首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of anthropogenic global environmental change on biotic and abiotic processes have been reported in aquatic systems across the world. Complex synergies between concurrent environmental stressors and the resilience of the system to regime shifts, which vary in space and time, determine the capacity for marine systems to maintain structure and function with global environmental change. Consequently, an interdisciplinary approach that facilitates the development of new methods for the exchange of knowledge between scientists across multiple scales is required to effectively understand, quantify and predict climate impacts on marine ecosystem services. We use a literature review to assess the limitations and assumptions of current pathways to exchange interdisciplinary knowledge and the transferability of research findings across spatial and temporal scales and levels of biological organization to advance scientific understanding of global environmental change in marine systems. We found that species‐specific regional scale climate change research is most commonly published, and “supporting” is the ecosystem service most commonly referred to in publications. In addition, our paper outlines a trajectory for the future development of integrated climate change science for sustaining marine ecosystem services such as investment in interdisciplinary education and connectivity between disciplines.  相似文献   

2.
Concern about human modification of Earth's ecosystems has recently motivated ecologists to address how global change drivers will impact the simultaneous provisioning of multiple functions, termed ecosystem multifunctionality (EMF). However, metrics of EMF have often been applied in global change studies with little consideration of the information they provide beyond single functions, or how and why EMF may respond to global change drivers. Here, we critically review the current state of this rapidly expanding field and provide a conceptual framework to guide the effective incorporation of EMF in global change research. In particular, we emphasize the need for a priori identification and explicit testing of the biotic and abiotic mechanisms through which global change drivers impact EMF, as well as assessing correlations among multiple single functions because these patterns underlie shifts in EMF. While the role of biodiversity in mediating global change effects on EMF has justifiably received much attention, empirical support for effects via other biotic and physicochemical mechanisms are also needed. Studies also frequently stated the importance of measuring EMF responses to global change drivers to understand the potential consequences for multiple ecosystem services, but explicit links between measured functions and ecosystem services were missing from many such studies. While there is clear potential for EMF to provide novel insights to global change research, predictive understanding will be greatly improved by insuring future research is strongly hypothesis‐driven, is designed to explicitly test multiple abiotic and biotic mechanisms, and assesses how single functions and their covariation drive emergent EMF responses to global change drivers.  相似文献   

3.
Studies of adaptive evolution have experienced a recent revival in population genetics of natural populations and there is currently much focus on identifying genomic signatures of selection in space and time. Insights into local adaptation, adaptive response to global change and evolutionary consequences of selective harvesting can be generated through population genomics studies, allowing the separation of the effects invoked by neutral processes (drift-migration) from those due to selection. Such knowledge is important not only for improving our basic understanding of natural as well as human-induced evolutionary processes, but also for predicting future trajectories of biodiversity and for setting conservation priorities. Marine fishes possess a number of features rendering them well suited for providing general insights into adaptive genomic evolution in natural populations. These include well-described population structures, substantial and rapidly developing genomic resources and abundant archived samples enabling temporal studies. Furthermore, superior possibilities for conducting large-scale experiments under controlled conditions, due to the economic resources provided by the large and growing aquaculture industry, hold great promise for utilizing recent technological developments. Here, we review achievements in marine fish genomics to date and highlight potential avenues for future research, which will provide both general insights into evolution in high gene flow species, as well as specific knowledge which can lead to improved management of marine organisms.  相似文献   

4.
Mauricio R 《Genetica》2005,123(1-2):205-209
Ecologists study the rules that govern processes influencing the distribution and abundance of organisms, particularly with respect to the interactions of organisms with their biotic and abiotic environments. Over the past decades, using a combination of sophisticated mathematical models and rigorous experiments, ecologists have made considerable progress in understanding the complex web of interactions that constitute an ecosystem. The field of genomics runs on a path parallel to ecology. Like ecology, genomicists seek to understand how each gene in the genome interacts with every other gene and how each gene interacts with multiple, environmental factors. Gene networks connect genes as complex as the webs that connect the species in an ecosystem. In fact, genes exist in an ecosystem we call the genome. The genome as ecosystem is more than a metaphor – it serves as the conceptual foundation for an interdisciplinary approach to the study of complex systems characteristic of both genomics and ecology. Through the infusion of genomics into ecology and ecology into genomics both fields will gain fresh insight into the outstanding major questions of their disciplines.  相似文献   

