首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Expansion of the lysosomal system, including cathepsin D upregulation, is an early and prominent finding in Alzheimer''s disease brain. Cell culture studies, however, have provided differing perspectives on the lysosomal connection to Alzheimer''s disease, including both protective and detrimental influences. We sought to clarify and molecularly define the connection in vivo in a genetically tractable model organism. Cathepsin D is upregulated with age in a Drosophila model of Alzheimer''s disease and related tauopathies. Genetic analysis reveals that cathepsin D plays a neuroprotective role because genetic ablation of cathepsin D markedly potentiates tau-induced neurotoxicity. Further, generation of a C-terminally truncated form of tau found in Alzheimer''s disease patients is significantly increased in the absence of cathepsin D. We show that truncated tau has markedly increased neurotoxicity, while solubility of truncated tau is decreased. Importantly, the toxicity of truncated tau is not affected by removal of cathepsin D, providing genetic evidence that modulation of neurotoxicity by cathepsin D is mediated through C-terminal cleavage of tau. We demonstrate that removing cathepsin D in adult postmitotic neurons leads to aberrant lysosomal expansion and caspase activation in vivo, suggesting a mechanism for C-terminal truncation of tau. We also demonstrate that both cathepsin D knockout mice and cathepsin D–deficient sheep show abnormal C-terminal truncation of tau and accompanying caspase activation. Thus, caspase cleavage of tau may be a molecular mechanism through which lysosomal dysfunction and neurodegeneration are causally linked in Alzheimer''s disease.  相似文献   

2.
The misfolding of proteins into highly ordered fibrils with similar physical properties is a hallmark of many degenerative diseases. Here, we use the microtubule associated protein tau as a model system to investigate the role of amino acid side chains in the formation of such fibrils. We identify a region (positions 272-289) in the tau protein that, in the fibrillar state, either forms part of a core of parallel, in-register, beta-strands, or remains unfolded. Single point mutations are sufficient to control this conformational switch with disease mutants G272V and DeltaK280 (found in familial forms of dementia) inducing a folded state. Through systematic mutagenesis we derive a propensity scale for individual amino acids to form fibrils with parallel, in-register, beta-strands. This scale should not only apply to tau fibrils but generally to all fibrils with same strand arrangement.  相似文献   

3.
The neural dysfunction in Alzheimer's disease (AD) could arise from endoplasmic reticulum (ER) stress and deficits of the unfolded protein response (UPR). To explore whether tau hyperphosphorylation, a hallmark of AD brain pathologies, plays a role in ER stress-induced alterations of cell viability, we established cell lines with stable expression of human tau (HEK293/tau) or the vector (HEK293/vec) and treated the cells with thapsigargin (TG), an ER stress inducer. We observed that the HEK293/tau cells were more resistant than the HEK293/vec cells to the TG-induced apoptosis, importantly, a time dependent increase of tau phosphorylation at Thr205 and Thr231 sites was positively correlated with the inhibition of apoptosis. We also observed that expression of tau upregulated phosphorylation of PERK, eIF2 and IRE1 with an increased cleavage of ATF6 and ATF4. The potentiation of UPR was also detected in HEK293/tau cells treated with other ER stress inducers, including staurosporine, camptothecin and hydrogen peroxide, in which a suppressed apoptosis was also shown. Our data suggest that tau hyperphosphorylation could attenuate the ER stress-induced apoptosis with the mechanism involving upregulation of UPR system.  相似文献   

4.
Tau is a microtubule-associated protein linked with neurodegenerative diseases. Humans express six different isoforms of tau; the longest containing four microtubule-binding repeat motifs in the C-terminal that are vital for what is considered the major biological function of tau, to stabilize microtubules and facilitate axonal transport. The capacity of tau to maintain its normal biological function is dependent upon its phosphorylation state. In Alzheimer's and Parkinson's diseases, there is a hyperphosphorylation of tau that leads to the intracellular accumulation of tau in the form of neurofibrillary tangles. While the role of tau in Parkinson's disease has been understated for some time, here we summarize key genetic, pathological and biochemical evidence supporting a role for tau in the pathogenesis of Parkinson's disease. Toxic interactions with alpha synuclein may lead to hyperphosphorylation of tau and eventually to the deposition of both proteins in the disease.  相似文献   

