首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
PcrA is a conserved DNA helicase present in all gram-positive bacteria. Bacteria lacking PcrA show high levels of recombination. Lethality induced by PcrA depletion can be overcome by suppressor mutations in the recombination genes recFOR. RecFOR proteins load RecA onto single-stranded DNA during recombination. Here we test whether an essential function of PcrA is to interfere with RecA-mediated DNA recombination in vitro. We demonstrate that PcrA can inhibit the RecA-mediated DNA strand exchange reaction in vitro. Furthermore, PcrA displaced RecA from RecA nucleoprotein filaments. Interestingly, helicase mutants of PcrA also displaced RecA from DNA and inhibited RecA-mediated DNA strand exchange. Employing a novel single-pair fluorescence resonance energy transfer-based assay, we demonstrate a lengthening of double-stranded DNA upon polymerization of RecA and show that PcrA and its helicase mutants can reverse this process. Our results show that the displacement of RecA from DNA by PcrA is not dependent on its translocase activity. Further, our results show that the helicase activity of PcrA, although not essential, might play a facilitatory role in the RecA displacement reaction.  相似文献   

2.
The RecA protein of Escherichia coli has been used in vitro to mediate a strand-exchange reaction between homologous DNA molecules. A three-dimensional reconstruction of a RecA filament on double-stranded DNA has been previously determined from electron micrographs, and the reconstruction displays a clear axial polarity. The RecA-mediated strand-exchange reaction between a double-stranded DNA and a homologous single-stranded DNA that is complexed with a RecA helical polymer proceeds with a known polarity. Using image analysis of electron micrographs, we have determined the relation between the structural polarity of RecA filaments and the 3' and 5' polarity of single-stranded DNA. Thus, the structural polarity of RecA filaments can now be related to the direction in which the RecA-mediated strand-exchange reaction advances along the complexed single-stranded DNA.  相似文献   

3.
Escherichia coli dinD is an SOS gene up-regulated in response to DNA damage. We find that the purified DinD protein is a novel inhibitor of RecA-mediated DNA strand exchange activities. Most modulators of RecA protein activity act by controlling the amount of RecA protein bound to single-stranded DNA by affecting either the loading of RecA protein onto DNA or the disassembly of RecA nucleoprotein filaments bound to single-stranded DNA. The DinD protein, however, acts postsynaptically to inhibit RecA during an on-going DNA strand exchange, likely through the disassembly of RecA filaments. DinD protein does not affect RecA single-stranded DNA filaments but efficiently disassembles RecA when bound to two or more DNA strands, effectively halting RecA-mediated branch migration. By utilizing a nonspecific duplex DNA-binding protein, YebG, we show that the DinD effect is not simply due to duplex DNA sequestration. We present a model suggesting that the negative effects of DinD protein are targeted to a specific conformational state of the RecA protein and discuss the potential role of DinD protein in the regulation of recombinational DNA repair.  相似文献   

4.
The Bacillus subtilis RecU protein is able to catalyze in vitro DNA strand annealing and Holliday-junction resolution. The interaction between the RecA and RecU proteins, in the presence or absence of a single-stranded binding (SSB) protein, was studied. Substoichiometric amounts of RecU enhanced RecA loading onto single-stranded DNA (ssDNA) and stimulated RecA-catalyzed D-loop formation. However, RecU inhibited the RecA-mediated three-strand exchange reaction and ssDNA-dependent dATP or rATP hydrolysis. The addition of an SSB protein did not reverse the negative effect exerted by RecU on RecA function. Annealing of circular ssDNA and homologous linear 3′-tailed double-stranded DNA by RecU was not affected by the addition of RecA both in the presence and in the absence of SSB. We propose that RecU modulates RecA activities by promoting RecA-catalyzed strand invasion and inhibiting RecA-mediated branch migration, by preventing RecA filament disassembly, and suggest a potential mechanism for the control of resolvasome assembly.  相似文献   

