首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
2.
Predator-prey relationships among prokaryotes have received little attention but are likely to be important determinants of the composition, structure, and dynamics of microbial communities. Many species of the soil-dwelling myxobacteria are predators of other microbes, but their predation range is poorly characterized. To better understand the predatory capabilities of myxobacteria in nature, we analyzed the predation performance of numerous Myxococcus isolates across 12 diverse species of bacteria. All predator isolates could utilize most potential prey species to effectively fuel colony expansion, although one species hindered predator swarming relative to a control treatment with no growth substrate. Predator strains varied significantly in their relative performance across prey types, but most variation in predatory performance was determined by prey type, with Gram-negative prey species supporting more Myxococcus growth than Gram-positive species. There was evidence for specialized predator performance in some predator-prey combinations. Such specialization may reduce resource competition among sympatric strains in natural habitats. The broad prey range of the Myxococcus genus coupled with its ubiquity in the soil suggests that myxobacteria are likely to have very important ecological and evolutionary effects on many species of soil prokaryotes.Predation plays a major role in shaping both the ecology and evolution of biological communities. The population and evolutionary dynamics of predators and their prey are often tightly coupled and can greatly influence the dynamics of other organisms as well (1). Predation has been invoked as a major cause of diversity in ecosystems (11, 12). For example, predators may mediate coexistence between superior and inferior competitors (2, 13), and differential trajectories of predator-prey coevolution can lead to divergence between separate populations (70).Predation has been investigated extensively in higher organisms but relatively little among prokaryotes. Predation between prokaryotes is one of the most ancient forms of predation (27), and it has been proposed that this process may have been the origin of eukaryotic cells (16). Prokaryotes are key players in primary biomass production (44) and global nutrient cycling (22), and predation of some prokaryotes by others is likely to significantly affect these processes. Most studies of predatory prokaryotes have focused on Bdellovibrionaceae species (e.g., see references 51, 55, and 67). These small deltaproteobacteria prey on other Gram-negative cells, using flagella to swim rapidly until they collide with a prey cell. After collision, the predator cells then enter the periplasmic space of the prey cell, consume the host cell from within, elongate, and divide into new cells that are released upon host cell lysis (41). Although often described as predatory, the Bdellovibrionaceae may also be considered to be parasitic, as they typically depend (apart from host-independent strains that have been observed [60]) on the infection and death of their host for their reproduction (47).In this study, we examined predation among the myxobacteria, which are also deltaproteobacteria but constitute a monophyletic clade divergent from the Bdellovibrionaceae (17). Myxobacteria are found in most terrestrial soils and in many aquatic environments as well (17, 53, 74). Many myxobacteria, including the model species Myxococcus xanthus, exhibit several complex social traits, including fruiting body formation and spore formation (14, 18, 34, 62, 71), cooperative swarming with two motility systems (64, 87), and group (or “wolf pack”) predation on both bacteria and fungi (4, 5, 8, 9, 15, 50). Using representatives of the genus Myxococcus, we tested for both intra- and interspecific variation in myxobacterial predatory performance across a broad range of prey types. Moreover, we examined whether prey vary substantially in the degree to which they support predatory growth by the myxobacteria and whether patterns of variation in predator performance are constant or variable across prey environments. The latter outcome may reflect adaptive specialization and help to maintain diversity in natural populations (57, 59).Although closely related to the Bdellovibrionaceae (both are deltaproteobacteria), myxobacteria employ a highly divergent mode of predation. Myxobacteria use gliding motility (64) to search the soil matrix for prey and produce a wide range of antibiotics and lytic compounds that kill and decompose prey cells and break down complex polymers, thereby releasing substrates for growth (66). Myxobacterial predation is cooperative both in its “searching” component (6, 31, 82; for details on cooperative swarming, see reference 64) and in its “handling” component (10, 29, 31, 32), in which secreted enzymes turn prey cells into consumable growth substrates (56, 83). There is evidence that M. xanthus employs chemotaxis-like genes in its attack on prey cells (5) and that predation is stimulated by close contact with prey cells (48).Recent studies have revealed great genetic and phenotypic diversity within natural populations of M. xanthus, on both global (79) and local (down to centimeter) scales (78). Phenotypic diversity includes variation in social compatibility (24, 81), the density and nutrient thresholds triggering development (33, 38), developmental timing (38), motility rates and patterns (80), and secondary metabolite production (40). Although natural populations are spatially structured and both genetic diversity and population differentiation decrease with spatial scale (79), substantial genetic diversity is present even among centimeter-scale isolates (78). No study has yet systematically investigated quantitative natural variation in myxobacterial predation phenotypes across a large number of predator genotypes.Given the previous discovery of large variation in all examined phenotypes, even among genetically extremely similar strains, we anticipated extensive predatory variation as well. Using a phylogenetically broad range of prey, we compared and contrasted the predatory performance of 16 natural M. xanthus isolates, sampled from global to local scales, as well as the commonly studied laboratory reference strain DK1622 and representatives of three additional Myxococcus species: M. flavescens (86), M. macrosporus (42), and M. virescens (63) (Table (Table1).1). In particular, we measured myxobacterial swarm expansion rates on prey lawns spread on buffered agar (31, 50) and on control plates with no nutrients or with prehydrolyzed growth substrate.

