首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.

Background

Previous fMRI studies show that women with eating disorders (ED) have differential neural activation to viewing food images. However, despite clinical differences in their responses to food, differential neural activation to thinking about eating food, between women with anorexia nervosa (AN) and bulimia nervosa (BN) is not known.

Methods

We compare 50 women (8 with BN, 18 with AN and 24 age-matched healthy controls [HC]) while they view food images during functional Magnetic Resonance Imaging (fMRI).

Results

In response to food (vs non-food) images, women with BN showed greater neural activation in the visual cortex, right dorsolateral prefrontal cortex, right insular cortex and precentral gyrus, women with AN showed greater activation in the right dorsolateral prefrontal cortex, cerebellum and right precuneus. HC women activated the cerebellum, right insular cortex, right medial temporal lobe and left caudate. Direct comparisons revealed that compared to HC, the BN group showed relative deactivation in the bilateral superior temporal gyrus/insula, and visual cortex, and compared to AN had relative deactivation in the parietal lobe and dorsal posterior cingulate cortex, but greater activation in the caudate, superior temporal gyrus, right insula and supplementary motor area.

Conclusions

Women with AN and BN activate top-down cognitive control in response to food images, yet women with BN have increased activation in reward and somatosensory regions, which might impinge on cognitive control over food consumption and binge eating.  相似文献   

2.

Objective

This study modeled win and lose trials in a simple gambling task to examine the effect of entire win–lose situations (WIN, LOSS, or TIE) on single win/lose trials and related neural underpinnings.

Methods

The behavior responses and brain activities of 17 participants were recorded by an MRI scanner while they performed a gambling task. Different conditions were compared to determine the effect of the task on the behavior and brain activity of the participants. Correlations between brain activity and behavior were calculated to support the imaging results.

Results

In win trials, LOSS caused less intense posterior cingulate activity than TIE. In lose trials, LOSS caused more intense activity in the right superior temporal gyrus, bilateral superior frontal gyrus, bilateral anterior cingulate, bilateral insula cortex, and left orbitofrontal cortex than WIN and TIE.

Conclusions

The experiences of the participants in win trials showed great similarity among different win–lose situations. However, the brain activity and behavior responses of the participants in lose trials indicated that they experienced stronger negative emotion in LOSS. The participants also showed an increased desire to win in LOSS than in WIN or TIE conditions.  相似文献   

3.

Background

The formation of compulsive pattern of drug use is related to abnormal regional neural activity and functional reorganization in the heroin addicts’ brain, but the relationship between heroin-use-induced disrupted local neural activity and its functional organization pattern in resting-state is unknown.

Methodology/Principal Findings

With fMRI data acquired during resting state from 17 male heroin dependent individuals (HD) and 15 matched normal controls (NC), we analyzed the changes of amplitude of low frequency fluctuation (ALFF) in brain areas, and its relationship with history of heroin use. Then we investigated the addiction related alteration in functional connectivity of the brain regions with changed ALFF using seed-based correlation analysis. Compared with NC, the ALFF of HD was obviously decreased in the right caudate, right dorsal anterior cingulate cortex (dACC), right superior medial frontal cortex and increased in the bilateral cerebellum, left superior temporal gyrus and left superior occipital gyrus. Of the six regions, only the ALFF value of right caudate had a negative correlation with heroin use. Setting the six regions as “seeds”, we found the functional connectivity between the right caudate and dorsolateral prefrontal cortex (dlPFC) was reduced but that between the right caudate and cerebellum was enhanced. Besides, an abnormal lateral PFC-dACC connection was also observed in HD.

Conclusions

The observations of dysfunction of fronto-striatal and fronto-cerebellar circuit in HD implicate an altered balance between local neuronal assemblies activity and their integrated network organization pattern which may be involved in the process from voluntary to habitual and compulsive drug use.  相似文献   

4.

Background

Risky decision-making is commonly observed in persons at risk for and infected with HIV and is associated with executive dysfunction. Yet it is currently unknown whether HIV alters brain processing of risk-taking decision-making.

Methods

This study examined the neural substrate of a risky decision-making task in 21 HIV seropositive (HIV+) and 19 seronegative (HIV-) comparison participants. Functional magnetic resonance imaging was conducted while participants performed the risky-gains task, which involves choosing among safe (20 cents) and risky (40/80 cent win or loss) choices. Linear mixed effects analyses examining group and decision type were conducted. Robust regressions were performed to examine the relationship between nadir CD4 count and Kalichman sexual compulsivity and brain activation in the HIV+ group. The overlap between the task effects and robust regressions was explored.

