首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Understanding the mechanisms of coexistence of sperm-dependent asexuals and their sexual hosts requires an empirical evaluation of their relative fitness. We evaluated the fecundity, egg viability, and hatchling growth rate of the sperm-dependent asexual hybrid species Phoxinus eos-neogaeus and its sexually-reproducing parental species, P. eos and P. neogaeus. Three comparisons between asexual and sexual Phoxinus suggested a fitness advantage in the asexuals: absolute fecundity was higher in P. eos-neogaeus than P. eos, but this advantage disappeared when fecundity differences were scaled to differences in body size; a higher fraction of P. eos-neogaeus eggs than P. eos eggs were viable post-fertilization; P. eos-neogaeus grew faster in the first 60 days post-hatching than both their P. eos and P. neogaeus hosts. All other comparisons showed no difference in fitness between P. eos-neogaeus and the parental species. Overall, our data suggest, at best, a weak fitness advantage for the asexuals, which suggests that other factors, such as niche separation or male preference for sexually-reproducing females during mating, are critical to the maintenance of asexual-sexual lineages.  相似文献   

2.
Among vertebrates, there are approximately fifty sperm-dependent asexual species, all of which are of hybrid origin. Sperm-dependent asexual vertebrates use sperm from one, or both, of their parental species for reproduction. To address the hypothesis that selection has resulted in asexual phenotypes that resemble their host’s phenotype, I studied size, shape, and genetic variation (using six microsatellite loci) in nine populations of a sperm-dependent asexual fish, Chrosomus eos-neogaeus, in Alberta, Canada. These nine populations differed in the presence or absence of each of the two parental species: three populations coexist with C. eos, two populations coexist with C. neogaeus, and four populations coexist with both parental species. Consistent with my hypothesis, I found that C. eos-neogaeus tended to match the body size of the parental species with which they coexist, and that C. eos-neogaeus that coexist with only C. eos were genetically divergent from C. eos-neogaeus that are syntopic with only C. neogaeus. The genetic divergence among C. eos-neogaeus populations was independent of geographic distance among populations, and estimates of quantitative trait divergence among C. eos-neogaeus populations exceeded neutral expectations. These observations suggest that processes other than migration, mutation, and drift are likely shaping the diversity of C. eos-neogaeus in the lakes sampled for this study. For example, sexual selection leading to host mimicry, or natural selection leading to environmental adaptation, may explain the observed pattern of host-size matching.  相似文献   

3.
Synopsis We examined relative abundance, distribution, and gut contents of Phoxinus eos and P. neogaeus in a small northern Michigan bog lake. P. eos were usually 5–100 x more abundant than P. neogaeus, but both species were more abundant near the lake margin than offshore. Both species fed primarily on algae and invertebrates associated with the bog mat, but differences in diet were associated with differences in trophic morphology. As expected, because of its relatively longer intestine and smaller mouth, P. eos consumed relatively more plant matter, especially green algae, and fewer macroinvertebrates than P. neogaeus. These dietary conclusions were supported by analysis of two independent data sets. Further work is needed to discriminate between the effects of body size and trophic morphology on diet.  相似文献   

4.
Studies of the skin with scanning electron microscopy (SEM) reveal a diverse morphology in breeding tubercles among species of Phoxinus. Based mainly on the fine structure of the surface of tubercles, nine morphotypes, coded as letters A-I, occur in Phoxinus. Most of the morphotypes are common to all Phoxinus species, but type E is present only on the dorsum of the head of P. phoxinus, type H on the breast scale of female P. phoxinus, and type I on the pectoral fin in P. erythrogaster. Multicellular breeding tubercles bearing unicellular projections, identified as unculiferous tubercles are found in type H and probably types F and G. The distribution of tubercles on head, body, and fins is described and compared among Phoxinus species. Breeding tubercles in Phoxinus and other minnow genera are compared in order to interpret the phylogenetic implication of the tuberculation in Phoxinus. The deeply embedded breast scales and the breeding tubercles on their apical margins, and a series of tubercles on the apical margins of lateral scales of the caudal peduncle in breeding males of Phoxinus species, are the characters supporting the monophyly of the genus. © 1996 Wiley-Liss, Inc.  相似文献   

