by the binding of S1P to its specific receptors (3), of which five subtypes (S1P1-S1P5) have been identified in endothelial and immune cells (4). Studies using S1P1 receptor-deficient mice showed abnormalities in lymphocyte egress from lymph nodes, spleen, and thymus (5, 6). Whereas blood plasma contains a basal level of S1P from the nanomolar to the micromolar range (712), lymphoid tissues maintain a low S1P environment through the activity of S1P lyase (13). It has been proposed that a higher concentration of S1P in the blood plasma than in the lymphoid organs establishes an essential gradient along which lymphocytes expressing the S1P1 receptor on cell surfaces migrate (2, 5, 6, 1315).The source of plasma S1P remains unclear despite its importance in the cellular responses of endothelial cells and lymphocytes. Unlike most cells, blood cells, astrocytes, and vascular endothelial cells are reported to release S1P (8, 1618). These cells contain sphingosine kinase, which synthesizes S1P through the phosphorylation of sphingosine (16, 18, 19). Whereas platelets and mast cells release S1P in a stimulus-dependent manner (17, 20), erythrocytes, neutrophils, and mononuclear cells release S1P in a stimulus-independent manner (16). The roles of S1P derived from erythrocytes, the most abundant of these blood cells, have not been elucidated. However, recent reports suggest that S1P released from erythrocytes is a major source of plasma S1P (7, 9) and promotes lymphocyte egress to blood (9).Previously, we showed that S1P is released from rat platelets upon stimulation by thrombin or Ca2+ (21). We proposed that an ATP-dependent transporter plays a key role in S1P release from platelets (21). However, the detailed mechanism of S1P release is unclear because there is no way to assay the transport of S1P across the membrane. In this study we compared the properties of S1P release from erythrocytes with that of platelets and showed that S1P release from erythrocytes does not require any stimuli. We then established an assay to measure the ATP-dependent S1P uptake into inside-out membrane vesicles (IOVs) prepared from rat erythrocytes and characterized S1P transport in erythrocytes.  相似文献   

11.
12.
Mathematical tools developed in the context of Shannon information theory were used to analyze the meaning of the BLOSUM score, which was split into three components termed as the BLOSUM spectrum (or BLOSpectrum). These relate respectively to the sequence convergence (the stochastic similarity of the two protein sequences), to the background frequency divergence (typicality of the amino acid probability distribution in each sequence), and to the target frequency divergence (compliance of the amino acid variations between the two sequences to the protein model implicit in the BLOCKS database). This treatment sharpens the protein sequence comparison, providing a rationale for the biological significance of the obtained score, and helps to identify weakly related sequences. Moreover, the BLOSpectrum can guide the choice of the most appropriate scoring matrix, tailoring it to the evolutionary divergence associated with the two sequences, or indicate if a compositionally adjusted matrix could perform better.[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29]  相似文献   

13.
Malaria, an infectious disease caused by parasites of the Plasmodium genus, is one of the world''s major public health concerns causing up to a million deaths annually, mostly because of P. falciparum infections. All of the clinical symptoms are associated with the blood stage of the disease, an obligate part of the parasite life cycle, when a form of the parasite called the merozoite recognizes and invades host erythrocytes. During erythrocyte invasion, merozoites are directly exposed to the host humoral immune system making the blood stage of the parasite a conceptually attractive therapeutic target. Progress in the functional and molecular characterization of P. falciparum merozoite proteins, however, has been hampered by the technical challenges associated with expressing these proteins in a biochemically active recombinant form. This challenge is particularly acute for extracellular proteins, which are the likely targets of host antibody responses, because they contain structurally critical post-translational modifications that are not added by some recombinant expression systems. Here, we report the development of a method that uses a mammalian expression system to compile a protein resource containing the entire ectodomains of 42 P. falciparum merozoite secreted and cell surface proteins, many of which have not previously been characterized. Importantly, we are able to recapitulate known biochemical activities by showing that recombinant MSP1-MSP7 and P12-P41 directly interact, and that both recombinant EBA175 and EBA140 can bind human erythrocytes in a sialic acid-dependent manner. Finally, we use sera from malaria-exposed immune adults to profile the relative immunoreactivity of the proteins and show that the majority of the antigens contain conformational (heat-labile) epitopes. We envisage that this resource of recombinant proteins will make a valuable contribution toward a molecular understanding of the blood stage of P. falciparum infections and facilitate the comparative screening of antigens as blood-stage vaccine candidates.Parasites of the Plasmodium genus are the etiological agents responsible