Results

Although there were no serostatus effects in behavioral performance on the risky-gains task, HIV+ individuals exhibited greater activation for risky choices in the basal ganglia, i.e. the caudate nucleus, but also in the anterior cingulate, dorsolateral prefrontal cortex, and insula relative to the HIV- group. The HIV+ group also demonstrated reduced functional responses to safe choices in the anterior cingulate and dorsolateral prefrontal cortex relative to the HIV- group. HIV+ individuals with higher nadir CD4 count and greater sexual compulsivity displayed lower differential responses to safe versus risky choices in many of these regions.

Conclusions

This study demonstrated fronto-striatal loop dysfunction associated with HIV infection during risky decision-making. Combined with similar between-group task behavior, this suggests an adaptive functional response in regions critical to reward and behavioral control in the HIV+ group. HIV-infected individuals with higher CD4 nadirs demonstrated activation patterns more similar to seronegative individuals. This suggests that the severity of past immunosuppression (CD4 nadir) may exert a legacy effect on processing of risky choices in the HIV-infected brain.  相似文献   

5.
Tian L  Meng C  Yan H  Zhao Q  Liu Q  Yan J  Han Y  Yuan H  Wang L  Yue W  Zhang Y  Li X  Zhu C  He Y  Zhang D 《PloS one》2011,6(12):e28794

Background

Shared neuropathological features between schizophrenic patients and their first-degree relatives have potential as indicators of genetic vulnerability to schizophrenia. We sought to explore genetic influences on brain morphology and function in schizophrenic patients and their relatives.

Methods

Using a multimodal imaging strategy, we studied 33 schizophrenic patients, 55 of their unaffected parents, 30 healthy controls for patients, and 29 healthy controls for parents with voxel-based morphometry of structural MRI scans and functional connectivity analysis of resting-state functional MRI data.

Results

Schizophrenic patients showed widespread gray matter reductions in the bilateral frontal cortices, bilateral insulae, bilateral occipital cortices, left amygdala and right thalamus, whereas their parents showed more localized reductions in the left amygdala, left thalamus and right orbitofrontal cortex. Patients and their parents shared gray matter loss in the left amygdala. Further investigation of the resting-state functional connectivity of the amygdala in the patients showed abnormal functional connectivity with the bilateral orbitofrontal cortices, bilateral precunei, bilateral dorsolateral frontal cortices and right insula. Their parents showed slightly less, but similar changes in the pattern in the amygdala connectivity. Co-occurrences of abnormal connectivity of the left amygdala with the left orbitofrontal cortex, right dorsolateral frontal cortex and right precuneus were observed in schizophrenic patients and their parents.

Conclusions

Our findings suggest a potential genetic influence on structural and functional abnormalities of the amygdala in schizophrenia. Such information could help future efforts to identify the endophenotypes that characterize the complex disorder of schizophrenia.  相似文献   

6.
Cheng Y  Chou KH  Fan YT  Lin CP 《PloS one》2011,6(4):e18905

Background

Autism spectrum disorders (ASD) are characterized by aberrant neurodevelopment. Although the ASD brain undergoes precocious growth followed by decelerated maturation during early postnatal period of childhood, the neuroimaging approach has not been empirically applied to investigate how the ASD brain develops during adolescence.

Methodology/Principal Findings

We enrolled 25 male adolescents with high functioning ASD and 25 typically developing controls for voxel-based morphometric analysis of structural magnetic resonance image. Results indicate that there is an imbalance of regional gray matter volumes and concentrations along with no global brain enlargement in adolescents with high functioning ASD relative to controls. Notably, the right inferior parietal lobule, a role in social cognition, have a significant interaction of age by groups as indicated by absence of an age-related gain of regional gray matter volume and concentration for neurodevelopmental maturation during adolescence.

Conclusions/Significance

The findings indicate the neural correlates of social cognition exhibits aberrant neurodevelopment during adolescence in ASD, which may cast some light on the brain growth dysregulation hypothesis. The period of abnormal brain growth during adolescence may be characteristic of ASD. Age effects must be taken into account while measures of structural neuroimaging have been clinically put forward as potential phenotypes for ASD.  相似文献   

7.

