首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Response surface methodology was employed in optimizing the nutrient levels needed towards the optimal production of phosphatidylinositol-specific phospholipase C enzyme by Bacillus thuringiensis serovar. kurstaki. A 23 factorial central composite experimental design was used. The multiple regression equation, relating the enzyme activity to the nutrient medium, was used to find the optimum values of glucose, peptone and dipotassium hydrogen phosphate. The optimum values of these variables for maximal enzyme production were found to be: glucose, 6.5 g l−1; peptone, 5.38 g l−1 and dipotassium hydrogen phosphate, 6.36 g l−1 with the predicted enzyme activity of 0.96 U ml−1.  相似文献   

2.
Staphylococcus aureus phosphatidylinositol-specific phospholipase C (PI-PLC) is a secreted virulence factor for this pathogenic bacterium. A novel crystal structure shows that this PI-PLC can form a dimer via helix B, a structural feature present in all secreted, bacterial PI-PLCs that is important for membrane binding. Despite the small size of this interface, it is critical for optimal enzyme activity. Kinetic evidence, increased enzyme specific activity with increasing enzyme concentration, supports a mechanism where the PI-PLC dimerization is enhanced in membranes containing phosphatidylcholine (PC). Mutagenesis of key residues confirm that the zwitterionic phospholipid acts not by specific binding to the protein, but rather by reducing anionic lipid interactions with a cationic pocket on the surface of the S. aureus enzyme that stabilizes monomeric protein. Despite its structural and sequence similarity to PI-PLCs from other Gram-positive pathogenic bacteria, S. aureus PI-PLC appears to have a unique mechanism where enzyme activity is modulated by competition between binding of soluble anions or anionic lipids to the cationic sensor and transient dimerization on the membrane.  相似文献   