for malaria, an infectious disease mostly occurring in developing countries with up to 40% of the world''s population described as being at risk of the disease. Among the Plasmodium species that can affect humans, Plasmodium falciparum is responsible for the highest mortality, causing around one million deaths annually, mostly in children under the age of five (1). The clinical symptoms of malaria occur during the cyclic asexual blood stage of the parasite lifecycle when merozoites, that have invaded and replicated within host erythrocytes, are released into the bloodstream before invading new red blood cells (2). Despite intensive efforts from the research community there is currently no licensed vaccine for malaria. The leading candidate RTS,S/AS01, which targets the pre-erythrocytic stage of the disease and was tested in phase III trials, conferred 30 to 50% protection from clinical malaria, depending on the age group studied (3, 4). This limited efficacy has led to calls for a more effective vaccine and many have suggested that a combinatorial vaccine that additionally targets the blood stage may increase efficacy.A vaccine targeting the proteins expressed on the surface of the blood stage of the parasite is conceptually attractive because merozoites are repeatedly and directly exposed to the human humoral immune system and naturally acquired antibodies against these proteins have been shown to confer at least partial immunity (58). Despite this, only a few antigens discovered before the completion of the parasite genome sequence have been assessed in detail (9) and clinical vaccine trials using antigens that target the blood stage have so far shown limited efficacy, mostly caused by antigenic diversity (10). The sequencing of the parasite genome (11) has identified all possible targets but the systematic screening of these new candidates to assess their potential as a vaccine is hampered by the inability to systematically express recombinant Plasmodium proteins in their native conformation (1215). Likely explanations might be the high (∼80%) A:T content of the P. falciparum genome resulting in low codon usage compatibility in heterologous expression systems, the large size (> 50 kDa) of many proteins, the presence of long stretches of highly repetitive amino acids, and the difficulty in identifying clear structural domains within these proteins using standard prediction computer programs (11). Extracellular proteins, in particular, present an additional challenge because they often have signal peptides and transmembrane regions that can negatively impact expression (1618) and contain structurally important disulfide bonds. However, unlike most other eukaryotic extracellular proteins, Plasmodium cell surface and secreted proteins are not modified by N-linked glycans because of the absence of the necessary enzymes (19).To express Plasmodium proteins for basic research and vaccine development, a diverse range of expression systems have been tried (12) ranging from bacteria (17, 18), yeast (13), Dictyostelium (20), and plants (21) to mammalian cells (22) and cell-free systems (2325). To circumvent the problem of codon usage, bacterial (26) and yeast (27) strains with modified tRNA pools have been developed, or sequences of the gene of interest synthesized and codon-optimized to match that of the expression host (28, 29). Although Escherichia coli has been the most popular expression system because of its relative simplicity and cost effectiveness, large-scale production of soluble functional Plasmodium falciparum recombinant proteins remains challenging with success rates ranging from just 6 to 21% (17, 18) and is often hindered by the need for complex refolding procedures. Similarly, attempts have been made to compile large panels of parasite proteins using in vitro translation systems (23, 25, 30, 31). These systems, however, require reducing conditions and are therefore not generally suitable for the systematic expression of extracellular proteins that occupy an oxidizing environment and critically require the formation of disulfide bonds for proper function. As a result, functional analyses of extracellular parasite proteins have often been restricted to smaller subfragments of the proteins that can be expressed in a soluble form rather than the entire extracellular region. Although eukaryotic expression systems are able to add disulfide bonds, they also often inappropriately glycosylate parasite proteins, adding further complication (32). A generic method that would overcome these technical challenges to express, in a systematic way, panels of recombinant Plasmodium proteins that have retained their native function and conformation would therefore be a valuable resource for the molecular investigations of erythrocyte invasion and the development of a blood stage vaccine.To generate a resource of correctly folded recombinant merozoite proteins, we used a mammalian expression system and established the parameters necessary for high-level expression. Using this method, we compiled a panel of 42 proteins that corresponds to the repertoire of abundant cell surface and secreted merozoite proteins of the 3D7 strain of Plasmodium falciparum. Biochemical activity of these proteins was demonstrated by recapitulating known protein interactions and by showing conformation-sensitive immunoreactivity of the recombinant proteins using immune sera.  相似文献   

14.