5.
Under physiological conditions, lambda repressor can be inactivated in vivo or in vitro by RecA-mediated cleavage of the polypeptide chain. The repressor protein is thought to cleave itself, with RecA acting to stimulate autodigestion. ind- repressor mutants are resistant to RecA-mediated inactivation in vivo. In this paper, we report the purification of 15 ind- repressor proteins and the behaviors of these proteins in the RecA-mediated and autodigestion cleavage reactions. None of these proteins undergoes substantial RecA-dependent cleavage. However, eight mutant proteins autodigest at the same rate as wild-type repressor, six mutants do not autodigest or autodigest slower, and one mutant autodigests faster than wild-type. We discuss these results with respect to repressor structure and RecA-binding, and suggest possible roles for the RecA protein in the cleavage reaction.  相似文献   

6.
When DinI is present at concentrations that are stoichiometric with those of RecA or somewhat greater, DinI has a substantial stabilizing effect on RecA filaments bound to DNA. Exchange of RecA between free and bound forms was almost entirely suppressed, and highly stable filaments were documented with several different experimental methods. DinI-mediated stabilization did not affect RecA-mediated ATP hydrolysis and LexA co-protease activities. Initiation of DNA strand exchange was affected in a DNA structure-dependent manner, whereas ongoing strand exchange was not affected. Destabilization of RecA filaments occurred as reported in earlier work but only when DinI protein was present at very high concentrations, generally superstoichiometric, relative to the RecA protein concentration. DinI did not facilitate RecA filament formation but stabilized the filaments only after they were formed. The interaction between the RecA protein and DinI was modulated by the C terminus of RecA. We discuss these results in the context of a new hypothesis for the role of DinI in the regulation of recombination and the SOS response.  相似文献   

7.
J W Little 《Biochimie》1991,73(4):411-421
Specific LexA cleavage can occur under two different conditions: RecA-mediated cleavage requires an activated form of RecA, while an intramolecular self-cleavage termed autodigestion proceeds spontaneously at high pH and does not involve RecA. The two cleavage reactions are closely related. We postulate that RecA stimulates autodigestion rather than acting as a typical protease, and it is proposed to term this activity 'RecA coprotease' to emphasize this indirect role. The mechanism of autodigestion is similar to that of a serine protease, and RecA appears to act by reducing the pKa of a critical lysine residue LexA. A new class of mutants, termed lexA (IndS), is described; these mutations increase the rate of LexA cleavage.  相似文献   

8.
Subsaturating amounts of Bacillus subtilis SsbA, independently of the order of addition, partially inhibit the single-stranded DNA-dependent dATPase activity of RecA. This negative effect is fully overcome when a substoichiometric amount of RecO is added. SsbA added prior to RecA does not stimulate the dATP-dependent DNA strand exchange activity; however, added after RecA it enhances the extent of strand exchange. The addition of RecO stimulates RecA-mediated joint molecule formation, although it limits the accumulation of final recombination products. Thus we suggest that RecO has a dual activity: RecO acts as a RecA mediator enabling RecA to utilize SsbA-coated single-stranded DNA as a polymerization substrate and controls RecA-mediated DNA strand exchange by limiting its extent. We herein discuss the possible mechanisms of RecO involvement in the regulation of double strand break repair and genetic transformation.  相似文献   

9.
In rapidly growing cells, with recombinational DNA repair required often and a new replication fork passing every 20 min, the pace of RecA-mediated DNA strand exchange is potentially much too slow for bacterial DNA metabolism. The enigmatic RadD protein, a putative SF2 family helicase, exhibits no independent helicase activity on branched DNAs. Instead, RadD greatly accelerates RecA-mediated DNA strand exchange, functioning only when RecA protein is present. The RadD reaction requires the RadD ATPase activity, does not require an interaction with SSB, and may disassemble RecA filaments as it functions. We present RadD as a new class of enzyme, an accessory protein that accelerates DNA strand exchange, possibly with a helicase-like action, in a reaction that is entirely RecA-dependent. RadD is thus a DNA strand exchange (recombination) synergist whose primary function is to coordinate closely with and accelerate the DNA strand exchange reactions promoted by the RecA recombinase. Multiple observations indicate a uniquely close coordination of RadD with RecA function.  相似文献   