5.
Phoxinus eos-neogaeus unisexual hybrids (Cyprinidae, Pisces) are among the few vertebrate taxa known to reproduce clonally by gynogenesis. These taxa have a broad distribution in North America, mostly located in regions previously covered by the last Pleistocene ice sheet. To assess whether asexual hybrids dispersed from glacial refuges at the end of the Pleistocene or they originated from current hybridization events, genetic diversity of mitochondrial DNA (mtDNA) sequences and microsatellite loci was determined in populations from 16 different sites in the Mississippi-Missouri River (Nebraska and Montana), Rainy River-Hudson Bay (Minnesota), and St Lawrence River (Quebec) drainages. The maternal species (P. neogaeus) occurred in Minnesota and Nebraska but was absent from Montana sites and was restricted to only two of 11 lakes sampled in Quebec, although hybrids were present at all sites. The genetic survey revealed a total of 49 clones, originating from 14 hybridization events. Several of the lineages were characterized by mtDNA haplotypes not detected in the maternal ancestor. Lineages as well as clones frequently displayed a large geographical distribution at a regional scale. Dating of hybridization events suggested a relatively recent origin (<50,000 years ago) from the Mississippi glacial refuge, even in regions not covered by the last Pleistocene glacier. Altogether, these results indicate P. eos-neogaeus hybrids are not the result of current hybridization events, but display a pattern predicted by postglacial dispersal. Our findings have considerable implications for the nature of selection processes affecting the diversity of these asexual taxa and their coexistence with sexual ancestors.  相似文献   

6.
Hybrids between the minnows Phoxinus eos and Phoxinus neogaeus coexist with a population of P. eos in East Inlet Pond, Coos Co., New Hampshire. Chromosome counts and flow cytometric analysis of erythrocyte DNA indicate that these hybrids include diploids, triploids, and diploid-triploid mosaics. The mosaics have both diploid and triploid cells in their bodies, even within the same tissues. All three hybrid types are heterozygous at seven putative loci for which P. eos and P. neogaeus are fixed for different allozymes, indicating that the hybrids carry one eos and one neogaeus haploid genome. The diploid hybrids are therefore P. eos-neogaeus, whereas the triploids and mosaics are derived from P. eos-neogaeus but have an extra eos or neogaeus genome in all or some of their cells. Diploid, triploid, and mosaic hybrids accept tissue grafts from diploid hybrids, indicating that all individuals carry the identical eos-neogaeus diploid genome. Thus, one P. eos-neogaeus clone exists at East Inlet Pond. Grafts among the triploids and mosaics or from these individuals to diploid hybrids are rejected, indicating that the third genome is different in each triploid and mosaic individual. In this study, diploid and mosaic hybrids, carrying the clonal eos-neogaeus genome, were bred in the laboratory with males of P. eos or P. neogaeus. Both diploid and mosaic hybrids produced diploid, triploid, and mosaic offspring, revealing the source of the three hybrid types present at East Inlet Pond. These offspring accepted grafts from P. eos-neogaeus individuals, indicating that they all had inherited the identical eos-neogaeus genome. Most grafts among triploid and mosaic progeny, or from these individuals to their diploid broodmates, were rejected, indicating that the third genome was different in each triploid and mosaic (as was observed in the wild hybrids) and was contributed by sperm from males of P. eos or P. neogaeus. Diploid progeny are produced if sperm serves only to stimulate embryogenesis; triploid or mosaic progeny are produced if the sperm genome is incorporated. Although based on a mode of reproduction that by definition results in a genetically identical community of individuals, i.e., gynogenesis, reproduction in hybrid Phoxinus results in a variety of genetically distinct individuals by the incorporation of sperm into approximately 50% of the diploid ova produced.  相似文献   