3.
4.
The inositol 1,4,5-trisphosphate (IP3) receptor (IP3R) is an intracellular IP3-gated calcium (Ca2+) release channel and plays important roles in regulation of numerous Ca2+-dependent cellular responses. Many intracellular modulators and IP3R-binding proteins regulate the IP3R channel function. Here we identified G-protein-coupled receptor kinase-interacting proteins (GIT), GIT1 and GIT2, as novel IP3R-binding proteins. We found that both GIT1 and GIT2 directly bind to all three subtypes of IP3R. The interaction was favored by the cytosolic Ca2+ concentration and it functionally inhibited IP3R activity. Knockdown of GIT induced and accelerated caspase-dependent apoptosis in both unstimulated and staurosporine-treated cells, which was attenuated by wild-type GIT1 overexpression or pharmacological inhibitors of IP3R, but not by a mutant form of GIT1 that abrogates the interaction. Thus, we conclude that GIT inhibits apoptosis by modulating the IP3R-mediated Ca2+ signal through a direct interaction with IP3R in a cytosolic Ca2+-dependent manner.The inositol 1,4,5-trisphosphate (IP3)3 receptor (IP3R) consisting of three subtypes, IP3R1, IP3R2, and IP3R3, is a tetrameric intracellular IP3-gated calcium (Ca2+) release channel localized at the endoplasmic reticulum (ER) with its NH2 terminus and COOH-terminal tail (CTT) exposed to the cytoplasm (1, 2; see Fig. 1A). IP3Rs are composed of five functional domains. The long NH2-terminal cytoplasmic region contains three domains, a coupling/suppressor domain, an IP3-binding core domain, and an internal coupling domain. The COOH-terminal region has a six-membrane spanning channel domain and a short cytoplasmic CTT “gatekeeper domain” that is critical for IP3R channel opening (2, 3). Ca2+ release activity of the IP3R channel is regulated by many intracellular modulators (ATP, calmodulin, and Ca2+), protein kinases, and IP3R-binding proteins (2, 4), and the tight regulation of IP3R channel activity by these factors generates various spatial and temporal intracellular Ca2+ patterns such as Ca2+ spikes and Ca2+ oscillations, leading to numerous cellular responses (1, 2, 5, 6).Open in a separate windowFIGURE 1.GIT1 and GIT2 bind to all three subtypes of IP3R. A, schematic of ER residential IP3R. The CTT of IP3R1 is used as bait in a yeast two-hybrid screen. B, schematic representation of GIT1, GIT2, and two GIT1 fragments identified from the yeast two-hybrid screen. Functional domains are indicated. ARF-GAP, ARF-specific GTPase-activating protein domain; ANK-REP, ankyrin repeats; CC, coiled-coil domains; SHD, the Spa2-homology domain; EF, EF-hand; IQ, IQ-like motifs; aa, amino acid. C, GIT1 binds to IP3R1 in vitro. GST and GST-IP3R1/CTT were incubated with mouse brain lysate for a pull-down assay. The input and pulled-down samples were probed with α-GIT1. D and E, GIT1 binds to IP3R1 in vivo. Mouse brain lysates were processed to control IgG and α-IP3R1 (D) or α-GIT1 (E) for IP. The input and IP samples were probed with α-GIT1 and α-IP3R1. F and G, both GIT1 and GIT2 bind to all three IP3R subtypes. HeLa cells coexpressing GFP-fused IP3R1, IP3R2, or IP3R3 and mRFP-fused GIT1 (F) or GIT2 (G) were processed for IP using α-RFP. The input and IP samples were blotted with α-GFP (top) and α-RFP (bottom).One of the physiological roles of IP3R-mediated Ca2+ signaling is a pro-apoptotic regulator during apoptosis. Ca2+ released from ER can stimulate several key enzymes activated during apoptosis such as endonucleases (7) and calpain (8). In addition, the close proximity of ER to mitochondria may facilitate the mitochondrial overload of Ca2+ released from the IP3Rs with certain apoptotic stimuli, triggering the opening of the mitochondrial permeability transition pore and the release of apoptotic signaling molecules, such as cytochrome c and apoptosis-inducing factor, which leads to the activation of caspases (5, 6). Moreover, several key components of apoptotic cascades, such as cytochrome c (9) and anti-apoptosis proteins Bcl-2 (10, 11) and Bcl-XL (12), have been reported to interact with the internal coupling domain and/or the CTT of IP3R and enhance the Ca2+-release activity of IP3Rs during apoptosis. In this study, we identified the ubiquitously expressed G-protein-coupled receptor kinase-interacting proteins (GIT) (13), GIT1 and GIT2, as novel IP3R-binding proteins that bind to the CTT of IP3R and inhibit apoptosis by regulation of IP3R-mediated Ca2+ signal.  相似文献   

5.
Phosphatidylinositol-specific phospholipase C was purified from the soluble fraction of suspension-cultured rice cells. The apparent molecular weight of rice enzyme was estimated to be 50,000 by both Sephadex G-100 gel filtration and SDS–polyacrylamide gel electrophoresis, indicating that the enzyme is composed of a single polypeptide. The enzyme had an isoelectric point of 6.3. The soluble phospholipase C had a high degree of specificity toward phosphatidylinositol and a weak activity toward phosphatidyl-inositol monophosphate, while the enzyme did not hydrolyze the other phospholipids or p-nitrophenylphosphorylcholine. Vmax and Km values were 5.0, μmol/min/mg protein and 0.3 mM, respectively. The pH dependency of the enzyme activity was sharp with an optimum of 5.2. In addition, the phospholipase C was a Ca2+ -dependent enzyme. The marked activation of enzyme was observed in the presence of 10 to 250, μM Ca2+ and higher Ca 2+ concentrations than 1 mM had a strong inhibitory effect. A possible regulation of the phospholipase C activity by pH and Ca2+ concentrations in the rice cells is discussed.  相似文献   