TABLE 1.

List of myxobacteria used, with geographical origin
Organism abbreviation used in textSpeciesStrainGeographic originReference(s)
A9Myxococcus xanthusA9Tübingen, Germany78
A23Myxococcus xanthusA23Tübingen, Germany78
A30Myxococcus xanthusA30Tübingen, Germany78
A41Myxococcus xanthusA41Tübingen, Germany78
A46Myxococcus xanthusA46Tübingen, Germany78
A47Myxococcus xanthusA47Tübingen, Germany78
A75Myxococcus xanthusA75Tübingen, Germany78
A85Myxococcus xanthusA85Tübingen, Germany78
TVMyxococcus xanthusTvärminneTvärminne, Finland79
PAKMyxococcus xanthusPaklenicaPaklenica, Croatia79
MADMyxococcus xanthusMadeira 1Madeira, Portugal79
WARMyxococcus xanthusWarwick 1Warwick, UK79
TORMyxococcus xanthusToronto 1Toronto, Ontario, Canada79
SUL2Myxococcus xanthusSulawesi 2Sulawesi, Indonesia79
KALMyxococcus xanthusKalalauKalalau, HI79
DAVMyxococcus xanthusDavis 1ADavis, CA79
GJV1Myxococcus xanthusGJV 1Unknown35, 72
MXFL1Myxococcus flavescensMx fl1Unknown65
MXV2Myxococcus virescensMx v2Unknown65
CCM8Myxococcus macrosporusCc m8Unknown65
Open in a separate window  相似文献   

3.
Par-1 is an evolutionarily conserved protein kinase required for polarity in worms, flies, frogs, and mammals. The mammalian Par-1 family consists of four members. Knockout studies of mice implicate Par-1b/MARK2/EMK in regulating fertility, immune homeostasis, learning, and memory as well as adiposity, insulin hypersensitivity, and glucose metabolism. Here, we report phenotypes of mice null for a second family member (Par-1a/MARK3/C-TAK1) that exhibit increased energy expenditure, reduced adiposity with unaltered glucose handling, and normal insulin sensitivity. Knockout mice were protected against high-fat diet-induced obesity and displayed attenuated weight gain, complete resistance to hepatic steatosis, and improved glucose handling with decreased insulin secretion. Overnight starvation led to complete hepatic glycogen depletion, associated hypoketotic hypoglycemia, increased hepatocellular autophagy, and increased glycogen synthase levels in Par-1a−/− but not in control or Par-1b−/− mice. The intercrossing of Par-1a−/− with Par-1b−/− mice revealed that at least one of the four alleles is necessary for embryonic survival. The severity of phenotypes followed a rank order, whereby the loss of one Par-1b allele in Par-1a−/− mice conveyed milder phenotypes than the loss of one Par-1a allele in Par-1b−/− mice. Thus, although Par-1a and Par-1b can compensate for one another during embryogenesis, their individual disruption gives rise to distinct metabolic phenotypes in adult mice.Cellular polarity is a fundamental principle in biology (6, 36, 62). The prototypical protein kinase originally identified as a regulator of polarity was termed partitioning defective (Par-1) due to early embryonic defects in Caenorhabditis elegans (52). Subsequent studies revealed that Par-1 is required for cellular polarity in worms, flies, frogs, and mammals (4, 17, 58, 63, 65, 71, 89). An integral role for Par-1 kinases in multiple signaling pathways has also been established, and although not formally addressed, multifunctionality for individual Par-1 family members is implied in reviews of the list of recognized upstream regulators and downstream substrates (Table (Table1).1). Interestingly, for many Par-1 substrates the phosphorylated residues generate 14-3-3 binding sites (25, 28, 37, 50, 59, 61, 68, 69, 78, 95, 101, 103). 14-3-3 binding in turn modulates both nuclear/cytoplasmic as well as cytoplasmic/membrane shuttling of target proteins, thus allowing Par-1 activity to establish intracellular spatial organization (15, 101). The phosphorylation of Par-1 itself promotes 14-3-3 binding, thereby regulating its subcellular localization (37, 59, 101).

TABLE 1.