5.
Climatic changes, including altered precipitation regimes, will affect key ecosystem processes, such as plant productivity and biodiversity for many terrestrial ecosystems. Past and ongoing precipitation experiments have been conducted to quantify these potential changes. An analysis of these experiments indicates that they have provided important information on how water regulates ecosystem processes. However, they do not adequately represent global biomes nor forecasted precipitation scenarios and their potential contribution to advance our understanding of ecosystem responses to precipitation changes is therefore limited, as is their potential value for the development and testing of ecosystem models. This highlights the need for new precipitation experiments in biomes and ambient climatic conditions hitherto poorly studied applying relevant complex scenarios including changes in precipitation frequency and amplitude, seasonality, extremity and interactions with other global change drivers. A systematic and holistic approach to investigate how soil and plant community characteristics change with altered precipitation regimes and the consequent effects on ecosystem processes and functioning within these experiments will greatly increase their value to the climate change and ecosystem research communities. Experiments should specifically test how changes in precipitation leading to exceedance of biological thresholds affect ecosystem resilience and acclimation.  相似文献   

6.
Human population density within 100 km of the sea is approximately three times higher than the global average. People in this zone are concentrated in coastal cities that are hubs for transport and trade – which transform the marine environment. Here, we review the impacts of three interacting drivers of marine urbanization (resource exploitation, pollution pathways and ocean sprawl) and discuss key characteristics that are symptomatic of urban marine ecosystems. Current evidence suggests these systems comprise spatially heterogeneous mosaics with respect to artificial structures, pollutants and community composition, while also undergoing biotic homogenization over time. Urban marine ecosystem dynamics are often influenced by several commonly observed patterns and processes, including the loss of foundation species, changes in biodiversity and productivity, and the establishment of ruderal species, synanthropes and novel assemblages. We discuss potential urban acclimatization and adaptation among marine taxa, interactive effects of climate change and marine urbanization, and ecological engineering strategies for enhancing urban marine ecosystems. By assimilating research findings across disparate disciplines, we aim to build the groundwork for urban marine ecology – a nascent field; we also discuss research challenges and future directions for this new field as it advances and matures. Ultimately, all sides of coastal city design: architecture, urban planning and civil and municipal engineering, will need to prioritize the marine environment if negative effects of urbanization are to be minimized. In particular, planning strategies that account for the interactive effects of urban drivers and accommodate complex system dynamics could enhance the ecological and human functions of future urban marine ecosystems.  相似文献   

7.
Global environmental change, related to climate change and the deposition of airborne N‐containing contaminants, has already resulted in shifts in plant community composition among plant functional types in Arctic and temperate alpine regions. In this paper, we review how key ecosystem processes will be altered by these transformations, the complex biological cascades and feedbacks that might result, and some of the potential broader consequences for the earth system. Firstly, we consider how patterns of growth and allocation, and nutrient uptake, will be altered by the shifts in plant dominance. The ways in which these changes may disproportionately affect the consumer communities, and rates of decomposition, are then discussed. We show that the occurrence of a broad spectrum of plant growth forms in these regions (from cryptogams to deciduous and evergreen dwarf shrubs, graminoids and forbs), together with hypothesized low functional redundancy, will mean that shifts in plant dominance result in a complex series of biotic cascades, couplings and feedbacks which are supplemental to the direct responses of ecosystem components to the primary global change drivers. The nature of these complex interactions is highlighted using the example of the climate‐driven increase in shrub cover in low‐Arctic tundra, and the contrasting transformations in plant functional composition in mid‐latitude alpine systems. Finally, the potential effects of the transformations on ecosystem properties and processes that link with the earth system are reviewed. We conclude that the effects of global change on these ecosystems, and potential climate‐change feedbacks, cannot be predicted from simple empirical relationships between processes and driving variables. Rather, the effects of changes in species distributions and dominances on key ecosystem processes and properties must also be considered, based upon best estimates of the trajectories of key transformations, their magnitude and rates of change.  相似文献   

8.
Including ecosystem functions into restoration ecology has been repeatedly suggested, yet there is limited evidence that this is taking place without bias to certain habitats, species, or functions. We reviewed the inclusion of ecosystem functions in restoration and potential relations to habitats and species by extracting 224 publications from the literature (2004–2013). Most studies investigated forests, fewer grasslands or freshwaters, and fewest wetlands or marine habitats. Of all studies, 14% analyzed only ecosystem functions, 44% considered both biotic composition and functions, 42% exclusively studied the biotic component, mostly vascular plants, more rarely invertebrates or vertebrates, and least often microbes. Most studies investigating ecosystem functions focused on nutrient cycling (26%), whereas productivity (18%), water relations (16%), and geomorphological processes (14%) were less covered; carbon sequestration (10%), decomposition (6%), and trophic interactions (6%) were rarely studied. Monitoring of ecosystem functions was common in forests and grasslands, but the functions considered depended on the study organisms. These associations indicate research opportunities for certain habitats, species, and functions. Overall, the call to include ecosystem functions in restoration has been heard; however, a lack of clarity about the ecosystem functions to be included and deficits of feasible field methods are major obstacles for a functional approach. Restoration ecology should learn from recent advances in rapid assessment of ecosystem functions, and by a closer integration with biodiversity–ecosystem functioning research. Not all functions need to be measured in all ecosystems, but more functions than the few commonly addressed would improve the understanding of restored ecosystems.  相似文献   