10.
Plasmid recombination, like other homologous recombination in Escherichia coli, requires RecA protein in most conditions. We have found that the plasmid recombination defect in a recA mutant can be efficiently suppressed by the beta protein of bacteriophage lambda. beta protein is required for homologous recombination of lambda chromosomes during lytic phage growth in a recA host and is known to have a strand-annealing activity resembling that of RecA protein. The bioluminescence recombination assay was used for genetic analysis of beta-protein-mediated plasmid recombination. Efficient suppression of the recA mutation by beta protein required the absence of the E. coli nucleases exonuclease I and RecBCD nuclease. These nucleases inhibit a RecA-mediated plasmid recombination pathway that is more efficient than the pathway functioning in wild-type cells. Like RecA-mediated plasmid recombination in RecBCD- ExoI- cells, beta-protein-mediated plasmid recombination depended on concurrent DNA replication and on the activity of the recQ gene. However, unlike RecA-mediated plasmid recombination, beta-protein-mediated recombination in RecBCD- ExoI- cells was independent of recF and recJ activities. We propose that inactivation of exonuclease I and RecBCD nuclease stabilizes a recombination intermediate that is involved in RecA- and beta-protein-catalyzed homologous pairing reactions. We suggest that the intermediate may be linear plasmid DNA with a protruding 3' end, since these nucleases are known to interfere with the synthesis of such linear forms. The different recF and recJ requirements for beta-protein-dependent and RecA-dependent recombinations imply that the mechanisms of formation or processing of the putative intermediate differ in the two cases.  相似文献   

11.
The antitumor drug cisplatin causes intrastrand cross-linking of adjacent guanine residues that severely distorts the DNA backbone. These DNA adducts impede the progress of the replisome and may result in replication fork arrest. In Escherichia coli, the response to cisplatin involves the action of the prototypic recombinase RecA. Here we show that RecA can utilize, albeit at reduced levels, oligonucleotides that bear site-specific cisplatin-induced 1,2 d(GpG) intrastrand cross-links in strand invasion reactions. Binding of RecA to cisplatin-damaged oligonucleotides was not affected, indicating that the impediment was in the pairing step. The cognate E. coli single-strand DNA-binding protein specifically stimulated strand invasion particularly with cisplatin-damaged DNA. These results indicate that RecA is capable of processing the major cisplatin-induced lesion via a recombination mechanism.  相似文献   

12.
《Biophysical journal》2021,120(15):3166-3179
The C-terminus of Escherichia coli RecA protein can affect the DNA binding affinity, interact with accessory proteins, and regulate the RecA activity. A substantial upward shift in the pH-reaction profile of RecA-mediated DNA strand-exchange reactions was observed for C-terminal-truncated E. coli ΔC17 RecA, Deinococcus radiodurans RecA, and Deinococcus ficus RecA. Here, the process of RecA-mediated strand exchange from the beginning to the end was investigated with florescence resonance energy transfer and tethered particle motion experiments to determine the detailed regulation mechanism. RecA proteins with a shorter C-terminus possess more stable nuclei, higher DNA binding affinities, and lower protonation requirements for the formation of nucleoprotein filaments. Moreover, more stable synaptic complexes in the homologous sequence searching process were also observed for RecA proteins with a shorter C-terminus. Our results suggest that the C-terminus of RecA proteins regulates not only the formation of RecA nucleoprotein filaments but also the entrance of secondary DNA into RecA nucleoprotein filaments.  相似文献   

13.
Inhibition of RecA-mediated cleavage in covalent dimers of UmuD.   总被引:2,自引:2,他引:0       下载免费PDF全文
M H Lee  A Guzzo    G C Walker 《Journal of bacteriology》1996,178(24):7304-7307
Disulfide-cross-linked UmuD2 derivatives were cleaved poorly upon incubation with activated RecA. Reducing the disulfide bonds prior to incubating the derivatives with RecA dramatically increased their extent of cleavage. These observations suggest that the UmuD monomer is a better substrate for the RecA-mediated cleavage reaction than the dimer.  相似文献   