6.
Phosphatidylinositol-specific phospholipase C of murine lymphocytes   总被引:3,自引:0,他引:3  
Phosphatidylinositol-specific phospholipase C (PI-phospholipase C) was found primarily in the cytosolic fraction of murine splenic lymphocytes. However, small but significant amounts of the activity of the enzyme were detected in the microsome and plasma membrane fractions. Both the cytosolic and membrane-bound phospholipases C specifically hydrolyzed inositol phospholipids, phosphatidylinositol, phosphatidylinositol 4-phosphate, and phosphatidylinositol 4,5-bisphosphate. PI-Phospholipase C activity was detected in the cytosolic and microsome fractions from both T-cell-enriched and B-cell-enriched spleen cells. The membrane-bound enzyme was distinguishable from the cytosolic enzyme in the following properties. The cytosolic PI-phospholipase C showed optimal activity at pH 6.0 while the membrane-bound enzyme had two pH optima between pH 5.0 and 7.0. The activity of the cytosolic enzyme was first detected at 1 microM Ca2+, and maximum activity was observed at 100 microM Ca2+, while the membrane-bound PI-phospholipase C required higher Ca2+ concentrations, of millimolar order. The membrane-bound enzyme could hardly be extracted with 1 M NaCl but was extracted with 0.4% cholate.A portion of the membrane-bound PI-phospholipase C activity in the cholate extract was absorbed by concanavalin A-Sepharose and specifically eluted with an alpha-methylmannoside solution. The cytosolic enzyme, which was water soluble, did not bind to concanavalin A-Sepharose. Trypsinization of lymphocytes before subcellular fractionation caused a significant decrease in the PI-phospholipase C activity in the microsome fraction but almost no loss at all of the cytosolic enzyme activity.  相似文献   

7.
In previous studies, we observed that mice knocked out for the serotonin-2B receptor (5-HT2BR) show defects in bone homeostasis. The present work focuses on the downstream targets relaying the anabolic function of this receptor in osteoblasts. A functional link between the 5-HT2BR and the activity of the tissue-nonspecific alkaline phosphatase (TNAP) is established using the C1 osteoprogenitor cell line. During C1 osteogenic differentiation, both 5-HT2BR and TNAP mRNA translations are delayed with respect to extracellular matrix deposition. Once the receptor is expressed, it constitutively controls TNAP activity at a post-translational level along the overall period of mineral deposition. Indeed, pharmacological inhibition of the 5-HT2BR intrinsic activity or shRNA-mediated 5-HT2BR knockdown prevents TNAP activation, but not its mRNA translation. In contrast, agonist stimulation of the receptor further increases TNAP activity during the initial mineralization phase. Building upon our previous observations that the 5-HT2BR couples with the phospholipase A2 pathway and prostaglandin production at the beginning of mineral deposition, we show that the 5-HT2BR controls leukotriene synthesis via phospholipase A2 at the terminal stages of C1 differentiation. These two 5-HT2BR-dependent eicosanoid productions delineate distinct time windows of TNAP regulation during the osteogenic program. Finally, prostaglandins or leukotrienes are shown to relay the post-translational activation of TNAP via stimulation of the phosphatidylinositol-specific phospholipase C. In agreement with the above findings, primary calvarial osteoblasts from 5-HT2BR-null mice exhibit defects in TNAP activity.  相似文献   

8.
We have demonstrated before that exposure of neuronal cultures to poisoning by iodoacetic acid (IAA) followed by “reperfusion” (IAA-R insult), results in severe cytotoxicity, which could be markedly attenuated by prior activation of the adenosine A1 receptors. We also have demonstrated that adenosine activates a signal transduction pathway (STP), which involves activation of PKCε and opening of KATP channels. Here, we provide proof for the involvement also of phospholipase C (PLC) in the neuronal protective adenosine-activated STP. R-PIA, a specific A1 adenosine receptor agonist, was found to enhance neuronal PLC activity and protect against the IAA-R insult. The PLC inhibitor U73122, abrogated both R-PIA-induced effects. These results demonstrate that activation of PLC is a vital step in the neuronal protective adenosine-induced STP.  相似文献   