Objective

Shortly after infection, HIV enters the brain and causes widespread inflammation and neuronal damage, which ultimately leads to neuropsychological impairments. Despite a large body of neuroscience and imaging studies, the pathophysiology of these HIV-associated neurocognitive disorders (HAND) remains unresolved. Previous neuroimaging studies have shown greater activation in HIV-infected patients during strenuous tasks in frontal and parietal cortices, and less activation in the primary sensory cortices during rest and sensory stimulation.

Methods

High-density magnetoencephalography (MEG) was utilized to evaluate the basic neurophysiology underlying attentive, visual processing in older HIV-infected adults and a matched non-infected control group. Unlike other neuroimaging methods, MEG is a direct measure of neural activity that is not tied to brain metabolism or hemodynamic responses. During MEG, participants fixated on a centrally-presented crosshair while intermittent visual stimulation appeared in their top-right visual-field quadrant. All MEG data was imaged in the time-frequency domain using beamforming.

Results

Uninfected controls had increased neuronal synchronization in the 6–12 Hz range within the right dorsolateral prefrontal cortex, right frontal eye-fields, and the posterior cingulate. Conversely, HIV-infected patients exhibited decreased synchrony in these same neural regions, and the magnitude of these decreases was correlated with neuropsychological performance in several cortical association regions.

Conclusions

MEG-based imaging holds potential as a noninvasive biomarker for HIV-related neuronal dysfunction, and may help identify patients who have or may develop HAND. Reduced synchronization of neural populations in the association cortices was strongly linked to cognitive dysfunction, and likely reflects the impact of HIV on neuronal and neuropsychological health.  相似文献   

8.

Objective

Approximately 10% of young adults report non-medical use of stimulants (cocaine, amphetamine, methylphenidate), which puts them at risk for the development of dependence. This fMRI study investigates whether subjects at early stages of stimulant use show altered decision making processing.

Methods

158 occasional stimulants users (OSU) and 50 comparison subjects (CS) performed a “risky gains” decision making task during which they could select safe options (cash in 20 cents) or gamble them for double or nothing in two consecutive gambles (win or lose 40 or 80 cents, “risky decisions”). The primary analysis focused on risky versus safe decisions. Three secondary analyses were conducted: First, a robust regression examined the effect of lifetime exposure to stimulants and marijuana; second, subgroups of OSU with >1000 (n = 42), or <50 lifetime marijuana uses (n = 32), were compared to CS with <50 lifetime uses (n = 46) to examine potential marijuana effects; third, brain activation associated with behavioral adjustment following monetary losses was probed.

Results

There were no behavioral differences between groups. OSU showed attenuated activation across risky and safe decisions in prefrontal cortex, insula, and dorsal striatum, exhibited lower anterior cingulate cortex (ACC) and dorsal striatum activation for risky decisions and greater inferior frontal gyrus activation for safe decisions. Those OSU with relatively more stimulant use showed greater dorsal ACC and posterior insula attenuation. In comparison, greater lifetime marijuana use was associated with less neural differentiation between risky and safe decisions. OSU who chose more safe responses after losses exhibited similarities with CS relative to those preferring risky options.

Discussion

Individuals at risk for the development of stimulant use disorders presented less differentiated neural processing of risky and safe options. Specifically, OSU show attenuated brain response in regions critical for performance monitoring, reward processing and interoceptive awareness. Marijuana had additive effects by diminishing neural risk differentiation.  相似文献   

9.

Background

Previous imaging studies on functional dyspepsia (FD) have focused on abnormal brain functions during special tasks, while few studies concentrated on the resting-state abnormalities of FD patients, which might be potentially valuable to provide us with direct information about the neural basis of FD. The main purpose of the current study was thereby to characterize the distinct patterns of resting-state function between FD patients and healthy controls (HCs).

Methodology/Principal Findings

Thirty FD patients and thirty HCs were enrolled and experienced 5-mintue resting-state scanning. Based on the support vector machine (SVM), we applied multivariate pattern analysis (MVPA) to investigate the differences of resting-state function mapped by regional homogeneity (ReHo). A classifier was designed by using the principal component analysis and the linear SVM. Permutation test was then employed to identify the significant contribution to the final discrimination. The results displayed that the mean classifier accuracy was 86.67%, and highly discriminative brain regions mainly included the prefrontal cortex (PFC), orbitofrontal cortex (OFC), supplementary motor area (SMA), temporal pole (TP), insula, anterior/middle cingulate cortex (ACC/MCC), thalamus, hippocampus (HIPP)/parahippocamus (ParaHIPP) and cerebellum. Correlation analysis revealed significant correlations between ReHo values in certain regions of interest (ROI) and the FD symptom severity and/or duration, including the positive correlations between the dmPFC, pACC and the symptom severity; whereas, the positive correlations between the MCC, OFC, insula, TP and FD duration.