7.
While theories explaining the evolution and maintenance of sex are abundant, empirical data on the costs and benefits of asexual relative to sexual reproduction are less common. Asexually reproducing vertebrates, while few, provide a rare opportunity to measure differences in fitness between asexual and sexual species. All known asexually reproducing vertebrates are of hybrid origin, and hybrid disadvantage (i.e., reduced hybrid fitness) is thought to facilitate long-term coexistence between asexual and sexual species. We used repeat swimming performance as a proxy for fitness to compare the fitness of asexual hybrid dace (Pisces: Phoxinus) and their sexually reproducing parental species, finescale dace (Phoxinus neogaeus) and northern redbelly dace (Phoxinus eos). We tested the prediction that, given the widespread coexistence of these hybrid and parental dace, the parental species should show equivalent and perhaps superior repeat performance relative to hybrids. A repeat constant acceleration test (U(max)) was conducted at both acclimation temperature (16 °C) and at an elevated temperature (25 °C) to simulate the combined influence of a repeat swim and acute temperature change that fish might experience in the wild. The asexual hybrids performed more poorly than at least one of the parental species. There was a negative effect of temperature on repeat swimming performance in all fish, and the repeat performance of hybrids was more severely affected by temperature than that of finescale dace. No difference in the effect of temperature on repeat performance was detected between hybrids and northern redbelly dace. These results suggest that hybrids suffer physiological costs relative to the parentals or at least that the hybrids do not gain advantage from hybrid vigor, which probably contributes to the coexistence of asexual and sexual species in this system.  相似文献   

8.
Spaak  Piet 《Hydrobiologia》1997,360(1-3):127-133
Within the species complex of Daphnia galeata,D. cucullata and D. hyalina variouscombinations of hybrids and parental taxa occur inlakes throughout Europe. Since daphnids are cyclicparthenogens and mostly reproduce asexually, hybridpopulations can be maintained by asexual reproductionand without recurrent hybridization events. Therefore,it is possible that hybridization events have beenrare, with range expansion occurring by dispersal ofhybrids.Allozyme data from seven European populations wereused to compare genetic variation within and betweenhybrid and parental taxa. An UPGMA cluster analysis ofgenetic distances showed that D. cucullata × galeatahybrids from different lakes grouped indifferent clusters according to the lake from whichthey were isolated, suggesting multiple hybridizationevents. Clonal diversity within hybrid taxa wascomparable to parental taxa. Furthermore, evidence wasfound for introgression of the Pgi-S allele fromD. cucullata to D. galeata in three lakes.These results indicate that multiple hybridizationevents within this species complex are likely, andthat hybrid taxa can reproduce sexually.  相似文献   

9.
In recent decades, hybridization has become a focus of attention because of its role in evolutionary processes. However, little is known about changes in genetic structure within and between parental species and hybrids over time. Here, we studied processes of genetic change in parental species and hybrids from the Daphnia longispina complex (Crustacea, Cladocera) over a period of six years across ten habitats. These cyclical parthenogens respond to fluctuating environments by switching from asexual to sexual reproduction. Importantly, sexually produced diapausing eggs, which resist extreme conditions such as low temperatures and serve as dispersal stages, are produced to a lower extent by hybrids. Long‐term microsatellite data revealed clear differences between hybrids and parental species. In hybrids, clonal diversity values were lower, whereas heterozygosity and linkage disequilibrium values were higher compared to parental species. Clonal diversity of hybrids responded to the strength of the winter, with cold winters resulting in few genotypes in the following spring. In time windows when only asexual hybrid females survive, priority effects will favour the establishment of the hybrid offspring before hatchlings from parental diapause eggs can enter the community. The constant high levels of heterozygosity maintained by clonal reproduction in hybrids might lead to their successful establishment over time, when they are able to escape competition from both parental species. Although we found evidence that hybrids diversity depends on fluctuating environments, a direct link between hybrid abundance and the strength of winter was missing. Because of reduced adaptability in clonally reproducing hybrids, multiple factors must contribute to promoting their long‐term success in fluctuating environments.  相似文献   