Multifunctionality of Par-1 polarity kinase pathwaysa
Regulator or substrateFunctionReference(s)
Regulators (upstream function)
    LKB1Wnt signaling, Peutz-Jeghers syndrome, insulin signal transduction, pattern formation2, 63, 93
    TAO1MEK3/p38 stress-responsive mitogen-activated protein kinase (MAPK) pathway46
    MARKKNerve growth factor signaling in neurite development and differentiation98
    aPKCCa2+/DAG-independent signal transduction, cell polarity, glucose metabolism14, 37, 40, 45, 59, 75, 95
    nPKC/PKDDAG-dependent, Ca2+-independent signal transduction (GPCR)101
    PAR-3/PAR-6/aPKC(−); regulates Par-1, assembly of microtubules, axon-dendrite specification19
    GSK3β(−); tau phosphorylation, Alzheimer''s dementia, energy metabolism, body patterning54, 97
    Pim-1 oncogene(−); G2/M checkpoint, effector of cytokine signaling and Jak/STAT(3/5)5
    CaMKI(−); Ca2+-dependent signal transduction, neuronal differentiation99
Substrates (downstream function)
    Cdc25CRegulation of mitotic entry by activation of the cdc2-cyclin B complex25, 72, 78, 103
    Class II HDACControl of gene expression and master regulator of subcellular trafficking28, 50
    CRTC2/TORC2Gluconeogenesis regulator via LKB1/AMPK/TORC2 signaling, PPARγ1a coactivator49
    Dlg/PSD-95Synaptogenesis and neuromuscular junction, tumor suppressor (102)104
    DisheveledWnt signaling, translocation of Dsh from cytoplasmic vesicles to cortex73, 94
    KSR1Regulation of the Ras-MAPK pathway68, 69
    MAP2/4/TAUDynamic instability (67, 83) of microtubules, Alzheimer''s dementia (30)11, 31-33, 47, 70, 96
    Mib/NotchMind bomb (Mib degradation and repression of Notch signaling results in neurogenesis)57, 74, 81
    Par3/OSKAR/LglCytoplasmic protein segregation, cell polarity, and asymmetric cell division7, 10
    Pkp2Desmosome assembly and organization; nuclear shuttling68, 69
    PTPH1Linkage between Ser/Thr and Tyr phosphorylation-dependent signaling103
    Rab11-FIPRegulation of endocytosis (23), trafficking of E-cadherin (64)34
Open in a separate windowaLKB1 also is known as Par-4; MARKK also is known as Ste20-like; (−), inhibitory/negative regulation has been shown; GPCR, G protein-coupled receptors. MARKK is highly homologous to TAO-1 (thousand-and-one amino acid kinase) (46).The mammalian Par-1 family contains four members (Table (Table2).2). Physiological functions of the Par-1b kinase have been studied using targeted gene knockout approaches in mice (9, 44). Two independently derived mouse lines null for Par-1b have implicated this protein kinase in diverse physiological processes, including fertility (9), immune system homeostasis (44), learning and memory (86), the positioning of nuclei in pancreatic beta cells (35, 38), and growth and metabolism (43).

TABLE 2.

Terminology and localization of mammalian Par-1 family members
SynonymsaSubcellular localization
Par-1a, MARK3, C-TAK1, p78/KP78, 1600015G02Rik, A430080F22Rik, Emk2, ETK-1, KIAA4230, mKIAA1860, mKIAA4230, M80359Basolateralb/apicalc
Par-1b, EMK, MARK2, AU024026, mKIAA4207Basolateral
Par1c, MARK1Basolateral
Par1d, MARK4, MARKL1Not asymmetricd
Open in a separate windowaPar should not to be confused with protease-activated receptor 1 (PAR1 [29]); C-TAK1, Cdc twenty-five C-associated kinase 1; MARK, microtubule affinity regulating kinase; MARKL, MAP/microtubule affinity-regulating kinase-like 1.bBasolateral to a lesser degree than Par-1b (37).cHuman KP78 is asymmetrically localized to the apical surface of epithelial cells (76).dVariant that does not show asymmetric localization in epithelial cells when overexpressed (95).Beyond Par-1b, most information regarding the cell biological functions of the Par-1 kinases comes from studies of Par-1a. Specifically, Par-1a has been implicated in pancreatic (76) and hepatocarcinogenesis (51), as well as colorectal tumors (77), hippocampal function (100), CagA (Helicobacter pylori)-associated epithelial cell polarity disruption (82), and Peutz-Jeghers syndrome (48), although the latter association has been excluded recently (27). As a first step toward determining unique and redundant functions of Par-1 family members, mice disrupted for a second member of the family (Par-1a/MARK3/C-TAK1) were generated. We report that Par-1a−/− mice are viable and develop normally, and adult mice are hypermetabolic, have decreased white and brown adipose tissue mass, and unaltered glucose/insulin handling. However, when challenged by a high-fat diet (HFD), Par-1a−/− mice exhibit resistance to hepatic steatosis, resistance to glucose intolerance, and the delayed onset of obesity relative to that of control littermates. Strikingly, overnight starvation results in a complete depletion of glycogen and lipid stores along with an increase in autophagic vacuoles in the liver of Par-1a−/− but not Par-1b−/− mice. Correspondingly, Par-1a−/− mice develop hypoketotic hypoglycemia. These findings reveal unique metabolic functions of two Par-1 family members.  相似文献   