9.
景观生态学:海洋生态系统研究的一个新视角   总被引:5,自引:0,他引:5  
全球海洋生态系统作为异质性的复杂巨系统是一类景观生态系统 ,具有明显的等级结构 ,因此 ,景观生态学的原理和方法完全可以应用到海洋生态学的研究中来。生态系统的尺度限制了海洋生态学向更加宏观的方向进一步发展 ,在景观的水平上 ,运用景观生态学的理论和方法可以更好地在多个尺度上开展深入广泛的研究。本文不仅讨论了海洋景观的空间异质性 ,而且就海洋景观生态学的若干研究方向进行了探讨。  相似文献   

10.
Multiple marine ecological disturbances are ecosystem health indicators. An approach is described for systematically reconstructing spatial and temporal marine disturbance regimes related to human morbidity, wildlife mortality, disease events and harmful algal blooms. The approach is based upon recovery of meta-data from a survey of published literature and consolidation of geographic information layers from pre-existing sources. The examples provided are from the HEED (Health Ecological and Economic Dimensions) project conducted in the Northwestern Atlantic Ocean. Eight general disturbance indicator categories from HEED are suggested for assessing the health of the Baltic Sea ecosystem. These disturbance indicators represent 147 distinct impact types that may be used to examine relationships among impact causes, effects and costs from disturbances observed for near coastal and open waters. The HEED prototype is compatible with the objectives of the health module of the Baltic Sea's Large Marine Ecosystem initiative and consistent with implementation of the Baltic Sea Agenda 21 program. The general disturbance research methodology may be applied to the Baltic Sea or any other multijurisdiction marine region and these methods are not restricted to marine systems  相似文献   

11.
China''s seas cover nearly 5 million square kilometers extending from the tropical to the temperate climate zones and bordering on 32,000 km of coastline, including islands. Comprehensive systematic study of the marine biodiversity within this region began in the early 1950s with the establishment of the Qingdao Marine Biological Laboratory of the Chinese Academy of Sciences. Since that time scientists have carried out intensive multidisciplinary research on marine life in the China seas and have recorded 22,629 species belonging to 46 phyla. The marine flora and fauna of the China seas are characterized by high biodiversity, including tropical and subtropical elements of the Indo-West Pacific warm-water fauna in the South and East China seas, and temperate elements of North Pacific temperate fauna mainly in the Yellow Sea. The southern South China Sea fauna is characterized by typical tropical elements paralleled with the Philippine-New Guinea-Indonesia Coral triangle typical tropical faunal center.This paper summarizes advances in studies of marine biodiversity in China''s seas and discusses current research mainly on characteristics and changes in marine biodiversity, including the monitoring, assessment, and conservation of endangered species and particularly the strengthening of effective management. Studies of (1) a tidal flat in a semi-enclosed embayment, (2) the impact of global climate change on a cold-water ecosystem, (3) coral reefs of Hainan Island and Xisha-Nansha atolls, (4) mangrove forests of the South China Sea, (5) a threatened seagrass field, and (6) an example of stock enhancement practices of the Chinese shrimp fishery are briefly introduced. Besides the overexploitation of living resources (more than 12.4 million tons yielded in 2007), the major threat to the biodiversity of the China seas is environmental deterioration (pollution, coastal construction), particularly in the brackish waters of estuarine environments, which are characterized by high productivity and represent spawning and nursery areas for several economically important species. In the long term, climate change is also a major threat. Finally, challenges in marine biodiversity studies are briefly discussed along with suggestions to strengthen the field. Since 2004, China has participated in the Census of Marine Life, through which advances in the study of zooplankton and zoobenthos biodiversity were finally summarized.  相似文献   