Conclusions

These findings indicated that significantly distinct patterns existed between FD patients and HCs during the resting-state, which could expand our understanding of the neural basis of FD. Meanwhile, our results possibly showed potential feasibility of functional magnetic resonance imaging diagnostic assay for FD.  相似文献   

10.
Liu J  Qin W  Yuan K  Li J  Wang W  Li Q  Wang Y  Sun J  von Deneen KM  Liu Y  Tian J 《PloS one》2011,6(10):e23098

Background

The majority of previous heroin cue-reactivity functional magnetic resonance imaging (fMRI) studies focused on local function impairments, such as inhibitory control, decision-making and stress regulation. Our previous studies have demonstrated that these brain circuits also presented dysfunctional connectivity during the resting state. Yet few studies considered the relevance of resting state dysfunctional connectivity to task-related neural activity in the same chronic heroin user (CHU).

Methodology/Principal Findings

We employed the method of graph theory analysis, which detected the abnormality of brain regions and dysregulation of brain connections at rest between 16 male abstinent chronic heroin users (CHUs) and 16 non-drug users (NDUs). Using a cue-reactivity task, we assessed the relationship between drug-related cue-induced craving activity and the abnormal topological properties of the CHUs'' resting networks. Comparing NDUs'' brain activity to that of CHUs, the intensity of functional connectivity of the medial frontal gyrus (meFG) in patients'' resting state networks was prominently greater and positively correlated with the same region''s neural activity in the heroin-related task; decreased functional connectivity intensity of the anterior cingulate cortex (ACC) in CHUs at rest was associated with more drug-related cue-induced craving activities.

Conclusions

These results may indicate that there exist two brain systems interacting simultaneously in the heroin-addicted brain with regards to a cue-reactivity task. The current study may shed further light on the neural architecture that supports craving responses in heroin dependence.  相似文献   

11.

Background

Dysfunctions of the prefrontal cortex have been previously reported in individuals with autism spectrum disorders (ASD). Previous studies reported that first-degree relatives of individuals with ASD show atypical brain activity during tasks associated with social function. However, developmental changes in prefrontal dysfunction in ASD and genetic influences on the phenomena remain unclear. In the present study, we investigated the change in hemoglobin concentration in the prefrontal cortex as measured with near-infrared spectroscopy, in children and adults with ASD during the letter fluency test. Moreover, to clarify the genetic influences on developmental changes in the prefrontal dysfunction in ASD, unaffected siblings of the ASD participants were also assessed.

Methodology/Principal Findings

Study participants included 27 individuals with high-functioning ASD, age- and IQ-matched 24 healthy non-affected siblings, and 27 unrelated healthy controls aged 5 to 39 years. The relative concentration of hemoglobin ([Hb]) in the prefrontal cortex was measured during the letter fluency task. For children, neither the [oxy-Hb] change during the task nor task performances differed significantly among three groups. For adults, the [oxy-Hb] increases during the task were significantly smaller in the bilateral prefrontal cortex in ASD than those in control subjects, although task performances were similar. In the adult siblings the [oxy-Hb] change was intermediate between those in controls and ASDs.

Conclusion/Significance

Although indirectly due to a cross-sectional design, the results of this study indicate altered age-related change of prefrontal activity during executive processing in ASD. This is a first near-infrared spectroscopy study that implies alteration in the age-related changes of prefrontal activity in ASD and genetic influences on the phenomena.  相似文献   

12.

Background

Research on the neural correlates of risk-related behaviors and personality traits has provided insight into mechanisms underlying both normal and pathological decision-making. Task-based neuroimaging studies implicate a distributed network of brain regions in risky decision-making. What remains to be understood are the interactions between these regions and their relation to individual differences in personality variables associated with real-world risk-taking.