4.
5.
6.
7.
The biological, serological, and genomic characterization of a paramyxovirus recently isolated from rockhopper penguins (Eudyptes chrysocome) suggested that this virus represented a new avian paramyxovirus (APMV) group, APMV10. This penguin virus resembled other APMVs by electron microscopy; however, its viral hemagglutination (HA) activity was not inhibited by antisera against any of the nine defined APMV serotypes. In addition, antiserum generated against this penguin virus did not inhibit the HA of representative viruses of the other APMV serotypes. Sequence data produced using random priming methods revealed a genomic structure typical of APMV. Phylogenetic evaluation of coding regions revealed that amino acid sequences of all six proteins were most closely related to APMV2 and APMV8. The calculation of evolutionary distances among proteins and distances at the nucleotide level confirmed that APMV2, APMV8, and the penguin virus all were sufficiently divergent from each other to be considered different serotypes. We propose that this isolate, named APMV10/penguin/Falkland Islands/324/2007, be the prototype virus for APMV10. Because of the known problems associated with serology, such as antiserum cross-reactivity and one-way immunogenicity, in addition to the reliance on the immune response to a single protein, the hemagglutinin-neuraminidase, as the sole base for viral classification, we suggest the need for new classification guidelines that incorporate genome sequence comparisons.Viruses from the Paramyxoviridae family have caused disease in humans and animals for centuries. Over the last 40 years, many paramyxoviruses isolated from animals and people have been newly described (16, 17, 22, 29, 31, 32, 36, 42, 44, 46, 49, 58, 59, 62-64). Viruses from this family are pleomorphic, enveloped, single-stranded, nonsegmented, negative-sense RNA viruses that demonstrate serological cross-reactivity with other paramyxoviruses related to them (30, 46). The subfamily Paramyxovirinae is divided into five genera: Respirovirus, Morbillivirus, Rubulavirus, Henipavirus, and Avulavirus (30). The Avulavirus genus contains nine distinct avian paramyxovirus (APMV) serotypes (Table (Table1),1), and information on the discovery of each has been reported elsewhere (4, 6, 7, 9, 12, 34, 41, 50, 51, 60, 68).

TABLE 1.

Characteristics of prototype viruses APMV1 to APMV9 and the penguin virus
StrainHostDiseaseDistributionFusion cleavagecGI accession no.
APMV1/Newcastle disease virus>250 speciesHigh mortalityWorldwideGRRQKRF45511218
InapparentWorldwideGGRQGRLa11545722
APMV2/Chicken/CA/Yucaipa/1956Turkey, chickens, psittacines, rails, passerinesDecrease in egg production and respiratory diseaseWorldwideDKPASRF169144527
APMV3/Turkey/WI/1968TurkeyMild respiratory disease and moderate egg decreaseWorldwidePRPSGRLa209484147
APMV3/Parakeet/Netherlands/449/1975Psittacines, passerines, flamingosNeurological, enteric, and respiratory diseaseWorldwideARPRGRLa171472314
APMV4/Duck/Hong Kong/D3/1975Duck, geese, chickensNone knownWorldwideVDIQPRF210076708
APMV5/Budgerigar/Japan/Kunitachi/1974Budgerigars, lorikeetsHigh mortality, enteric diseaseJapan, United Kingdom, AustraliaGKRKKRFa290563909
APMV6/Duck/Hong Kong/199/1977Ducks, geese, turkeysMild respiratory disease and increased mortality in turkeysWorldwidePAPEPRLb15081567
APMV7/Dove/TN/4/1975Pigeons, doves, turkeysMild respiratory disease in turkeysUnited States, England, JapanTLPSSRF224979458
APMV8/Goose/DE/1053/1976Ducks, geeseNone knownUnited States, JapanTYPQTRLa226343050
APMV9/Duck/NY/22/1978DucksNone knownWorldwideRIREGRIa217068693
APMV10/Penguin/Falkland Islands/324/2007Rockhopper penguinsNone KnownFalkland IslandsDKPSQRIa300432141
Open in a separate windowaRequires the addition of an exogenous protease.bProtease requirement depends on the isolate examined.cPutative.Six of these serotypes were classified in the latter half of the 1970s, when the most reliable assay available to classify paramyxoviruses was the hemagglutination inhibition (HI) assay (61). However, there are multiple problems associated with the use of serology, including the inability to classify some APMVs by comparing them to the sera of the nine defined APMVs alone (2, 8). In addition, one-way antigenicity and cross-reactivity between different serotypes have been documented for many years (4, 5, 14, 25, 29, 33, 34, 41, 51, 52, 60). The ability of APMVs, like other viruses, to show antigenic drift as it evolves over time (37, 43, 54) and the wide use and availability of precise molecular methods, such as PCR and genome sequencing, demonstrate the need for a more practical classification system.The genetic diversity of APMVs is still largely unexplored, as hundreds of avian species have never been surveyed for the presence of viruses that do not cause significant signs of disease or are not economically important. The emergence of H5N1 highly pathogenic avian influenza (HPAI) virus as the cause of the largest outbreak of a virulent virus in poultry in the past 100 years has spurred the development of surveillance programs to better understand the ecology of avian influenza (AI) viruses in aquatic birds around the globe, and in some instances it has provided opportunities for observing other viruses in wild bird populations (15, 53). In 2007, as part of a seabird health surveillance program in the Falkland Islands (Islas Malvinas), oral and cloacal swabs and serum were collected from rockhopper penguins (Eudyptes chrysocome) and environmental/fecal swab pools were collected from other seabirds.While AI virus has not yet been isolated from penguins in the sub-Antarctic and Antarctic areas, there have been two reports of serum antibodies positive to H7 and H10 from the Adélie species (11, 40). Rare isolations of APMV1, both virulent (45) and of low virulence (8), have been reported from Antarctic penguins. Sera positive for APMV1 and AMPV2 have also been reported (21, 24, 38, 40, 53). Since 1981, paramyxoviruses have been isolated from king penguins (Aptenodytes patagonicus), royal penguins (Eudyptes schlegeli), and Adélie penguins (Pygoscelis adeliae) from Antarctica and little blue penguins (Eudyptula minor) from Australia that cannot be identified as belonging to APMV1 to -9 and have not yet been classified (8, 11, 38-40). The morphology, biological and genomic characteristics, and antigenic relatedness of an APMV recently isolated from multiple penguin colonies on the Falkland Islands are reported here. Evidence that the virus belongs to a new serotype (APMV10) and a demonstration of the advantages of a whole genome system of analysis based on random sequencing followed by comparison of genetic distances are presented. Only after all APMVs are reported and classified will epidemiological information be known as to how the viruses are moving and spreading as the birds travel and interact with other avian species.  相似文献   