9.
Using [U-14C]phosphatidylinositol as substrate, Ca2+-dependent phospholipase C activity was detected in a group of bovine adrenal medullary proteins that bind to chromaffin granule membranes in the presence of Ca2+ ("chromobindins," Creutz, C. E., Dowling, L. G., Sando, J. J., Villar-Palasi, C., Whipple, J. H., and Zaks, W. J. (1983) J. Biol. Chem. 258, 14664-14674). The activity was maximal at neutral pH and represented an 80- to 240-fold enrichment of adrenal medullary cytosol phospholipase C activity measured at pH 7.3. The stimulation of activity by Ca2+ was complex; no activity was present in the absence of Ca2+, 25% activation occurred at 1 microM Ca2+, and full activation at 5 mM Ca2+. The enzyme bound to chromaffin granule membranes in the presence of 2 mM Ca2+ but was released at 40 microM Ca2+, suggesting that intrinsic enzyme activity may be regulated by [Ca2+] at 1 microM, but additional activation at higher concentrations of Ca2+ is seen in vitro as a result of Ca2+-dependent binding of the active enzyme to substrate-containing membranes. This enzyme may generate diacylglycerol and phosphorylated inositol to act as intracellular messengers in the vicinity of the chromaffin granule membrane during the process of exocytosis.  相似文献   

10.
Phospholipase C   总被引:3,自引:0,他引:3  
  相似文献   

11.
Long-term ethanol exposure is known to inhibit bradykinin-stimulated phosphoinositide hydrolysis in cultures of neuroblastoma x glioma 108-15 cells. In the present study, [3H]bradykinin binding, GTP-binding protein function, and phospholipase C activity were assayed in cells grown for 4 days in 100 mM ethanol with the aim of elucidating the molecular target of ethanol on signal transduction coupled to inositol trisphosphate and diacylglycerol formation. Ethanol exposure reduced guanosine 5'-O-(3-thiotriphosphate) [GTP(S)]- and, to a lesser extent, NaF/AlCl3-stimulated phosphoinositide hydrolysis, whereas it had no effect on the enzymatic activity of a phosphatidylinositol 4,5-bisphosphate-specific phospholipase C. [3H]Bradykinin binding in the absence of GTP(S) was not influenced by ethanol exposure. However, the reduction in [3H]bradykinin binding seen in control cells after addition of GTP analogue was inhibited in cells grown in ethanol-containing medium. The results indicate that long-term ethanol exposure exerts its effects on receptor-stimulated phosphoinositide hydrolysis primarily at the level of the GTP-binding protein.  相似文献   

12.
Abstract: Trimethyltin (TMT) is a potent neurotoxic compound that initiates a delayed neuronal cell death. Previously we have shown that TMT-induced cytotoxicity is associated with protein kinase C (PKC) translocation and activation. The present study investigates the mechanism underlying TMT-stimulated PKC translocation in PC12 cells. TMT exposure led to a rapid increase in intracellular levels of inositol 1,4,5-trisphosphate (IP3), a product of phospholipase C (PLC). This was significantly decreased by pretreating cells with antagonists to either the cholinergic muscarinic receptor (atropine) or the glutamatergic metabotropic receptor [(+)-α-methyl-4-carboxyphenylglycine; (+)-MCPG]. Furthermore, the rise in IP3 level was blocked by pretreating cells with a PLC inhibitor (U-73122) or by a combination of atropine and (+)-MCPG. This pretreatment also significantly decreased TMT-stimulated PKC translocation, indicating that TMT-mediated PKC translocation was related to PLC activation, presumably through formation of diacylglycerol, an endogenous activator of PKC and product of PLC. It is interesting that atropine and (+)-MCPG did not provide protection against TMT-induced cytotoxicity in these cells. However, these data suggest that TMT causes the release of cellular constituents that activate G protein-coupled receptors, ultimately leading to PKC translocation.  相似文献   