5.
《Journal of molecular biology》2019,431(12):2266-2282
During disease, cells experience various stresses that manifest as an accumulation of misfolded proteins and eventually lead to cell death. To combat this stress, cells activate a pathway called unfolded protein response that functions to maintain endoplasmic reticulum (ER) homeostasis and determines cell fate. We recently reported a hitherto unknown mechanism of regulating ER stress via a novel post-translational modification called Fic-mediatedadenylylation/AMPylation. Specifically, we showed that the human Fic (filamentation induced by cAMP) protein, HYPE/FicD, catalyzes the addition of an adenosine monophosphate (AMP) to the ER chaperone, BiP, to alter the cell's unfolded protein response-mediated response to misfolded proteins. Here, we report that we have now identified a second target for HYPE—alpha-synuclein (αSyn), a presynaptic protein involved in Parkinson's disease. Aggregated αSyn has been shown to induce ER stress and elicit neurotoxicity in Parkinson's disease models. We show that HYPE adenylylates αSyn and reduces phenotypes associated with αSyn aggregation invitro, suggesting a possible mechanism by which cells cope with αSyn toxicity.  相似文献   

6.
The microtubule-associated protein tau is a principal component of neurofibrillary tangles, and has been identified as a key molecule in Alzheimer''s disease and other tauopathies. However, it is unknown how a protein that is primarily located in axons is involved in a disease that is believed to have a synaptic origin. To investigate a possible synaptic function of tau, we studied synaptic plasticity in the hippocampus and found a selective deficit in long-term depression (LTD) in tau knockout mice in vivo and in vitro, an effect that was replicated by RNAi knockdown of tau in vitro. We found that the induction of LTD is associated with the glycogen synthase kinase-3-mediated phosphorylation of tau. These observations demonstrate that tau has a critical physiological function in LTD.  相似文献   

7.
The effect of His-heme misligation on folding has been investigated for a triple mutant of yeast iso-2 cytochrome c (N26H,H33N,H39K iso-2). The variant contains a single misligating His residue at position 26, a location at which His residues are found in several cytochrome c homologues, including horse, tuna, and yeast iso-1. The amplitude for fast phase folding exhibits a strong initial pH dependence. For GdnHCl unfolded protein at an initial pH<5, the observed refolding at final pH 6 is dominated by a fast phase (tau(2f)=20 ms, alpha(2f)=90 %) that represents folding in the absence of misligation. For unfolded protein at initial pH 6, folding at final pH 6 occurs in a fast phase of reduced amplitude (alpha(2f) approximately 20 %) but the same rate (tau(2f)=20 ms), and in two slower phases (tau(m)=6-8 seconds, alpha(m) approximately 45 %; and tau(1b)=16-20 seconds, alpha(1b) approximately 35 %). Double jump experiments show that the initial pH dependence of the folding amplitudes results from a slow pH-dependent equilibrium between fast and slow folding species present in the unfolded protein. The slow equilibrium arises from coupling of the His protonation equilibrium to His-heme misligation and proline isomerization. Specifically, Pro25 is predominantly in trans in the unligated low-pH unfolded protein, but is constrained in a non-native cis isomerization state by His26-heme misligation near neutral pH. Refolding from the misligated unfolded form proceeds slowly due to the large energetic barrier required for proline isomerization and displacement of the misligated His26-heme ligand.  相似文献   

8.
Alzheimer''s Disease (AD) is a complex and multifactorial disease. While large genome-wide association studies have had some success in identifying novel genetic risk factors for AD, case-control studies are less likely to uncover genetic factors that influence progression of disease. An alternative approach to identifying genetic risk for AD is the use of quantitative traits or endophenotypes. The use of endophenotypes has proven to be an effective strategy, implicating genetic risk factors in several diseases, including anemia, osteoporosis and heart disease. In this study we identify a genetic factor associated with the rate of decline in AD patients and present a methodology for identification of other such factors. We have used an established biomarker for AD, cerebrospinal fluid (CSF) tau phosphorylated at threonine 181 (ptau181) levels as an endophenotype for AD, identifying a SNP, rs1868402, in the gene encoding the regulatory sub-unit of protein phosphatase B, associated with CSF ptau181 levels in two independent CSF series . We show no association of rs1868402 with risk for AD or age at onset, but detected a very significant association with rate of progression of disease that is consistent in two independent series . Our analyses suggest that genetic variants associated with CSF ptau181 levels may have a greater impact on rate of progression, while genetic variants such as APOE4, that are associated with CSF Aβ42 levels influence risk and onset but not the rate of progression. Our results also suggest that drugs that inhibit or decrease tau phosphorylation may slow cognitive decline in individuals with very mild dementia or delay the appearance of memory problems in elderly individuals with low CSF Aβ42 levels. Finally, we believe genome-wide association studies of CSF tau/ptau181 levels should identify novel genetic variants which will likely influence rate of progression of AD.  相似文献   