14.
In Escherichia coli the RecA protein plays a pivotal role in homologous recombination, DNA repair, and SOS repair and mutagenesis. A gene designated recX (or oraA) is present directly downstream of recA in E. coli; however, the function of RecX is unknown. In this work we demonstrated interaction of RecX and RecA in a yeast two-hybrid assay. In vitro, substoichiometric amounts of RecX strongly inhibited both RecA-mediated DNA strand exchange and RecA ATPase activity. In vivo, we showed that recX is under control of the LexA repressor and is up-regulated in response to DNA damage. A loss-of-function mutation in recX resulted in decreased resistance to UV irradiation; however, overexpression of RecX in trans resulted in a greater decrease in UV resistance. Overexpression of RecX inhibited induction of two din (damage-inducible) genes and cleavage of the UmuD and LexA repressor proteins; however, recX inactivation had no effect on any of these processes. Cells overexpressing RecX showed decreased levels of P1 transduction, whereas recX mutation had no effect on P1 transduction frequency. Our combined in vitro and in vivo data indicate that RecX can inhibit both RecA recombinase and coprotease activities.  相似文献   

15.
Gamper HB  Nulf CJ  Corey DR  Kmiec EB 《Biochemistry》2003,42(9):2643-2655
RecA protein catalyzes strand exchange between homologous single-stranded and double-stranded DNAs. In the presence of ATPgammaS, the post-strand exchange synaptic complex is a stable end product that can be studied. Here we ask whether such complexes can hybridize to or exchange with DNA, 2'-OMe RNA, PNA, or LNA oligonucleotides. Using a gel mobility shift assay, we show that the displaced strand of a 45 bp synaptic complex can hybridize to complementary oligonucleotides with different backbones to form a four-stranded (double D-loop) joint that survives removal of the RecA protein. This hybridization reaction, which confirms the single-stranded character of the displaced strand in a synaptic complex, might initiate recombination-dependent DNA replication if it occurs in vivo. We also show that either strand of the heteroduplex in a 30 bp synaptic complex can be replaced with a homologous DNA oligonucleotide in a strand exchange reaction that is mediated by the RecA filament. Consistent with the important role that deoxyribose plays in strand exchange, oligonucleotides with non-DNA backbones did not participate in this reaction. The hybridization and strand exchange reactions reported here demonstrate that short synaptic complexes are dynamic structures even in the presence of ATPgammaS.  相似文献   

16.
We demonstrate that the step of DNA strand exchange during RecA-mediated recombination reaction can occur equally efficiently in the presence or absence of ATP hydrolysis. The polarity of strand exchange is the same when instead of ATP its non-hydrolyzable analog adenosine-5'-O-(3-thiotriphosphate) is used. We show that the ATP dependence of recombination reaction is limited to the post-exchange stages of the reactions. The low DNA affinity state of RecA protomers, induced after ATP hydrolysis, is necessary for the dissociation of RecA-DNA complexes at the end of the reaction. This dissociation of RecA from DNA is necessary for the release of recombinant DNA molecules from the complexes formed with RecA and for the recycling of RecA protomers for another round of the recombination reaction.  相似文献   

17.
Autodigestion and RecA-dependent cleavage of Ind- mutant LexA proteins   总被引:17,自引:0,他引:17  
The LexA repressor of Escherichia coli undergoes a specific cleavage reaction in vivo, an event that leads to derepression of the SOS regulon and requires an activated form of RecA protein. In vitro, cleavage requires RecA at neutral pH; at alkaline pH, a spontaneous cleavage reaction termed autodigestion takes place. Both autodigestion and RecA-mediated cleavage cut the same bond, and are observed for the same set of substrates, suggesting that RecA acts indirectly to stimulate LexA self-cleavage at neutral pH, perhaps binding to LexA and acting as an allosteric effector. We previously isolated a set of lexA(Ind-) mutants that are deficient in in vivo RecA-mediated cleavage but retain significant repressor function. Here, we describe the in vitro cleavage of purified mutant proteins. All of those tested were deficient in both cleavage reactions. Although most of them were equally deficient in both reactions, some were more deficient in one reaction than the other. Several mutant proteins appeared to have defects in binding to RecA. Autodigestion of all but one of the poorly cleavable mutant proteins reached a maximum rate at pH around 10, as does wild-type LexA. The exception was KR156, which changed Lys156, a residue previously implicated in the mechanism of cleavage, to Arg, another basic residue: for this protein, the rate of autodigestion increased with pH at values above 11. RecA-mediated cleavage of KR156 was 1% the wild-type rate at pH 7, but increased with increasing pH to a plateau at pH 9.5, where the rate was 40% the wild-type rate. In contrast, an essentially constant rate was observed for wild-type LexA over the pH range 6 to 11. We suggest, first, that deprotonation of Arg156 and, by inference, Lys156 in the wild-type protein, is required for both autodigestion and RecA-mediated cleavage: and second, that RecA acts to reduce the pKa of Lys156, allowing efficient cleavage of wild-type repressor under physiological conditions.  相似文献   