Methodology/Principal Findings

We employed resting state functional magnetic resonance imaging (R-fMRI) and resting state functional connectivity (RSFC) methods to investigate differences in the brain''s intrinsic functional architecture associated with beliefs about the consequences of risky behavior. We obtained an individual measure of expected benefit from engaging in risky behavior, indicating a risk seeking or risk-averse personality, for each of 21 participants from whom we also collected a series of R-fMRI scans. The expected benefit scores were entered in statistical models assessing the RSFC of brain regions consistently implicated in both the evaluation of risk and reward, and cognitive control (i.e., orbitofrontal cortex, nucleus accumbens, lateral prefrontal cortex, dorsal anterior cingulate). We specifically focused on significant brain-behavior relationships that were stable across R-fMRI scans collected one year apart. Two stable expected benefit-RSFC relationships were observed: decreased expected benefit (increased risk-aversion) was associated with 1) stronger positive functional connectivity between right inferior frontal gyrus (IFG) and right insula, and 2) weaker negative functional connectivity between left nucleus accumbens and right parieto-occipital cortex.

Conclusions/Significance

Task-based activation in the IFG and insula has been associated with risk-aversion, while activation in the nucleus accumbens and parietal cortex has been associated with both risk seeking and risk-averse tendencies. Our results suggest that individual differences in attitudes toward risk-taking are reflected in the brain''s functional architecture and may have implications for engaging in real-world risky behaviors.  相似文献   

13.

Background

Numerous neuroimaging studies report abnormal regional brain activity during working memory performance in schizophrenia, but few have examined brain network integration as determined by “functional connectivity” analyses.

Methodology/Principal Findings

We used independent component analysis (ICA) to identify and characterize dysfunctional spatiotemporal networks in schizophrenia engaged during the different stages (encoding and recognition) of a Sternberg working memory fMRI paradigm. 37 chronic schizophrenia and 54 healthy age/gender-matched participants performed a modified Sternberg Item Recognition fMRI task. Time series images preprocessed with SPM2 were analyzed using ICA. Schizophrenia patients showed relatively less engagement of several distinct “normal” encoding-related working memory networks compared to controls. These encoding networks comprised 1) left posterior parietal-left dorsal/ventrolateral prefrontal cortex, cingulate, basal ganglia, 2) right posterior parietal, right dorsolateral prefrontal cortex and 3) default mode network. In addition, the left fronto-parietal network demonstrated a load-dependent functional response during encoding. Network engagement that differed between groups during recognition comprised the posterior cingulate, cuneus and hippocampus/parahippocampus. As expected, working memory task accuracy differed between groups (p<0.0001) and was associated with degree of network engagement. Functional connectivity within all three encoding-associated functional networks correlated significantly with task accuracy, which further underscores the relevance of abnormal network integration to well-described schizophrenia working memory impairment. No network was significantly associated with task accuracy during the recognition phase.

Conclusions/Significance

This study extends the results of numerous previous schizophrenia studies that identified isolated dysfunctional brain regions by providing evidence of disrupted schizophrenia functional connectivity using ICA within widely-distributed neural networks engaged for working memory cognition.  相似文献   

14.

Context

Impaired social cognition is a cardinal feature of Autism Spectrum Disorders (ASD) and Schizophrenia (SZ). However, the functional neuroanatomy of social cognition in either disorder remains unclear due to variability in primary literature. Additionally, it is not known whether deficits in ASD and SZ arise from similar or disease-specific disruption of the social cognition network.

Objective

To identify regions most robustly implicated in social cognition processing in SZ and ASD.

Data Sources

Systematic review of English language articles using MEDLINE (1995–2010) and reference lists.

Study Selection

Studies were required to use fMRI to compare ASD or SZ subjects to a matched healthy control group, provide coordinates in standard stereotactic space, and employ standardized facial emotion recognition (FER) or theory of mind (TOM) paradigms.

Data Extraction

Activation foci from studies meeting inclusion criteria (n = 33) were subjected to a quantitative voxel-based meta-analysis using activation likelihood estimation, and encompassed 146 subjects with ASD, 336 SZ patients and 492 healthy controls.

Results

Both SZ and ASD showed medial prefrontal hypoactivation, which was more pronounced in ASD, while ventrolateral prefrontal dysfunction was associated mostly with SZ. Amygdala hypoactivation was observed in SZ patients during FER and in ASD during more complex ToM tasks. Both disorders were associated with hypoactivation within the Superior Temporal Sulcus (STS) during ToM tasks, but activation in these regions was increased in ASD during affect processing. Disease-specific differences were noted in somatosensory engagement, which was increased in SZ and decreased in ASD. Reduced thalamic activation was uniquely seen in SZ.