10.
The genus Phoxinus is comprised of at least 15 currently recognized species inhabiting Eurasia. Morphological traits have been traditionally used to delineate species in Phoxinus; however, the high level of phenotypic plasticity observed in the genus has confounded this process. Molecular genetic analyses have revealed a higher than expected genetic structure within Phoxinus. Here, we analyzed both nuclear and mitochondrial molecular genetic markers to infer the phylogeography and divergence times of Phoxinus in the Iberian Peninsula. Our results show that the Iberian lineages of Phoxinus were polyphyletic. They also support the co‐existence of three species in the Iberian Peninsula, two corresponding to two previously recognized species (Phoxinus bigerri and Phoxinus septimaniae) and a third undescribed species (Phoxinus sp.). Phoxinus bigerri is structured into western Cantabrian, eastern Cantabrian, and Artibai basins. We hypothesize that this structure is a consequence of glaciation–deglaciation cycles during the Pleistocene. While the presence of P. septimaniae in the Iberian Peninsula is possibly the result of human translocation, that of Phoxinus sp. in lower Ebro rivers may be attributed to past fluvial captures. Our study represents the first report to show a relationship among Phoxinus populations from central Pyrenean rivers of Spain and France. Furthermore, we found genetic hybridization between Phoxinus sp. and P. septimaniae in the shared localities, a likely consequence of anthropogenic activities. Overall, our findings provide insight into the genetic structure of Iberian Phoxinus populations, including the presence of an undescribed species and the putative introduction of some species that may have implications for conservation.  相似文献   

11.
Minnows of the genus Phoxinus are promising candidates to investigate adaptive divergence, as they inhabit both still and running waters of a variety of altitudes and climatic zones in Europe. We used landmark‐based geometric morphometric methods to quantify the level of morphological variability in Phoxinus populations from streams and lakes of Northern Italy and the Danube basin. We analyzed body shape differences of populations in the dorsal, lateral, and ventral planes, using a large array of landmarks and semilandmarks. As the species identification of Phoxinus on morphological characters is ambiguous, we used two mitochondrial genes to determine the genetic background of the samples and to ensure we are comparing homogenous groups. We have found significant body shape differences between habitats: Minnow populations inhabiting streams had a deeper body and caudal peduncle and more laterally inserted pectoral fins than minnows inhabiting lakes. We have also found significant body shape differences between genetic groups: Italian minnows had deeper bodies, deeper and shorter caudal peduncles, and a shorter and wider gape than both groups from the Danube. Our results show that the morphology of Phoxinus is highly influenced by habitat and that body shape variation between habitats was within the same range as between genetic groups. These morphological differences are possibly linked to different modes of swimming and foraging in the respective habitats and are likely results of phenotypic plasticity. However, differences in shape and interlandmark distances between the groups suggest that some (though few) morphometric characters might be useful for separating Phoxinus species.  相似文献   

12.
Tree invasions have substantial impacts on biodiversity and ecosystem functioning, and trees that are dispersed by animals are more likely to become invasive. In addition, hybridisation between plants is well documented as a source of new weeds, as hybrids gain new characteristics that allow them to become invasive. Corymbia torelliana is an invasive tree with an unusual animal dispersal mechanism: seed dispersal by stingless bees, that hybridizes readily with other species. We examined hybrids between C. torelliana and C. citriodora subsp. citriodora to determine whether hybrids have inherited the seed dispersal characteristics of C. torelliana that allow bee dispersal. Some hybrid fruits displayed the characteristic hollowness, resin production and resin chemistry associated with seed dispersal by bees. However, we did not observe bees foraging on any hybrid fruits until they had been damaged. We conclude that C. torelliana and C. citriodora subsp. citriodora hybrids can inherit some fruit characters that are associated with dispersal by bees, but we did not find a hybrid with the complete set of characters that would enable bee dispersal. However, around 20,000 hybrids have been planted in Australia, and ongoing monitoring is necessary to identify any hybrids that may become invasive.  相似文献   