12.
Marine environments are inhabited by a broad representation of the tree of life, yet our understanding of speciation in marine ecosystems is extremely limited compared with terrestrial and freshwater environments. Developing a more comprehensive picture of speciation in marine environments requires that we 'dive under the surface' by studying a wider range of taxa and ecosystems is necessary for a more comprehensive picture of speciation. Although studying marine evolutionary processes is often challenging, recent technological advances in different fields, from maritime engineering to genomics, are making it increasingly possible to study speciation of marine life forms across diverse ecosystems and taxa. Motivated by recent research in the field, including the 14 contributions in this issue, we highlight and discuss six axes of research that we think will deepen our understanding of speciation in the marine realm: (a) study a broader range of marine environments and organisms; (b) identify the reproductive barriers driving speciation between marine taxa; (c) understand the role of different genomic architectures underlying reproductive isolation; (d) infer the evolutionary history of divergence using model‐based approaches; (e) study patterns of hybridization and introgression between marine taxa; and (f) implement highly interdisciplinary, collaborative research programmes. In outlining these goals, we hope to inspire researchers to continue filling this critical knowledge gap surrounding the origins of marine biodiversity.  相似文献   

13.
Genome analysis of marine photosynthetic microbes and their global role   总被引:7,自引:0,他引:7  
Four recently completed genome projects on marine Cyanobacteria have started the age of comparative genomics for marine microbes. Cyanobacteria are a group of photoautotrophic bacteria that have traditionally been under-represented in studies of complete genome sequences, as have microbes from the marine environment in general. The new genome information is of crucial importance to understanding their role in oceanic primary production, global carbon cycling and functioning of the biosphere. Marine microbes are a still almost untapped resource for the identification of novel beneficial metabolites and activities. The availability of an increasing number of genome sequences will eventually lead to a sustained development of marine biotechnology.  相似文献   

14.
Marine reserves (or No-Take Zones) are implemented to protect species and habitats, with the aim of restoring a balanced ecosystem. Although the benefits of marine reserves are commonly monitored, there is a lack of insight into the potential detriments of such highly protected waters. High population densities attained within reserves may induce negative impacts such as unfavourable trophic cascades and disease outbreaks. Hence, we investigated the health of lobster populations in the UK’s Marine Conservation Zone (MCZ) at Lundy Island. Comparisons were made between the fished, Refuge Zone (RZ) and the un-fished, No-Take Zone (NTZ; marine reserve). We show ostensibly positive effects such as increased lobster abundance and size within the NTZ; however, we also demonstrate apparent negative effects such as increased injury and shell disease. Our findings suggest that robust cost-benefit analyses of marine reserves could improve marine reserve efficacy and subsequent management strategies.  相似文献   

15.
海洋外来物种入侵生态学研究   总被引:9,自引:0,他引:9  
海洋外来物种入侵已成为最为严重的全球性环境问题之一。海洋生态系统类型多样、环境复杂,其生物入侵的监测、控制与管理难度相对较大。我国对陆地外来生物的入侵已开展了较为深入的研究,但对于海洋外来生物的入侵研究仍处于起步阶段,对其入侵监测、入侵机制、入侵危害的程度以及防治等问题缺乏基础数据。本文在分析国内外海洋外来生物入侵现状的基础上,概述其入侵生态学研究形势及相关成果,包括海洋外来物种的入侵途径、入侵过程、入侵生态效应以及全球变化对入侵的影响等。海洋外来生物的入侵可能对海洋生态系统造成直接或间接的影响,如种间竞争破坏生态环境、与土著种杂交造成遗传污染、病原生物及有毒藻类导致海洋生态灾害加剧等。此外,从政策和法规、入侵风险评估、监测和公共宣传教育、生物信息系统和有效管理机制等方面提出对我国海洋外来物种入侵的防治策略。本研究为我国海洋外来物种的进一步研究提供了参考。  相似文献   

16.
Marine sediments cover most of the ocean bottom, and the organisms that reside in these sediments therefore constitute the largest faunal assemblage on Earth in areal coverage. The biomass in these sediments is dominated by macrofauna, a grouping of invertebrate polychaetes, molluscs, crustaceans and other phyla based on size. Globally, only a small portion of marine habitats have been sampled for macrofauna, but sampled areas have led to global estimates of macrofaunal species number ranging from 500,000 to 10,000,000. Most of these species are undescribed, and global syntheses of patterns of individual taxa and biodiversity are few and based on limited samples. The significance of biodiversity in marine sediments to ecosystem processes is poorly understood, but individual species and functional groups are known to carry out activities that have global importance. Macrofaunal activity impacts global carbon, nitrogen and sulphur cycling, transport, burial and metabolism of pollutants, secondary production including commercial species, and transport of sediments. Documented extinctions of marine macrofauna are few, but the ramifications of species loss through habitat shrinkage and undocumented extinctions are unknown. Limited data suggest there is substantial functional redundancy in macrofauna within trophic groups but whether this redundancy is sufficient to allow species loss without significantly altering ecosystem processes is unknown. Sorely needed are experiments that test specific hypotheses on biodiversity, redundancy, and ecosystem processes as they relate to marine macrofauna.  相似文献   