8.
9.
10.
11.
12.
Feeding high levels of zinc oxide to piglets significantly increased the relative abundance of ileal Weissella spp., Leuconostoc spp., and Streptococcus spp., reduced the occurrence of Sarcina spp. and Neisseria spp., and led to numerical increases of all Gram-negative facultative anaerobic genera. High dietary zinc oxide intake has a major impact on the porcine ileal bacterial composition.Zinc oxide (ZnO) is used as a feed additive for diarrhea prophylaxis in piglets (23). However, the mode of action of ZnO is not fully understood. Besides its effects on the host (10, 30, 31), high dietary zinc levels may affect the diversity of intestinal microbial communities (2, 11, 20). The prevention of postweaning diarrhea in piglets due to high dietary ZnO intake may not be directly related to a reduction of pathogenic E. coli (8) but, rather, to the diversity of the coliform community (15). Studies on the impact of high ZnO levels on the porcine ileal bacterial community are scarce but nevertheless important, as bacterial diarrhea is initiated in the small intestine (9, 17). The small intestine is a very complex habitat with many different factors shaping the bacterial community. Studies on the ecophysiology (22) and maturation of the porcine ileal microbiota (13, 27) indicate a drastic impact directly after weaning and a gradual decline of modifications during the following 2 weeks. Thus, the time point for analysis chosen in this study (14 days postweaning) does reflect a more stable period of the ileal porcine microbiota. In this study, we used bar-coded pyrosequencing of 16S rRNA genes to gain further insight into the mode of action of pharmacological levels of ZnO in the gastrointestinal tract of young pigs.Total DNA was extracted from the ileal digesta of 40- to 42-day-old piglets using a commercial kit (Qiagen stool kit; Qiagen, Hilden, Germany) and PCR amplified with unique bar-coded primer sets targeting the V1-to-V3 and the V6-to-V8 hypervariable regions (see the supplemental material for detailed methods). The rationale behind this approach was derived from the fact that no single “universal” primer pair can completely cover a complex bacterial habitat (4, 24, 32, 33). Furthermore, these studies also show that in silico information on the coverage of selected primer sets diverges from empirical results, and hence, two hypervariable regions were chosen in this study to maximize the detection of phylogenetically diverse bacterial groups.Equimolar dilutions of all samples were combined into one master sample. Pyrosequencing was performed by Agowa (Berlin, Germany) on a Roche genome sequencer FLX system using a Titanium series PicoTiterPlate. The resulting data files were uploaded to the MG-RAST server (http://metagenomics.nmpdr.org/) (19) and processed with its SEED software tool using the RDP database (5) as the reference database. After automated sequence analysis, all sequences with less than five identical reads per sample were deleted in order to increase the confidence of sequence reads and reduce bias from possible sequencing errors (12, 16). Thus, 0.43% of all sequences were not considered (1,882 of 433,302 sequences). These sequences were assigned to a total of 238 genera, of which most only occurred in a few samples (see the supplemental material). Furthermore, all unclassified sequences were removed (8.7%; 41,467 of 474,769 sequences). Due to the use of the RDP reference database, the SEED software incorrectly assigned the majority of unclassified sequences as unclassified Deferribacterales (83%; 34,393 sequences), which were actually identified as 16S soybean or wheat chloroplasts by BLAST or as cyanobacterial chloroplasts by the RDP II seqmatch tool.The pyrosequencing results for the two primer combinations were merged by taking only sequences from the primer combination that yielded the higher number of reads for a specific sequence assignment in a sample. The remaining reads were used to calculate the relative contribution of assigned sequences to total sequence reads in a sample.The Firmicutes phylum dominated the small intestinal bacterial communities in both the control group and the group with high dietary ZnO intake, with 98.3% and 97.0% of total sequence reads, respectively. No significant influence of high dietary ZnO intake was found for the main phyla Proteobacteria (0.92% versus 1.84%), Actinobacteria (0.61% versus 0.75%), Bacteroidetes (0.15% versus 0.17%), and Fusobacteria (0.09% versus 0.12%).On the order level, a total of 20 bacterial orders were detected (data not shown). Lactobacillales dominated bacterial communities in the control and high-dietary-ZnO-intake groups, with 83.37% and 93.24% of total reads. Lactic acid bacteria are well known to dominate the bacterial community in the ileum of piglets (11, 22). No significant difference between the control group and the group with high dietary ZnO intake was observed on the order level, although high dietary ZnO intake led to a strong numerical decrease for Clostridiales (14.4 ± 24.0% [mean ± standard deviation] versus 2.8 ± 1.7%), as well as to numerical increases for Pseudomonadales (0.3 ± 0.3% versus 0.6 ± 0.6%) and Enterobacteriales (0.2 ± 0.2% versus 0.5 ± 0.6%).On the genus level, a total of 103 genera were detected. Table Table11 summarizes the main 31 genera which exceeded 0.05% of total reads (see the supplemental material for a complete list). Lactobacilli clearly dominated the bacterial communities in both trial groups, but they also were numerically lower due to high dietary ZnO intake.