9.
Certain conditions, such as several weeks of high-fat diet, disrupt endoplasmic reticulum (ER) homeostasis and activate an adaptive pathway referred as the unfolded protein response. When the unfolded protein response fails, the result is the development of inflammation and insulin resistance. These two pathological states are known to be improved by regular exercise training but the mechanisms remain largely undetermined. As it has recently been shown that the unfolded protein response is regulated by exercise, we hypothesised that concomitant treadmill exercise training (HFD+ex) prevents ER homeostasis disruption and its downstream consequences induced by a 6-week high-fat diet (HFD) in mice by activating the protective unfolded protein response. Several well-documented markers of the unfolded protein response were measured in the soleus and tibialis anterior muscles as well as in the liver and pancreas. In HFD mice, an increase in these markers was observed (from 2- to 15-fold, P?<?0.05) in all tissues studied. The combination of HFD+ex increased the expression of several markers further, up to 100 % compared to HFD alone (P?<?0.05). HFD increased inflammatory markers both in the plasma (IL-6 protein, 2.5?±?0.52-fold; MIP-1α protein, 1.3?±?0.13-fold; P?<?0.05) and in the tissues studied, and treadmill exercise attenuated the inflammatory state induced by HFD (P?<?0.05). However, treadmill exercise could not reverse HFD-induced whole body glucose intolerance, assessed by OGTT (AUC, 1.8?±?0.29-fold, P?<?0.05). In conclusion, our results show that a HFD activated the unfolded protein response in mouse tissues in vivo, and that endurance training promoted this response. We speculate that the potentiation of the unfolded protein response by endurance training may represent a positive adaptation protecting against further cellular stress.  相似文献   

10.
Small-angle X-ray scattering (SAXS) is a universal low-resolution method to study size and shape of globular proteins in solution but recent developments facilitate the quantitative characterization of the structure and structural transitions of metastable systems like partially or completely unfolded proteins. We present here a study of temperature induced transitions in tau, a natively unfolded protein involved in Alzheimer's disease. Previous studies on full length tau and several disease-related mutants provided information about the residual structure in different domains revealing a specific role and extended conformations of the so-called repeat domains, which are considered to be responsible for the formation of amyloid-like fibrils ("paired helical filaments"). Here, we employ SAXS to investigate the temperature dependent properties of tau. Slow heating/cooling of the full length protein from 10°C to 50°C did not lead to detectable changes in the overall size. Surprisingly, quick heating/cooling caused tau to adopt a significantly more compact conformation, which was stable over up to 3 h and represents a structural "memory" effect. This compaction is not observed for the shorter tau constructs containing largely the repeat domains. The structural and functional implications of the observed unusual behavior of tau under nonequilibrium conditions are discussed.  相似文献   

11.
Mammalian AMP-activated protein kinase (AMPK) acts as a metabolite-sensing protein kinase in multiple tissues. Recent studies have shown that AMPK activation also regulates intracellular signaling pathways involved in cellular survival and apoptosis. Previously, we have reported that AMPK activation alleviates the endoplasmic reticulum (ER) stress-mediated neurotoxicity and tau hyperphosphorylation caused by palmitate. Therefore, we investigated whether AMPK activation alleviates ER stress-mediated neurotoxicity in SH-SY5Y human neuroblastoma cells incubated with homocysteine. Regulation of AMPK activity by isoflavone was also determined to investigate the underlying mechanism of its neuroprotective effect. Treatment of SH-SY5Y human neuroblastoma cells with N 1-(β-D-ribofuranosyl)-5-aminoimidazole-4-carboxamide (AICAR), a pharmacological activator of AMPK, significantly protected cells against cytotoxicity imposed by tunicamycin and homocysteine. Homocysteine significantly suppressed AMPK activation, which was alleviated by AICAR. We observed a significant inhibition of the unfolded protein response by AICAR in cells incubated with homocysteine, suggesting a protective role of AMPK activation against ER stress-mediated neurotoxicity. AICAR also significantly reduced tau hyperphosphorylation by inactivating glycogen synthase kinase-3β and c-Jun N-terminal kinase in cells incubated with homocysteine. Furthermore, treatment of cells with soy isoflavone, genistein and daidzein significantly activated AMPK, which was repressed by tunicamycin and homocysteine. Therefore, our results suggest that AMPK activation by isoflavone as well as AICAR alleviates homocysteine-mediated neurotoxicity in SH-SY5Y cells.  相似文献   