We devised a strategy of 14-3-3 affinity capture and release, isotope differential (d0/d4) dimethyl labeling of tryptic digests, and phosphopeptide characterization to identify novel targets of insulin/IGF1/phosphatidylinositol 3-kinase signaling. Notably four known insulin-regulated proteins (PFK-2, PRAS40, AS160, and MYO1C) had high d0/d4 values meaning that they were more highly represented among 14-3-3-binding proteins from insulin-stimulated than unstimulated cells. Among novel candidates, insulin receptor substrate 2, the proapoptotic CCDC6, E3 ubiquitin ligase ZNRF2, and signaling adapter SASH1 were confirmed to bind to 14-3-3s in response to IGF1/phosphatidylinositol 3-kinase signaling. Insulin receptor substrate 2, ZNRF2, and SASH1 were also regulated by phorbol ester via p90RSK, whereas CCDC6 and PRAS40 were not. In contrast, the actin-associated protein vasodilator-stimulated phosphoprotein and lipolysis-stimulated lipoprotein receptor, which had low d0/d4 scores, bound 14-3-3s irrespective of IGF1 and phorbol ester. Phosphorylated Ser19 of ZNRF2 (RTRAYpS19GS), phospho-Ser90 of SASH1 (RKRRVpS90QD), and phospho- Ser493 of lipolysis-stimulated lipoprotein receptor (RPRARpS493LD) provide one of the 14-3-3-binding sites on each of these proteins. Differential 14-3-3 capture provides a powerful approach to defining downstream regulatory mechanisms for specific signaling pathways.Activated tyrosine kinase receptors generally drive cells to assimilate nutrients; regulate partitioning of the assimilate to make storage polymers and biosynthetic precursors and for energy production; and promote cellular survival, growth, division, movement, and differentiation. From this spectrum, each cell displays a specific subset of responses depending on the hormone, specific receptors, cross-talk from other signaling pathways, metabolic conditions, and cellular complement of effector proteins. For example, insulin stimulates glucose uptake and glycogen synthesis in skeletal muscle, whereas IGF11 promotes survival, growth, and proliferation of many cell types (1, 2).Many of these cellular responses are mediated via PI 3-kinase, which generates phosphatidylinositol 3,4,5-trisphosphate, promoting the activation of AGC protein kinases such as PKB/Akt and other signaling components (1, 3). PI 3-kinase is activated by binding to tyrosine-phosphorylated receptors such as the platelet-derived growth factor receptor or via adaptor molecules such as insulin receptor substrates, which are phosphorylated by the activated insulin receptor. Deregulated PI 3-kinase and downstream signaling has been linked to problems with wound healing, immune responses, neurodegeneration, and cardiovascular disease; decreased PI 3-kinase signaling may underlie insulin resistance and type II diabetes; and this pathway is often activated in human tumors (4, 5). To help pinpoint drug targets for these diseases we must define the mechanisms linking PI 3-kinase and other signaling pathways to downstream effectors and understand specificity with respect to different hormone/cell type combinations.Many missing substrates of PI 3-kinase/AGC kinases must be found to explain all the cellular responses to insulin and growth factors (3). Several targets of PI 3-kinase/PKB signaling, including TSC2 (6), PRAS40 (7), AS160 (8), and FYVE domain-containing phosphatidylinositol 3-phosphate 5-kinase (9) were identified using the anti-PAS antibody, which loosely recognizes the minimal phosphorylated consensus for PKB, which is RXRXX(pS/pT) where pS is phosphoserine and pT is phosphothreonine. Another helpful feature for identifying new downstream targets is that phosphorylation by PKB sometimes creates binding sites for 14-3-3s, which are dimeric proteins that bind to specific phosphorylated sites on target proteins. Thus PKB promotes the binding of 14-3-3s to proteins including PFKFB2 cardiac PFK-2 (10, 11), BimEL (12), β-catenin (13), p27(Kip1) (14), PRAS40 (7), FOXO1 (15), Miz1 (16), TBC1D4 (AS160 (17, 18), and TBC1D1 (19). Functionally 14-3-3s can trigger changes in the conformations of their targets and alter how targets interact with other proteins. Consistent with 14-3-3/target interactions being important in cellular responses to growth factors and insulin, reagents that compete with targets for binding to 14-3-3s inhibit the IGF1-stimulated increase in the glycolytic stimulator fructose-2,6-bisphosphate (10) and PKB-dependent cell survival (20).Some 14-3-3-binding sites on the above named proteins can also be phosphorylated by other basophilic protein kinases (21). For example, AS160 and TBC1D1 are two related RabGAPs (GTPase-activating protein for Rabs) regulated by multisite phosphorylation that regulate trafficking of GluT4 transporter to the plasma membrane for uptake of glucose. The two 14-3-3-binding sites on AS160 can be phosphorylated by PKB, p90RSK, serum- and glucocorticoid-inducible kinase, and other kinases, whereas one of the 14-3-3-binding sites on TBC1D1 is also a substrate of the energy-sensing kinase AMP-activated protein kinase (1719). Thus, the relative sensitivity of glucose trafficking to insulin and AMP-activated protein kinase activators in different tissues may depend in part on the distribution of AS160 and TBC1D1. Other insulin-regulated 14-3-3 targets, such as myosin 1C (22), are also convergence points for phosphorylation by more than one AGC and/or Ca2+/calmodulin-dependent protein kinase.Here many more proteins than those already identified were found to display 14-3-3 and/or PAS binding signals when the PI 3-kinase pathway was activated in cells against a “background” of other proteins whose 14-3-3 and PAS binding status was unaffected by PI 3-kinase signaling. We aimed to pick out the PI 3-kinase-regulated proteins, which was challenging given the hundreds of 14-3-3 binding partners in mammalian cells (10, 2327). We used 14-3-3 affinity capture and release, identified phosphopeptides, and devised a quantitative proteomics approach in which 14-3-3-binding proteins from insulin-stimulated versus unstimulated cells were labeled with formaldehyde containing light or heavy isotopes, respectively. Biochemical checking of candidates from these screens, which included proteins with links to diabetes, cancers, and neurodegenerative disorders, confirmed the identification of novel downstream targets of PI 3-kinase, some of which are also convergence points for regulation by MAPK/p90RSK signaling.  相似文献   

15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号