TABLE 1.

Bacterial genera in the ileum of piglets fed diets supplemented with 200 or 3,000 ppm ZnO
GenusProportion (% ± SD) of ileal microbiota in groupa receiving:
200 ppm ZnO3,000 ppm ZnO
Lactobacillus59.3 ± 30.640.7 ± 19.1
Weissella11.6 ± 7.8 A24.1 ± 8.3 B
Sarcina11.4 ± 20.5 A0.84 ± 1.2 B
Leuconostoc4.7 ± 3.2 A9.4 ± 3.1 B
Streptococcus1.8 ± 1.6 A5.7 ± 5.1 B
Lactococcus1.6 ± 1.52.6 ± 3.1
Veillonella0.57 ± 0.630.34 ± 0.30
Gemella0.34 ± 0.67 A0.45 ± 0.25 B
Acinetobacter0.25 ± 0.210.44 ± 0.50
Clostridium0.25 ± 0.400.22 ± 0.21
Enterococcus0.19 ± 0.150.26 ± 0.24
Acidovorax0.14 ± 0.040.16 ± 0.19
Arcobacter0.14 ± 0.150.16 ± 0.17
Neisseria0.14b0.03 ± 0.01
Enterobacter0.13 ± 0.090.29 ± 0.34
Lachnospira0.12 ± 0.130.13 ± 0.03
Peptostreptococcus0.11 ± 0.100.07 ± 0.09
Chryseobacterium0.10 ± 0.070.15 ± 0.16
Actinomyces0.09 ± 0.040.15 ± 0.16
Anaerobacter0.07 ± 0.080.02 ± 0.01
Aerococcus0.07 ± 0.040.07 ± 0.04
Dorea0.07b0.05 ± 0.05
Fusobacterium0.06 ± 0.090.08 ± 0.11
Microbacterium0.06 ± 0.010.07 ± 0.04
Carnobacterium0.06 ± 0.020.08 ± 0.13
Granulicatella0.06 ± 0.020.09 ± 0.10
Staphylococcus0.06 ± 0.040.05 ± 0.02
Facklamia0.05 ± 0.060.03 ± 0.01
Comamonas0.05 ± 0.030.04 ± 0.02
Citrobacter0.05 ± 0.020.07 ± 0.08
Erysipelothrix0.05 ± 0.010.22 ± 0.40
Open in a separate windowan = 6 piglets per trial group. A,B, results are significantly different by Kruskal-Wallis test.bSingle sample.Significant changes due to high dietary ZnO intake were observed for other lactic acid bacteria, including Weissella spp., Leuconostoc spp., and Streptococcus spp. A significant and strong decrease was observed for Sarcina spp., which is a genus of acid-tolerant strictly anaerobic species found in the intestinal tract of piglets and other mammals (6, 28, 29). This genus thus appeared to be very sensitive to modifications induced by high dietary ZnO intake.An interesting result was observed for Gram-negative Proteobacteria, (i.e., enterobacteria and relatives). Although not statistically significant, virtually all detected proteobacteria increased numerically due to high dietary ZnO intake (Enterobacter spp., Microbacterium spp., Citrobacter spp., Neisseria spp., and Acinetobacter spp.). Apparently, enterobacteria gained colonization potential by high dietary ZnO intake. This is in good agreement with the results of studies by Hojberg et al. (11), Amezcua et al. (1), and Castillo et al. (3). Therefore, the frequently observed diarrhea-reducing effect of zinc oxide may not be directly related to a reduction of pathogenic E. coli strains. Considering a possible antagonistic activity of lactobacilli against enterobacteria (25), it can be speculated that a numerical decrease of dominant lactobacilli may lead to increased colonization with Gram-negative enterobacteria. On the other hand, specific plasmid-borne genes for resistance against heavy metals have been reported for both Gram-positive and Gram-negative bacteria present in the intestine (21, 26), and an increased resistance against Zn ions may exist for Gram-negative enterobacteria. Zinc oxide is an amphoteric molecule and shows a high solubility at acid pH. The low pH in the stomach of piglets (pH 3.5 to 4.5) transforms a considerable amount of insoluble ZnO into zinc ions (54 to 84% free Zn2+ at 150 ppm and 24 ppm ZnO, respectively) (7), and thus, high concentrations of toxic zinc ions exist in the stomach. The stomach of piglets harbors large numbers of lactic acid bacteria, especially lactobacilli. Zn ions may thus lead to a modification of the lactic acid bacterial community in the stomach, and the changes observed in the ileum could have been created in the stomach. A reduction of dominant lactobacilli may thus point to an increased adaptation potential of Gram-negative facultative anaerobes and a generally increased bacterial diversity.Additionally, the direct effects of dietary ZnO on intestinal tissues include altered expression of genes responsible for glutathione metabolism and apoptosis (30), enhanced gastric ghrelin secretion, which increases feed intake (31), and increased production of digestive enzymes (10). An analysis of the intestinal morphology was beyond the scope of this study, but although ZnO concentrations are markedly increased in intestinal tissue, the influence of ZnO on morphology is apparently not always observed (10, 14, 18). Consequently, any changes in epithelial cell turnover, feed intake, or digestive capacity may influence the composition of bacterial communities in the small intestine.In conclusion, this study has shown that high dietary zinc oxide has a major impact on ileal bacterial communities in piglets. Future studies on the impact of zinc oxide in pigs should include a detailed analysis of host responses in order to identify the cause for the observed modifications of intestinal bacterial communities.  相似文献   