13.
The recent recognition of invasive hybrid watermilfoil (Myriophyllum spicatum × M. sibiricum) in North America has necessitated a more thorough evaluation of its overall distribution and occurrence in natural populations. A comprehensive survey of watermilfoil populations was conducted in five Minnesota lakes, three of which were suspected a priori to contain hybrid watermilfoil. DNA sequence data verified that hybrid plants between the nonindigenous M. spicatum L. and indigenous M. sibiricum Kom. occurred in three of the five lakes sampled. Myriophyllum spicatum was not detected in lakes where hybrids were prevalent. Further sampling of lakes in Idaho, Michigan, Minnesota, Wisconsin and Washington identified 30 additional hybrid watermilfoil populations. In only three of these populations the hybrid watermilfoil was found to co-occur with M. spicatum. To facilitate the field identification of the two parental species and their hybrid, morphological data from watermilfoil specimens collected across the United States were evaluated. We determined that leaf segment/leaf length measurements can effectively distinguish M. spicatum and M. sibiricum; however, hybrids are intermediate for these characters and such measurements frequently overlap with respect to their parental taxa. By incorporating a combined molecular and morphological approach to identifying watermilfoils, the hybrids can be identified readily and their distributions elucidated both within and between lakes. Because hybrids may respond differently to local ecological conditions than their parents, information on their presence and distribution should be of particular importance to management and conservation programs.  相似文献   

14.
Hybrids ofAletris lutea XA. obovata were found to occur extensively throughout the area of overlapping distribution of the two species in Florida and in southern Georgia. Hybrids were found only in disturbed habitats near the parental species. Colonization and dispersal of species and of hybrids were probably implemented by roadside maintenance operations. Fertility was high despite the high incidence of quadrivalent formation in parent and hybrid plants. Since all quadrivalents observed were aligned adjacently and since fertility is relatively high, it is suggested that duplicated chromosomes were present. It is further suggested thatAletris represents a tetraploid with a base number ofx = 6 or 7 that either lost or gained one pair of chromosomes to result inn = 13. Introgression in disturbed habitats is favored by zonation of plants in hybrid swarms, phenology of parents and hybrids, and pollinator behavior.  相似文献   

15.
Kameyama Y  Ohara M 《Annals of botany》2006,98(5):1017-1024
Background and Aims The free-floating aquatic bladderwort Utricularia australis f. australis is a sterile F1 hybrid of U. australis f. tenuicaulis and U. macrorhiza. However, co-existence of the hybrids and parental species has not been observed. In the present study, the following questions are addressed. (a) Does the capacity of the two parental species to reproduce sexually contribute to higher genotypic diversity than that of sterile F1 hybrid? (b) Are there any populations where two parental species and their hybrid co-exist? (c) If not, where and how do hybrids originate?• Methods The presence and absence of Utricularia was thoroughly investigated in two regions in Japan. An amplified fragment length polymorphism (AFLP) analysis was conducted for 397 individuals collected from all populations (33 in total) where Utricularia was observed.• Key Results The mean number of genotypes per population (G) and genotypic diversity (D) were extremely low irrespective of the capacity to reproduce sexually: G was 1·1–1·2 and D was 0·02–0·04. The hybrid rarely co-existed with either parental species, and the co-existence of two parental species was not observed. Several AFLP bands observed in the hybrid are absent in both parental genotypes, and parent and hybrid genotypes in the same region do not show greater genetic similarity than those in distant regions.• Conclusions The capacity to reproduce sexually in parental species plays no role in increasing genotypic diversity within populations. The observed genotypes of the hybrid could not have originated from hybridization between the extant parental genotypes within the study regions. Considering the distribution ranges of three investigated taxa, it is clear that the hybrid originated in the past, and hybrid populations have been maintained exclusively by clonal propagation, which may be ensured by both hybrid vigor and long-distance dispersal of clonal offspring.  相似文献   