18.
Optimal conditions for RecA protein-mediated DNA strand exchange include 6-8 mm Mg(2+) in excess of that required to form complexes with ATP. We provide evidence that the free magnesium ion is required to mediate a conformational change in the RecA protein C terminus that activates RecA-mediated DNA strand exchange. In particular, a "closed" (low Mg(2+)) conformation of a RecA nucleoprotein filament restricts DNA pairing by incoming duplex DNA, although single-stranded overhangs at the ends of a duplex allow limited DNA pairing to occur. The addition of excess Mg(2+) results in an "open" conformation, which can promote efficient DNA pairing and strand exchange regardless of DNA end structure. The removal of 17 amino acid residues at the Escherichia coli RecA C terminus eliminates a measurable requirement for excess Mg(2+) and permits efficient DNA pairing and exchange similar to that seen with the wild-type protein at high Mg(2+) levels. Thus, the RecA C terminus imposes the need for the high magnesium ion concentrations requisite in RecA reactions in vitro. We propose that the C terminus acts as a regulatory switch, modulating the access of double-stranded DNA to the presynaptic filament and thereby inhibiting homologous DNA pairing and strand exchange at low magnesium ion concentrations.  相似文献   

19.
The bacteriophage P1 recombination enhancement function (Ref) protein is a RecA-dependent programmable endonuclease. Ref targets displacement loops formed when an oligonucleotide is bound by a RecA filament and invades homologous double-stranded DNA sequences. Mechanistic details of this reaction have been explored, revealing that (i) Ref is nickase, cleaving the two target strands of a displacement loop sequentially, (ii) the two strands are cleaved in a prescribed order, with the paired strand cut first and (iii) the two cleavage events have different requirements. Cutting the paired strand is rapid, does not require RecA-mediated ATP hydrolysis and is promoted even by Ref active site variant H153A. The displaced strand is cleaved much more slowly, requires RecA-mediated ATP hydrolysis and does not occur with Ref H153A. The two cleavage events are also affected differently by solution conditions. We postulate that the second cleavage (displaced strand) is limited by some activity of RecA protein.  相似文献   

20.
Naturally transformable bacteria recombine internalized ssDNA with a homologous resident duplex (chromosomal transformation) or complementary internalized ssDNAs (plasmid or viral transformation). Bacillus subtilis competence-induced DprA, RecA, SsbB, and SsbA proteins are involved in the early processing of the internalized ssDNA, with DprA physically interacting with RecA. SsbB and SsbA bind and melt secondary structures in ssDNA but limit RecA loading onto ssDNA. DprA binds to ssDNA and facilitates partial dislodging of both single-stranded binding (SSB) proteins from ssDNA. In the absence of homologous duplex DNA, DprA does not significantly increase RecA nucleation onto protein-free ssDNA. DprA facilitates RecA nucleation and filament extension onto SsbB-coated or SsbB plus SsbA-coated ssDNA. DprA facilitates RecA-mediated DNA strand exchange in the presence of both SSB proteins. DprA, which plays a crucial role in plasmid transformation, anneals complementary strands preferentially coated by SsbB to form duplex circular plasmid molecules. Our results provide a mechanistic framework for conceptualizing the coordinated events modulated by SsbB in concert with SsbA and DprA that are crucial for RecA-dependent chromosomal transformation and RecA-independent plasmid transformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号