13.
A 30-probe assay was developed for simultaneous classification of Listeria monocytogenes isolates by lineage (I to IV), major serogroup (4b, 1/2b, 1/2a, and 1/2c), and epidemic clone (EC) type (ECI, ECIa, ECII, and ECIII). The assay was designed to facilitate rapid strain characterization and the integration of subtype data into risk-based inspection programs.Listeria monocytogenes is a facultative intracellular pathogen that can cause serious invasive illness (listeriosis) in humans and other animals. L. monocytogenes is responsible for over 25% of food-borne-disease-related deaths attributable to known pathogens and is a leading cause of food recalls due to microbial adulteration (12, 21). However, not all L. monocytogenes subtypes contribute equally to human illness, and substantial differences in the ecologies and virulence attributes of different L. monocytogenes subtypes have been identified (9, 13, 14, 23, 24, 33, 35, 36). Among the four major evolutionary lineages of L. monocytogenes, only lineages I and II are commonly isolated from contaminated food and human listeriosis patients (19, 27, 29, 33). Lineage I strains are overrepresented among human listeriosis isolates, particularly those associated with epidemic outbreaks, whereas lineage II strains are overrepresented in foods and the environment (13, 14, 24). Lineage III strains account for approximately 1% of human listeriosis cases but are common among animal listeriosis isolates and appear to be a host-adapted group that is poorly adapted to food-processing environments (6, 34-36). The ecological and virulence attributes of lineage IV are poorly understood, as this lineage is rare and was only recently described based on a small number of strains (19, 26, 29, 33).L. monocytogenes is differentiated into 13 serotypes; however, four major serogroups (4b, 1/2b, 1/2a, and 1/2c) from within lineages I and II account for more than 98% of human and food isolates (16, 31). Serogroups refer to evolutionary complexes typified by a predominant serotype but which include very rare serotypes that represent minor evolutionary variants (7, 9, 33). Phylogenetic analyses have indicated that rare serotypes may have evolved recently, or even multiple times, from one of the major serotypes (9), and numerous molecular methods fail to discriminate minor serotypes as independent groups (1, 4, 7, 9, 18, 22, 33, 38, 39). Serotyping is one of the most common methods for L. monocytogenes subtyping, and serogroup classifications are a useful component of strain characterization because ecotype divisions appear largely congruent with serogroup distinctions (16, 34). Serogroup 4b strains are of particular public health concern because contamination with these strains appears to increase the probability that a ready-to-eat (RTE) food will be implicated in listeriosis (16, 28). Serogroup 4b strains account for approximately 40% of sporadic listeriosis and also are responsible for the majority of listeriosis outbreaks despite being relatively rare contaminants of food products (9, 13, 17, 30, 34). In addition, serogroup 4b strains are associated with more severe clinical presentations and higher mortality rates than other serogroups (11, 16, 20, 31, 34). Serogroups 1/2a and 1/2b are overrepresented among food isolates but also contribute significantly to human listeriosis, whereas serogroup 1/2c rarely causes human illness and may pose a lower risk of listeriosis for humans (16). Serogroup-specific differences in association with human listeriosis are consistent with the prevalence of virulence-attenuating mutations in inlA within these serogroups (32, 34); however, a number of additional factors likely contribute to these differences.Four previously described epidemic clones (ECs; ECI, ECIa, ECII, and ECIII) of L. monocytogenes have been implicated in numerous listeriosis outbreaks and have contributed significantly to sporadic illness (15, 34). ECI, ECIa, and ECII are distinct groups within serogroup 4b that were each responsible for repeated outbreaks of listeriosis in the United States and Europe. ECIII is a lineage II clone of serotype 1/2a that persisted in the same processing facility for more than a decade prior to causing a multistate outbreak linked to contaminated turkey (15, 25). While there has been speculation that epidemic clones possess unique adaptations that explain their frequent involvement in listeriosis outbreaks (9, 34, 37), it is not clear that epidemic clones are more virulent than other strains with the same serotype. However, contamination of RTE food with EC strains would be cause for increased concern due to the previous involvement of these clones in major outbreaks of listeriosis (16).As a result of the L. monocytogenes subtype-specific differences in ecology, virulence, and association with human illness, molecular subtyping technologies have the potential to inform assessments of relative risk and to improve risk-based inspection programs. The objective of the present study was to develop a single assay for rapid and accurate classification of L. monocytogenes isolates by lineage, major serogroup, and epidemic clone in order to facilitate strain characterization and the integration of subtype data into inspection programs that are based on assessment of relative risk.A database of more than 5.3 Mb of comparative DNA sequences from 238 L. monocytogenes isolates (9, 33-35) was scanned for single nucleotide polymorphisms that could be used to differentiate lineages, major serogroups, and epidemic clones via a targeted multilocus genotyping (TMLGT) approach. The acronym TMLGT is used to distinguish this approach from previously published multilocus genotyping (MLGT) assays that were lineage specific and designed for haplotype discrimination (9, 33). To provide for simultaneous interrogation of the selected polymorphisms via TMLGT, six genomic regions (Table (Table1)1) were coamplified in a multiplex PCR. While the previous MLGT assays were based on three lineage-specific multiplexes and required prior identification of lineage identity, TMLGT was designed to target variation across all of the lineages simultaneously and is based on a unique set of amplicons. PCR was performed in 50-μl volumes with 1× High Fidelity PCR buffer (Invitrogen Life Technologies), 2 mM MgSO4, 100 μM deoxynucleoside triphosphate (dNTP), 300 nM primer, 1.5 U Platinum Taq high-fidelity DNA polymerase (Invitrogen Life Technologies), and 100 ng of genomic DNA. PCR consisted of an initial denaturation of 90 s at 96°C, followed by 40 cycles of 30 s at 94°C, 30 s at 50°C, and 90 s at 68°C. Amplification products were purified using Montage PCR cleanup filter plates (Millipore) and served as a template for allele-specific primer extension (ASPE) reactions utilizing subtype-specific probes.

