首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adeno-associated virus (AAV) type 2 and 5 proteins Rep52 and Rep40 were polyubiquitinated during AAV-adenovirus type 5 (Ad5) coinfection and during transient transfection in either the presence or absence of Ad5 E4orf6 and E1b-55k. Polyubiquitination of small Rep proteins via lysine 48 (K48) linkages, normally associated with targeting of proteins for proteasomal degradation, was detected only in the presence of E4orf6. The small Rep proteins were ubiquitinated via lysine 63 (K63) following transfection in either the presence or absence of E4orf6 or following coinfection with Ad5. E4orf6/E1b-55k-dependent K48-specific polyubiquitination of small Rep proteins could be inhibited using small interfering RNA (siRNA) to cullin 5.Together, adenovirus type 5 (Ad5) early gene products E1a, E1b-55k, E2a, E4orf6, and virus-associated (VA) RNA can support efficient replication of adeno-associated virus (AAV) (4, 31). E4orf6 and E1b-55k are known to interact with cellular cullin 5 (cul5), elongins B and C, and the ring box protein Rbx1 to form an E3 ubiquitin ligase complex that specifically targets a small population of cellular proteins for degradation by the proteasome (1, 7, 21, 22, 24, 27). This property has been implicated in a number of functions presumed to be required for both Ad and AAV replication (3, 8-10, 17, 23, 24, 34, 35).Previously, only p53, Mre11, DNA ligase IV, and integrin α3 had been shown to be substrates of the Ad5 E3 ubiquitin ligase complex (1, 7, 21, 22, 24, 27); however, we have recently shown (16, 17) that the small Rep proteins and capsid proteins of AAV5 are also degraded in the presence of Ad E4orf6 and E1b-55k in a proteasome-dependent manner. These proteins were restored to levels required during infection by the action of VA RNA (17). The targeting for degradation of AAV5 protein by the E4orf6/E1b-55k E3 ubiquitin ligase complex required functional BC-box motifs in E4orf6 and could be inhibited by depletion of the scaffolding protein cullin 5 using directed small interfering RNA (siRNA) (16). In addition, the degradation of AAV5 protein was partially prevented by overexpression of pUBR7, a plasmid that generates a dominant-negative ubiquitin (16). The role this targeted degradation plays in the life cycle of AAV has not yet been clarified; however, E4orf6 mutants that cannot function in this regard do not support AAV replication as well as wild-type E4orf6 (R. Nayak and D. J. Pintel, unpublished data). Degradation of Mre11 by the Ad5 E3 ligase has also been implicated in allowing efficient Ad5 and AAV replication (24). Ubiquitination of AAV Rep proteins during viral infection, however, has not previously been reported.  相似文献   

2.
3.
4.
5.
6.
7.
8.
9.
10.
Taking advantage of the wide tropism of baculoviruses (BVs), we constructed a recombinant BV (BVCAR) pseudotyped with human coxsackie B-adenovirus receptor (CAR), the high-affinity attachment receptor for adenovirus type 5 (Ad5), and used the strategy of piggybacking Ad5-green fluorescent protein (Ad5GFP) vector on BVCAR to transduce various cells refractory to Ad5 infection. We found that transduction of all cells tested, including human primary cells and cancer cell lines, was significantly improved using the BVCAR-Ad5GFP biviral complex compared to that obtained with Ad5GFP or BVCARGFP alone. We determined the optimal conditions for the formation of the complex and found that a high level of BVCAR-Ad5GFP-mediated transduction occurred at relatively low adenovirus vector doses, compared with transduction by Ad5GFP alone. The increase in transduction was dependent on the direct coupling of BVCAR to Ad5GFP via CAR-fiber knob interaction, and the cell attachment of the BVCAR-Ad5GFP complex was mediated by the baculoviral envelope glycoprotein gp64. Analysis of the virus-cell binding reaction indicated that the presence of BVCAR in the complex provided kinetic benefits to Ad5GFP compared to the effects with Ad5GFP alone. The endocytic pathway of BVCAR-Ad5GFP did not require Ad5 penton base RGD-integrin interaction. Biodistribution of BVCAR-Ad5Luc complex in vivo was studied by intravenous administration to nude BALB/c mice and compared to Ad5Luc injected alone. No significant difference in viscerotropism was found between the two inocula, and the liver remained the preferred localization. In vitro, coagulation factor X drastically increased the Ad5GFP-mediated transduction of CAR-negative cells but had no effect on the efficiency of transduction by the BVCAR-Ad5GFP complex. Various situations in vitro or ex vivo in which our BVCAR-Ad5 duo could be advantageously used as gene transfer biviral vector are discussed.Adenoviruses (Ads) are extensively used today as gene transfer vectors for in vitro, ex vivo, and in vivo gene transfer protocols (reviewed in reference 65). Cell entry of human Ad type 5 (Ad5), the serotype most widely used as a gene vector, occurs most efficiently by the receptor-mediated endocytosis pathway (reviewed in references 