16.
We examined the genetic composition, habitat use, and morphological variation of a Phoxinus eos-neogaeus unisexual hybrid complex and its sexually reproducing progenitor species inhabiting beaver-modified drainages of Voyageurs National Park, Minnesota. In addition to the single diploid P. eos-neogaeus gynogenetic clone, triploid and diploid-triploid mosaic biotypes were present at our study sites. Both P. eos and P. neogaeus, and all three hybrid biotypes were ubiquitous throughout one intensively surveyed drainage, but abundances and relative frequencies of the parental species and hybrids varied considerably within and among successional environments. Data from a large number of additional sites indicated that the proportion of polyploid hybrids within an environment was negatively related to hybrid relative frequency, implying that the genomic constitution of hybrids is an important determinant of clonal fitness among successional environments. Statistical comparisons of variation along size-free multivariate body shape axes indicated that despite its genetic uniformity, the P. eos-neogaeus clone is no less variable than its sexual progenitors, suggesting that a single genotype may actually respond to environmental variation with as much phenotypic variation as a genetically variable sexual population. The incorporation and expression of a third genome in triploid and diploid-triploid mosaic biotypes derived from the gynogenetic clone significantly expanded phenotypic variation of the clone. This additional variation results in greater similarities in habitat use and morphological overlap with the parental species, primarily P. eos, the predominant sperm donor for gynogenetic hybrid females in this complex. Polyploid augmentation of a diploid gynogenetic clone appears to be typical in the P. eos-neogaeus complex, and the additional genetic and phenotypic variation that it generates has potentially significant ecological and evolutionary consequences for the success and persistence of a single genotype in highly variable environments.  相似文献   

17.
Hybridization is common among cyclical parthenogens, especially in zooplankton species assemblages of the genus Daphnia. To explore hybridization dynamics and the extent of clonal diversity in the Daphnia longispina complex, we analysed population structure in eight permanent lakes. Based on 15 microsatellite loci, three major taxonomic units emerged: two species, D. galeata and D. longispina and their F1 hybrids, supported by factorial correspondence analysis and two Bayesian methods. At the same time, the detection of backcross classes differed between methods. Mean clonal diversity was lowest in the F1 hybrids, as expected from the high rate of asexual reproduction. Within taxa, replicated genotypes were of clonal origin, but clonal lineages persisted in subsequent years in only one of three resampled lakes. In another lake, the taxon composition changed from being dominated by hybrids to complete dominance by one parental taxon. Such a year‐to‐year taxon replacement has not been reported for the D. longispina complex before. Our data on this hybrid complex illustrate that high‐resolution genotyping is essential for the understanding of ecological and evolutionary outcomes of hybridization in partially clonal taxa.  相似文献   

18.
The volatile composition of needles from three F1 hard pine hybrids produced by the controlled hybridization and their parental species were researched with gas chromatography (GC) and gas chromatography/mass spectrometry (GC/MS) in order to explore the utility of terpenes in hybrid identification (their differentiation from the parental species) as well as confirmation of hybridity. The analysed hybrids were: 1. Pinus nigra J. F. Arnold × Pinus sylvestris L. (= nisy), 2. P. nigra × Pinus densiflora Siebold et Zucc. (= nide) and 3. P. nigra × Pinus thunbergiana Franco (= nith). A total of 55 compounds were identified. All identified compounds were terpenes, except trans-2-hexenal.Three analysed F1 hybrids showed the same qualitative pattern of the needle volatile composition as their parental species. However, there were quantitative differences in several major terpenes. The volatile composition of the needles from the hybrids nisy were equally similar to both parents, the hybrids nide were more similar to the female parent (P. nigra), whereas the hybrids nith were more similar to the male parent (P. thunbergiana). According to the content of germacrene D, as the specific component of P. nigra (female parent of the three analysed F1 hybrids), all hybrids were intermediary in relation to the parental species. The content of Δ-3-carene (the specific component of P. sylvestris) in the hybrids nisy was also intermediary. The hybrids nide had a higher content of thunbergol (specific component of P. densiflora) than the other analysed hybrids. In view of the content of β-pinene, the specific component of P. thunbergiana, the hybrids nith were intermediary to the parental species and that content was considerably higher than in the other analysed hybrids. The intermediary quality of F1 hybrids for these specific components in relation to the parental species confirms their hybrid character.The needle volatile composition analysis as well as the previous morphometric analysis confirm the hybrid character of three F1 hybrids, whose female parent is P. nigra, and male parents are P. sylvestris, P. densiflora, i.e. P. thunbergiana.  相似文献   