13.
14.
Abstract: Phospholipase C γ1 (PLC-γ1) is phosphorylated on treatment of cells with nerve growth factor (NGF). To assess the role of PLC-γ1 in mediating the neuronal differentiation induced by NGF treatment, we established PC12 cells that overexpress whole PLC-γ1 (PLC-γ1PC12), the SH2-SH2-SH3 domain (PLC-γ1SH223PC12), SH2-SH2-deleted mutants (PLC-γ1ΔSH22PC12), and SH3-deleted mutants (PLC-γ1ΔSH3PC12). Overexpressed whole PLC-γ1 or the SH2-SH2-SH3 domain of PLC-γ1 stimulated cell growth and inhibited NGF-induced neurite outgrowth of PC12 cells. However, cells expressing PLC-γ1 lacking the SH2-SH2 domain or the SH3 domain had no effect on NGF-induced neuronal differentiation. Overexpression of intact PLC-γ1 resulted in a threefold increase in total inositol phosphate accumulation on treatment with NGF. However, overexpression of the SH2-SH2-SH3 domain of PLC-γ1 did not alter total inositol phosphate accumulation. To investigate whether the SH2-SH2-SH3 domain of PLC-γ1 can mediate the NGF-induced signal, tyrosine phosphorylation of the SH2-SH2-SH3 domain of PLC-γ1 on NGF treatment was examined. The SH2-SH2-SH3 domain of PLC-γ1 as well as intact PLC-γ1 could be tyrosine-phosphorylated on NGF treatment. These results indicate that the overexpressed SH2-SH2-SH3 domain of PLC-γ1 can block the differentiation of PC12 cells induced by NGF and that the inhibition appears not to be related to the lipase activity of PLC-γ1 but to the SH2-SH2-SH3 domain of PLC-γ1.  相似文献   

15.
Phosphatidylinositol-specific phospholipases (PI-PLCs) are virulence factors produced by many pathogenic bacteria, including Bacillus anthracis and Listeria monocytogenes. Bacillus PI-PLC differs from Listeria PI-PLC in that it has strong activity for cleaving GPI-anchored proteins. Treatment of murine DCs with Bacillus, but not Listeria, PI-PLC inhibited dendritic cell (DC) activation by TLR ligands. Infection of mice with Listeria expressing B. anthracis PI-PLC resulted in a reduced Ag-specific CD4 T cell response. These data indicate that B. anthracis PI-PLC down-modulates DC function and T cell responses, possibly by cleaving GPI-anchored proteins important for TLR-mediated DC activation.  相似文献   

16.
Activation of Phospholipase A by Plant Defense Elicitors   总被引:9,自引:1,他引:8       下载免费PDF全文
Participation of phospholipase A (PLase A) in plant signal transduction has been documented for auxin stimulation of growth but not for elicitation of any plant defense response. In this paper, we report two independent assays for monitoring PLase A induction in plant cells and have used these assays to evaluate whether transduction of defense-related signals might require PLase A activation. Oligogalacturonic acid, a potent elicitor of the soybean (Glycine max) H2O2 burst, was unable to stimulate endogenous PLase A, suggesting that PLase A activation is not an obligate intermediate in the oligogalacturonic acid-induced burst pathway. In contrast, harpin and an extract from the pathogenic fungus Verticillium dahliae both stimulated the oxidative burst and promoted a rapid increase in PLase A activity. To evaluate the possible role of this inducible PLase A activity in transducing the oxidative burst, we tested the effect of chlorpromazine-HCl, a PLase A inhibitor on elicitor-stimulated burst activity. Pretreatment with chloropromazine was found to inhibit the H2O2 burst triggered by V. dahliae extract at the same concentration at which it blocked PLase A activation. In contrast, neither the harpin- nor oligogalacturonic acid-induced burst was altered by addition of chlorpromazine. These data suggest that PLase A stimulation may be important in certain elicitor-induced oxidative bursts (e.g. V. dahliae) and that other elicitors such as oligogalacturonic acid and harpin must operate through independent signaling intermediates to activate the same defense response.  相似文献   