64 and 65), via the coxsackievirus B-adenovirus receptor (CAR) (3, 77) and αvβ3/αvβ5 integrins (84, 85), although alternative receptors have been described (11, 12, 14, 27). Cell surface expression of CAR differs with different cell types, and this represents one of the major determinants of the efficiency of Ad5-mediated transduction (43). The ubiquitous nature of CAR is responsible for transduction of nontarget tissues by Ad vectors. Paradoxically, many target cells such as dermal fibroblasts, synoviocytes, mesenchymal stem cells (MSCs), peripheral blood mononuclear cells (PBMCs), and dendritic cells (DCs), express no or very low levels of CAR at their surface and are relatively resistant to Ad transduction (14, 15, 19). Much work has been done with different strategies to promote the entry of Ad5 into CAR-defective cells. These strategies include (i) the genetic modification of Ad capsid proteins to carry cell ligands (2, 15, 20, 28, 49, 50), (ii) pseudotyping Ad5 vectors with fibers from other serotypes (13, 57, 74, 86), (iii) using bispecific adapters or peptides (25, 40), (iv) chemical modification of Ad (9, 42), and (v) tethering on nanoparticles (7). The limitations to these strategies are that modifications of the Ad capsid are susceptible to negatively affecting the virus growth or viability, due to an alteration of virion assembly, stability, the viral uncoating process, and/or intracellular trafficking (13, 51).Other viruses which are gaining popularity as gene transfer vectors are the baculoviruses (BVs). Autographa californica multiple nucleopolyhedrosis virus (AcMNPV) is an insect virus with a large double-stranded DNA genome packaged in a membrane-enveloped, rod-shaped protein capsid (70). Since the 1980s, the BV-insect cell expression system has been highly exploited for the production of recombinant proteins. In the mid-1990s, it was shown that recombinant BVs carrying reporter genes under cytomegalovirus (CMV) or retroviral Rous sarcoma virus promoter efficiently expressed reporter genes in mammalian cells (6, 22, 38, 41, 44, 69), as well as in avian cells (72) and fish cells (45). Since then, BVs have been reported to transduce numerous cells originating from species as various as humans, bovines, and fish (8, 32, 41, 73). As gene transfer vectors, BVs have been found to be rapidly inactivated by human serum complement (23), but exposing decay-accelerating factor (DAF) at the surface of BV by fusion with the baculoviral envelope glycoprotein can overcome this inactivation (33). BVs also have a good biosafety profile due to their incapacity to replicate in mammalian cells (31).Taking advantage of the ability of BVs to transduce a large repertoire of cells of invertebrate and vertebrate origins, including human primary cells, we investigated whether a recombinant AcMNPV could act as a carrier or macroadapter for Ad5 vectors to enter Ad5-refractory cells. To this aim, we pseudotyped AcMNPV virions with the high-affinity receptor for Ad5, the human CAR glycoprotein (BVCAR), to enable the formation of complexes between vector particles of BVCAR and Ad5-green fluorescent protein (Ad5GFP) mediated by Ad5 fiber and CAR interaction. We found that transduction of cell lines which were poorly permissive to Ad5, including human cancer cells and primary cells, was significantly improved using this strategy of piggybacking Ad5 vector on BVCAR. More importantly, the increase in BVCAR-Ad5-mediated transduction was obtained with a low range of Ad5 inputs, i.e., at multiplicities of infection (MOI) of less than 50 Ad5 vector particles per cell. We also found that the cell transduction enhancement observed with BVCAR-Ad5 required the direct coupling of Ad5 to BVCAR via fiber-CAR binding and that the cell attachment of the complex was mediated by the baculoviral envelope glycoprotein gp64. Kinetic analysis of virus-cell binding showed that the presence of BVCAR in the complex was beneficial to Ad5 vector, not only in terms of tropism but also in terms of number of cell-bound virions and rate of cell attachment. In addition, the endocytic pathway of BVCAR-Ad5 did not require Ad5 penton base RGD-integrin interaction. When administered in vivo to nude BALB/c mice, BVCAR-Ad5 complex showed the same biodistribution as that of control Ad5 vector injected alone. In vitro, transduction of CAR-negative cells by BVCAR-Ad5 was insensitive to coagulation factor X (FX), in contrast to Ad5 vector alone.Our novel strategy of gene delivery using the BVCAR-Ad5 duo could be advantageously applied to various situations in vitro or ex vivo, e.g., for transducing Ad5-refractory cells when Ad5 capsid modifications cannot be envisaged, when oncolytic Ads need to be delivered to tumors via nonpermissive cell carriers belonging to the immune system, or when the simultaneous delivery of two transgenes by two separate vectors might be beneficial in terms of timing and/or level of cellular expression of the transgene products.  相似文献   

11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号