12.
13.
Is the alpha-helix structure capable of triggering the formation of aberrant protein aggregates? To answer this question, we investigate the in vitro aggregation of tau protein in the presence of the helix-inducing agent TFE. Tau is a natively unfolded protein that binds to microtubules and forms aggregates in Alzheimer's disease. We find that full-length tau has residual alpha-helix structure, which is further enhanced by three mutations involved in genetic neurological disorders. TFE concentrations matching an alpha-helical content of 40% in full-length tau and the triple mutant induce the formation of aggregates that are morphologically and structurally heterogeneous. A simple dilution experiment reveals that heterogeneity results from the competition between alpha-helical fibrillar aggregates and more classical amyloid-like aggregates. The alpha-helical aggregates are more resilient to dilution and have the spectroscopic features of alpha-helical coiled coils. We propose a general mechanism by which intrinsically stable alpha-helices can associate into aggregates with only coarse coiled-coil symmetry. In tau, high intrinsic alpha-helix stability and coarse coiled-coil symmetry could be byproducts of its biological function.  相似文献   

14.
The endoplasmic reticulum (ER) is involved in the folding and maturation of membrane-bound and secreted proteins. Disturbed homeostasis in the ER can lead to accumulation of misfolded proteins, which trigger a stress response called the unfolded protein response (UPR). In neurodegenerative diseases that are classified as tauopathies, activation of the UPR coincides with the pathogenic accumulation of the microtubule associated protein tau. Several lines of evidence indicate that UPR activation contributes to increased levels of phosphorylated tau, a prerequisite for the formation of tau aggregates. Increased understanding of the crosstalk between signaling pathways involved in protein quality control in the ER and tau phosphorylation will support the development of new therapeutic targets that promote neuronal survival.  相似文献   

15.
Tau is a natively unfolded protein that forms intracellular aggregates in the brains of patients with Alzheimer''s disease. To decipher the mechanism underlying the formation of tau aggregates, we developed a novel approach for constructing models of natively unfolded proteins. The method, energy-minima mapping and weighting (EMW), samples local energy minima of subsequences within a natively unfolded protein and then constructs ensembles from these energetically favorable conformations that are consistent with a given set of experimental data. A unique feature of the method is that it does not strive to generate a single ensemble that represents the unfolded state. Instead we construct a number of candidate ensembles, each of which agrees with a given set of experimental constraints, and focus our analysis on local structural features that are present in all of the independently generated ensembles. Using EMW we generated ensembles that are consistent with chemical shift measurements obtained on tau constructs. Thirty models were constructed for the second microtubule binding repeat (MTBR2) in wild-type (WT) tau and a ΔK280 mutant, which is found in some forms of frontotemporal dementia. By focusing on structural features that are preserved across all ensembles, we find that the aggregation-initiating sequence, PHF6*, prefers an extended conformation in both the WT and ΔK280 sequences. In addition, we find that residue K280 can adopt a loop/turn conformation in WT MTBR2 and that deletion of this residue, which can adopt nonextended states, leads to an increase in locally extended conformations near the C-terminus of PHF6*. As an increased preference for extended states near the C-terminus of PHF6* may facilitate the propagation of β-structure downstream from PHF6*, these results explain how a deletion at position 280 can promote the formation of tau aggregates.  相似文献   

16.
The presence of tangles composed of phosphorylated tau is one of the neuropathological hallmarks of Alzheimer''s disease (AD). Tau, a microtubule (MT)-associated protein, accumulates in AD potentially as a result of posttranslational modifications, such as hyperphosphorylation and conformational changes. However, it has not been fully understood how tau accumulation and phosphorylation are deregulated. In the present study, we identified a novel role of death-associated protein kinase 1 (DAPK1) in the regulation of the tau protein. We found that hippocampal DAPK1 expression is markedly increased in the brains of AD patients compared with age-matched normal subjects. DAPK1 overexpression increased tau protein stability and phosphorylation at multiple AD-related sites. In contrast, inhibition of DAPK1 by overexpression of a DAPK1 kinase-deficient mutant or by genetic knockout significantly decreased tau protein stability and abolished its phosphorylation in cell cultures and in mice. Mechanistically, DAPK1-enhanced tau protein stability was mediated by Ser71 phosphorylation of Pin1, a prolyl isomerase known to regulate tau protein stability, phosphorylation, and tau-related pathologies. In addition, inhibition of DAPK1 kinase activity significantly increased the assembly of MTs and accelerated nerve growth factor-mediated neurite outgrowth. Given that DAPK1 has been genetically linked to late onset AD, these results suggest that DAPK1 is a novel regulator of tau protein abundance, and that DAPK1 upregulation might contribute to tau-related pathologies in AD. Therefore, we offer that DAPK1 might be a novel therapeutic target for treating human AD and other tau-related pathologies.  相似文献   