17.
Existing knowledge shapes our understanding of ecosystems and is critical for ecosystem-based management of the world''s natural resources. Typically this knowledge is biased among taxa, with some taxa far better studied than others, but the extent of this bias is poorly known. In conjunction with the publically available World Registry of Marine Species database (WoRMS) and one of the world''s premier electronic scientific literature databases (Web of Science®), a text mining approach is used to examine the distribution of existing ecological knowledge among taxa in coral reef, mangrove, seagrass and kelp bed ecosystems. We found that for each of these ecosystems, most research has been limited to a few groups of organisms. While this bias clearly reflects the perceived importance of some taxa as commercially or ecologically valuable, the relative lack of research of other taxonomic groups highlights the problem that some key taxa and associated ecosystem processes they affect may be poorly understood or completely ignored. The approach outlined here could be applied to any type of ecosystem for analyzing previous research effort and identifying knowledge gaps in order to improve ecosystem-based conservation and management.  相似文献   

18.
The Atlantic killer whale (Orcinus orca) is a top‐level marine predator with a global range, being found in all of Earth's oceans. The potential interaction between killer whales and marine renewable energy projects requires surveillance and monitoring efforts that call for new technologies, with marine radar showing promise in the field. Marine radar images recorded at the European Marine Energy Centre (EMEC) were used to track a pair of male killer whales undertaking Surface Active Behavior (SAB) with visual observations used as validation. Using a tidal prediction model, the tide‐adjusted, radar‐derived target speeds between SAB events provide estimates of swim speeds averaging 4 m/s and time between SAB events of 30 s. The similarities between the radar signatures of the animals and sea clutter, combined with their low occurrence compared to other imaged phenomena renders automatic detection with this system difficult. However, the combination of opportunistic radar imagery and independent visual observation has allowed the radar signature of one form of killer whale SAB to be documented. It is hoped that with a greater number of validated observations such as these that automated, radar‐based identification and the benefits it will bring to long‐term observations at MRE sites will be possible.  相似文献   

19.
Microbial communities play important roles in all ecosystems and yet a comprehensive understanding of the ecological processes governing the assembly of these communities is missing. To address the role of biotic interactions between microorganisms in assembly and for functioning of the soil microbiota, we used a top-down manipulation approach based on the removal of various populations in a natural soil microbial community. We hypothesized that removal of certain microbial groups will strongly affect the relative fitness of many others, therefore unraveling the contribution of biotic interactions in shaping the soil microbiome. Here we show that 39% of the dominant bacterial taxa across treatments were subjected to competitive interactions during soil recolonization, highlighting the importance of biotic interactions in the assembly of microbial communities in soil. Moreover, our approach allowed the identification of microbial community assembly rule as exemplified by the competitive exclusion between members of Bacillales and Proteobacteriales. Modified biotic interactions resulted in greater changes in activities related to N- than to C-cycling. Our approach can provide a new and promising avenue to study microbial interactions in complex ecosystems as well as the links between microbial community composition and ecosystem function.Subject terms: Soil microbiology, Ecology  相似文献   

20.
陆地生态系统包含一系列时空连续、尺度多元且互相联系的生态学过程。由于大部分生态学过程都受到温度调控, 因此气候变暖会对全球陆地生态系统产生深远的影响。近年来, 全球变化生态学的基本科学问题之一是陆地生态系统的关键过程如何响应与适应全球气候变暖。围绕该问题, 该文梳理了近年来的研究进展, 重点关注植物生理生态过程、物候期、群落动态、生产力及其分配、凋落物与土壤有机质分解、养分循环等过程对温度升高的响应与适应机理。通过定量分析近20年来发表于主流期刊的相关论文, 展望了该领域的前沿方向, 包括物种性状对生态系统过程的预测能力, 生物地球化学循环的耦合过程, 极端高温与低温事件的响应与适应机理, 不对称气候变暖的影响机理和基于过程的生态系统模拟预测等。基于这些研究进展, 该文建议进一步研究陆地生态系统如何适应气候变暖, 更多关注我国的特色生态系统类型, 并整合实验、观测或模型等研究手段开展跨尺度的合作研究。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号