Conclusions

Reduced frontolimbic and STS engagement emerged as a shared feature of social cognition deficits in SZ and ASD. However, there were disease- and stimulus-specific differences. These findings may aid future studies on SZ and ASD and facilitate the formulation of new hypotheses regarding their pathophysiology.  相似文献   

15.

Background

Cerebral dysfunction is a common feature of both chronic alcohol abusers and binge drinkers. Here, we aimed to study whether, at equated behavioral performance levels, binge drinkers exhibited increased neural activity while performing simple cognitive tasks.

Methods

Thirty-two participants (16 binge drinkers and 16 matched controls) were scanned using functional magnetic resonance imaging (fMRI) while performing an n-back working memory task. In the control zero-back (N0) condition, subjects were required to press a button with the right hand when the number “2″ was displayed. In the two-back (N2) condition, subjects had to press a button when the displayed number was identical to the number shown two trials before.

Results

fMRI analyses revealed higher bilateral activity in the pre-supplementary motor area in binge drinkers than matched controls, even though behavioral performances were similar. Moreover, binge drinkers showed specific positive correlations between the number of alcohol doses consumed per occasion and higher activity in the dorsomedial prefrontal cortex, as well as between the number of drinking occasions per week and higher activity in cerebellum, thalamus and insula while performing the N2 memory task.

Conclusions

Binge alcohol consumption leads to possible compensatory cerebral changes in binge drinkers that facilitate normal behavioral performance. These changes in cerebral responses may be considered as vulnerability factors for developing adult substance use disorders.  相似文献   

16.

Background

Cognitive control and working memory processes have been found to be influenced by changes in motivational state. Nevertheless, the impact of different motivational variables on behavior and brain activity remains unclear.

Methodology/Principal Findings

The current study examined the impact of incentive category by varying on a within-subjects basis whether performance during a working memory task was reinforced with either secondary (monetary) or primary (liquid) rewards. The temporal dynamics of motivation-cognition interactions were investigated by employing an experimental design that enabled isolation of sustained and transient effects. Performance was dramatically and equivalently enhanced in each incentive condition, whereas neural activity dynamics differed between incentive categories. The monetary reward condition was associated with a tonic activation increase in primarily right-lateralized cognitive control regions including anterior prefrontal cortex (PFC), dorsolateral PFC, and parietal cortex. In the liquid condition, the identical regions instead showed a shift in transient activation from a reactive control pattern (primary probe-based activation) during no-incentive trials to proactive control (primary cue-based activation) during rewarded trials. Additionally, liquid-specific tonic activation increases were found in subcortical regions (amygdala, dorsal striatum, nucleus accumbens), indicating an anatomical double dissociation in the locus of sustained activation.

Conclusions/Significance

These different activation patterns suggest that primary and secondary rewards may produce similar behavioral changes through distinct neural mechanisms of reinforcement. Further, our results provide new evidence for the flexibility of cognitive control, in terms of the temporal dynamics of activation.  相似文献   

17.

Background

Accessing information that defines personally familiar context in real-world situations is essential for the social interactions and the independent functioning of an individual. Personal familiarity is associated with the availability of semantic and episodic information as well as the emotional meaningfulness surrounding a stimulus. These features are known to be associated with neural activity in distinct brain regions across different stimulus conditions (e.g., when perceiving faces, voices, places, objects), which may reflect a shared neural basis. Although perceiving context-rich personal familiarity may appear unchanged in aging on the behavioral level, it has not yet been studied whether this can be supported by neuroimaging data.

Methodology/Principal Findings

We used functional magnetic resonance imaging to investigate the neural network associated with personal familiarity during the perception of personally familiar faces and places. Twelve young and twelve elderly cognitively healthy subjects participated in the study. Both age groups showed a similar activation pattern underlying personal familiarity, predominantly in anterior cingulate and posterior cingulate cortices, irrespective of the stimulus type. The young subjects, but not the elderly subjects demonstrated an additional anterior cingulate deactivation when perceiving unfamiliar stimuli.

Conclusions/Significance

Although we found evidence for an age-dependent reduction in frontal cortical deactivation, our data show that there is a stimulus-independent neural network associated with personal familiarity of faces and places, which is less susceptible to aging-related changes.  相似文献   

18.

Background

Parkinson''s disease (PD) disrupts temporal processing, but the neuronal sources of deficits and their response to dopamine (DA) therapy are not understood. Though the striatum and DA transmission are thought to be essential for timekeeping, potential working memory (WM) and executive problems could also disrupt timing.