17.
Alzheimer's disease (AD) is characterized by Abeta peptide-containing plaques and tau-containing neurofibrillary tangles (NFTs). Both pathologies have been combined by crossing Abeta plaque-forming APP mutant mice with NFT-forming P301L tau mutant mice or by stereotaxically injecting beta-amyloid peptide 1-42 (Abeta42) into brains of P301L tau mutant mice. In cell culture, Abeta42 induces filamentous tau aggregates. To understand which processes are disrupted by Abeta42 in the presence of tau aggregates, we applied comparative proteomics to Abeta42-treated P301L tau-expressing neuroblastoma cells and the amygdala of P301L tau transgenic mice stereotaxically injected with Abeta42. Remarkably, a significant fraction of proteins altered in both systems belonged to the same functional categories, i.e. stress response and metabolism. We also identified model-specific effects of Abeta42 treatment such as differences in cell signaling proteins in the cellular model and of cytoskeletal and synapse associated proteins in the amygdala. By Western blotting (WB) and immunohistochemistry (IHC), we were able to show that 72% of the tested candidates were altered in human AD brain with a major emphasis on stress-related unfolded protein responsive candidates. These data highlight these processes as potentially important initiators in the Abeta42-mediated pathogenic cascade in AD and further support the role of unfolded proteins in the course of AD.  相似文献   

18.
Classic galactosemia is a human autosomal recessive disorder caused by mutations in the GALT gene (GAL7 in yeast), which encodes the enzyme galactose-1-phosphate uridyltransferase. Here we show that the unfolded protein response pathway is triggered by galactose in two yeast models of galactosemia: lithium-treated cells and the gal7Δ mutant. The synthesis of galactose-1-phosphate is essential to trigger the unfolded protein response under these conditions because the deletion of the galactokinase-encoding gene GAL1 completely abolishes unfolded protein response activation and galactose toxicity. Impairment of the unfolded protein response in both yeast models makes cells even more sensitive to galactose, unmasking its cytotoxic effect. These results indicate that endoplasmic reticulum stress is induced under galactosemic conditions and underscores the importance of the unfolded protein response pathway to cellular adaptation in these models of classic galactosemia.KEY WORDS: Yeast, Galactosemia, UPR, Lithium, Galactose  相似文献   

19.
Ciliopathies, a class of rare genetic disorders, present often with retinal degeneration caused by protein transport defects between the inner segment and the outer segment of the photoreceptors. Bardet-Biedl syndrome is one such ciliopathy, genetically heterogeneous with 17 BBS genes identified to date, presenting early onset retinitis pigmentosa. By investigating BBS12-deprived retinal explants and the Bbs12−/− murine model, we show that the impaired intraciliary transport results in protein retention in the endoplasmic reticulum. The protein overload activates a proapoptotic unfolded protein response leading to a specific Caspase12-mediated death of the photoreceptors. Having identified a therapeutic window in the early postnatal retinal development and through optimized pharmacological modulation of the unfolded protein response, combining three specific compounds, namely valproic acid, guanabenz, and a specific Caspase12 inhibitor, achieved efficient photoreceptor protection, thereby maintaining light detection ability in vivo.  相似文献   

20.
The unfolded protein response: no longer just a special teams player   总被引:2,自引:0,他引:2  
The endoplasmic reticulum stress pathway known as the unfolded protein response is currently the best understood model of interorganellar signal transduction. Bridging a physical separation, the pathway provides a direct line of communication between the endoplasmic reticulum lumen and the nucleus. With the unfolded protein response, the cell has the means to monitor and respond to the changing needs of the endoplasmic reticulum. Beginning with the discovery of its remarkable signaling mechanism in yeast, the unfolded protein response has not ceased to reveal more of its many secrets. By applying powerful biochemical, genetic, genomic, and cytological approaches, the recent efforts of many groups have buried the long-held notion that the unfolded protein response is simply a regulatory platform for endoplasmic reticulum chaperones. We now know that the unfolded protein response regulates many genes that affect diverse aspects of cellular physiology. In addition, studies in mammals have revealed novel unfolded protein response signaling factors that may contribute to the specialized needs of multicellular organisms. This article focuses on these and other recent developments in the field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号