17.
Berg OG  Yu BZ  Apitz-Castro RJ  Jain MK 《Biochemistry》2004,43(7):2080-2090
Phosphatidylinositol-specific phospholipase C (PI-PLC) from Bacillus cereus forms a premicellar complex E(#) with monodisperse diheptanoylphosphatidylcholine (DC(7)PC) that is distinguishable from the E complex formed with micelles. Results are interpreted with the assumption that in both cases amphiphiles bind to the interfacial binding surface (i-face) of PI-PLC but not to the active site. Isothermal calorimetry and fluorescence titration results for the binding of monodisperse DC(7)PC give an apparent dissociation constant of K(2) = 0.2 mM with Hill coefficient of 2. The gel-permeation, spectroscopic, and probe partitioning behaviors of E(#) are distinct from those of the E complex. The aggregation and partitioning behaviors suggest that the acyl chains in E(#) but not in E remain exposed to the aqueous phase. The free (E) and complexed (E(#) and E) forms of PI-PLC, each with distinct spectroscopic signatures, readily equilibrate with changing DC(7)PC concentration. The underlying equilibria are modeled and their significance for the states of the PI-PLC under monomer kinetic conditions is discussed to suggest that the Michaelis-Menten complex formed with monodisperse DC(7)PC is likely to be E(#)S or its aggregate rather than the classical monodisperse ES complex.  相似文献   

18.
Phosphatidylinositol-specific phospholipase C (PI-PLC) activity was investigated in 25 different lactic acid bacteria (LAB) strains belonging to the genera Lactobacillus, Weisella, and Enterococcus. PI-PLC activity was detected in 44% of the strains studied in culture medium without carbon source. From the PI-PLC positive strains, Lactobacillus rhamnosus ATCC 7469 was selected for translocation studies. Healthy mice were orally administered with a daily dose of 2.0 x 10(9) of viable L. rhamnosus suspension. Viable bacteria were detected in liver and spleen of mice fed with LAB for 7 days. Bacterial colonies isolated from liver were biochemically characterized, and further subjected to randomly amplified polymorphic DNA. Amplification patterns of five strains displayed identical profiles to L. rhamnosus. PI-PLC activity was determined in the strains recovered from liver.  相似文献   

19.
20.
Listeria monocytogenes is a facultative intracellular bacterial pathogen that spreads cell to cell without exposure to the extracellular environment. Bacterial cell-to-cell spread is mediated in part by two secreted bacterial phospholipases C (PLC), a broad spectrum PLC (PC-PLC) and a phosphatidylinositolspecific PLC (PI-PLC). PI-PLC is secreted in an active state, whereas PC-PLC is secreted as an inactive proenzyme (proPC-PLC) whose activation is mediated in vitro by an L. monocytogenes metalloprotease (Mpl). Analysis of PI-PLC, PC-PLC, and Mpl single and double mutants revealed that Mpl also plays a role in the spread of an infection, but suggested that proPC-PLC has an Mpl-independent activation pathway. Using biochemical and microscopic approaches, we describe three intracellular proteolytic pathways regulating PCPLC activity. Initially, proPC-PLC secreted in the cytosol of infected cells was rapidly degraded in a proteasome-dependent manner. Later during infection, PCPLC colocalized with bacteria in lysosome-associated membrane protein 1–positive vacuoles. Activation of proPC-PLC in vacuoles was mediated by Mpl and an Mpl-independent pathway, the latter being sensitive to inhibitors of cysteine proteases. Lastly, proPC-PLC activation by either pathway was sensitive to bafilomycin A1, a specific inhibitor of vacuolar ATPase, suggesting that activation was dependent on acidification of the vacuolar compartment. These results are consistent with a model in which proPC-PLC activation is compartment specific and controlled by a combination of bacterial and host factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号