19.
Forty-nine populations of brook charr (Salvelinus fontinalis) from Algonquin Park lakes and rivers were analysed for mitochondrial DNA variation. Haplotypic distributions of wild fish in the Algonquin Park region of Ontario, Canada, predominantly reflect postglacial dispersal patterns into the region in spite of substantial hatchery plantings. Two major refugial groupings colonized this region. Northern and eastern watersheds (Amable du Fond, Bonnechere, and northern Petawawa), were colonized primarily by haplotype 1 fish (B1 phylogenetic assemblage), while Oxtongue River, southern Petawawa, and York River populations were colonized predominately by fish from the B2 and A mtDNA phylogenetic assemblages. Fish with haplotypes in the A and B2 phylogenetic assemblages are common in the Lake Huron drainage. All watersheds in the Park drain into the Ottawa River, except the Oxtongue drainage (part of the Lake Huron watershed). This suggests that early glacial outflows south of the Algonquin Park region (Kirkfield-Trent) may have been colonized by fish that initially invaded ‘Ontario island’ (south-western Ontario), while fish which invaded northern Algonquin Park were derived from a different refugial grouping(s) which may have involved colonization both up the Ottawa River drainage, and/or from a more westerly (Mississippian) refugial grouping. A majority of the populations in Algonquin Park have been planted with hatchery reared brook charr since the 1940s. The Hills Lake or ‘Domestic’ strain was used almost exclusively for these plantings. Comparisons of mtDNA haplotypic distributions in hatchery and wild fish suggests that hatchery females had minimal spawning success and/or their progeny had poor survivorship in the wild.  相似文献   

20.
Coexistence of sperm‐dependent asexual hybrids with their sexual progenitors depends on genetic and ecological interactions between sexual and asexual forms. In this study, we investigate genotypic composition, modes of hybridogenetic gametogenesis and habitat preferences of European water frogs (Pelophylax esculentus complex) in a region of sympatric occurrence. Pelophylax esculentus complex comprises parental species P. ridibundus and P. lessonae, whose primary hybridization leads to hybridogenetic lineages of P. esculentus. Hybrids clonally transmit one parental genome and mate with the other parental species, forming a new generation of hybrids. In the region of western Slovakia, we found syntopic occurrence of diploid and triploid hybrids with P. lessonae, syntopic occurrence of all three taxa as well as the existence of pure P. ridibundus populations. All triploid hybrids were exclusively male possessing one ridibundus and two different lessonae genomes (RLL). Sex ratio in diploid hybrids was substantially female‐biased. Irrespective of the population composition, diploid hybrids excluded the lessonae genome from their germ line and produced ridibundus gametes. Contrarily, RLL males unequivocally eliminated the ridibundus genome and produced diploid lessonae sperms. Perpetuation of RLL males in studied populations is most likely achieved by their mating with diploid hybrid females. The composition of water frog populations is also shaped by taxon‐specific habitat preferences. While P. ridibundus preferred larger water bodies (gravelpits, fishery ponds, dead river arms), P. lessonae was most frequently found in marshes and smaller sandpits. Pelophylax esculentus occupied predominately similar habitats as its sexual host P. lessonae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号