Methodology/Findings

The present study addressed these issues by testing controls and PD volunteers ‘on’ and ‘off’ DA therapy as they underwent fMRI while performing a time-perception task. To distinguish systems associated with abnormalities in temporal and non-temporal processes, we separated brain activity during encoding and decision-making phases of a trial. Whereas both phases involved timekeeping, the encoding and decision phases emphasized WM and executive processes, respectively. The methods enabled exploration of both the amplitude and temporal dynamics of neural activity. First, we found that time-perception deficits were associated with striatal, cortical, and cerebellar dysfunction. Unlike studies of timed movement, our results could not be attributed to traditional roles of the striatum and cerebellum in movement. Second, for the first time we identified temporal and non-temporal sources of impaired time perception. Striatal dysfunction was found during both phases consistent with its role in timekeeping. Activation was also abnormal in a WM network (middle-frontal and parietal cortex, lateral cerebellum) during encoding and a network that modulates executive and memory functions (parahippocampus, posterior cingulate) during decision making. Third, hypoactivation typified neuronal dysfunction in PD, but was sometimes characterized by abnormal temporal dynamics (e.g., lagged, prolonged) that were not due to longer response times. Finally, DA therapy did not alleviate timing deficits.

Conclusions/Significance

Our findings indicate that impaired timing in PD arises from nigrostriatal and mesocortical dysfunction in systems that mediate temporal and non-temporal control-processes. However, time perception impairments were not improved by DA treatment, likely due to inadequate restoration of neuronal activity and perhaps corticostriatal effective-connectivity.  相似文献   

19.

Background

Dopamine and dopamine transporters (DAT, which regulate extracellular dopamine in the brain) are implicated in the modulation of attention but their specific roles are not well understood. Here we hypothesized that dopamine modulates attention by facilitation of brain deactivation in the default mode network (DMN). Thus, higher striatal DAT levels, which would result in an enhanced clearance of dopamine and hence weaker dopamine signals, would be associated to lower deactivation in the DMN during an attention task.

Methodology/Principal Findings

For this purpose we assessed the relationship between DAT in striatum (measured with positron emission tomography and [11C]cocaine used as DAT radiotracer) and brain activation and deactivation during a parametric visual attention task (measured with blood oxygenation level dependent functional magnetic resonance imaging) in healthy controls. We show that DAT availability in caudate and putamen had a negative correlation with deactivation in ventral parietal regions of the DMN (precuneus, BA 7) and a positive correlation with deactivation in a small region in the ventral anterior cingulate gyrus (BA 24/32). With increasing attentional load, DAT in caudate showed a negative correlation with load-related deactivation increases in precuneus.

Conclusions/Significance

These findings provide evidence that dopamine transporters modulate neural activity in the DMN and anterior cingulate gyrus during visuospatial attention. Our findings suggest that dopamine modulates attention in part by regulating neuronal activity in posterior parietal cortex including precuneus (region involved in alertness) and cingulate gyrus (region deactivated in proportion to emotional interference). These findings suggest that the beneficial effects of stimulant medications (increase dopamine by blocking DAT) in inattention reflect in part their ability to facilitate the deactivation of the DMN.  相似文献   

20.

Background

Autism is a developmental disorder characterized by decreased interest and engagement in social interactions and by enhanced self-focus. While previous theoretical approaches to understanding autism have emphasized social impairments and altered interpersonal interactions, there is a recent shift towards understanding the nature of the representation of the self in individuals with autism spectrum disorders (ASD). Still, the neural mechanisms subserving self-representations in ASD are relatively unexplored.

Methodology/Principal Findings

We used event-related fMRI to investigate brain responsiveness to images of the subjects'' own face and to faces of others. Children with ASD and typically developing (TD) children viewed randomly presented digital morphs between their own face and a gender-matched other face, and made “self/other” judgments. Both groups of children activated a right premotor/prefrontal system when identifying images containing a greater percentage of the self face. However, while TD children showed activation of this system during both self- and other-processing, children with ASD only recruited this system while viewing images containing mostly their own face.

Conclusions/Significance

This functional dissociation between the representation of self versus others points to a potential neural substrate for the characteristic self-focus and decreased social understanding exhibited by these individuals, and suggests that individuals with ASD lack the shared neural representations for self and others that TD children and adults possess and may use to understand others.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号