TABLE 1.

Primers used in multiplex amplification for the TMLGT assay
AmpliconPositionaGene(s)PrimerSequence (5′-3′)b
INLa455381-456505inlAinl2-a1GTCCTTGATAGTCTACTG
inl2-a2ACCAAATTAGTAATCTAGCAC
INLb457726-458752inlBinl-f1dGAATTRTTTAGYCAAGAATGT
inlb-rCTACCGGRACTTTATAGTAYG
LMO325116-326096lmo0298-lmo0300lmo-a1AAGGCTTACAAGATGGCT
lmo1a-1rAAATAATAYGTGATACCGAC
VGCa205366-206622plcA, hlyplca-fCTCATCGTATCRTGTGTACC
hly-rTCTGGAAGGTCKTGTAGGTTC
VGCb208447-209465mplra_mpl-fGTGGAYAGAACTCATAAAGG
ra_mpl-rACTCCCTCCTYGTGATASGCT
VGCc209728-211239actAvgc1a-2fTTCMATRCCAGCAGAACG
vgc1a-2rGCAGACCTAATAGCAATGTTG
Open in a separate windowaCorresponding nucleotide positions in the complete genome sequence of L. monocytogenes strain EGD-e (GenBank accession number NC_003210).bSee IUPAC codes for definition of degenerate bases.ASPE was performed in multiplex reactions including 30 probes, with each lineage (I to IV), major serogroup (4b, 1/2b, 1/2a, and 1/2c), and epidemic clone (ECI, ECIa, ECII, and ECIII) targeted by two different probes (Table (Table2).2). In addition, positive-control probes were included to confirm the presence of each amplicon in the multiplex PCR. As serogroups and epidemic clones are nested within a particular lineage, probes for these groups were designed to be specific within the appropriate lineage and values for these probes were evaluated only for isolates of the appropriate lineage. For example, serogroup 1/2a probes were evaluated only for isolates that were positive for lineage II probes. ASPE probes were designed with a unique 5′ sequence tag specific to individual sets of xMAP fluorescent polystyrene microspheres (Luminex Corporation) used to sort extension products. Extension and hybridization reactions were performed as described previously (9) except microspheres were twice pelleted by centrifugation (4 min at 2,250 × g) and resuspended in 75 μl 1× TM buffer prior to being pelleted and resuspended in 100 μl 1× TM buffer containing 2 μg/ml streptavidin-R-phycoerythrin (Invitrogen Life Technologies). Samples were incubated for 15 min at 37°C prior to detecting the microsphere complexes with a Luminex 100 flow cytometer (Luminex Corporation). The median fluorescence intensity (MFI) from biotinylated extension products attached to 100 microspheres was measured for each probe. The average MFI from three template-free control samples was also determined and subtracted from the raw MFI of each sample to account for background fluorescence. Probe performance was initially evaluated via the index of discrimination (ID) as described by Ducey et al. (9), and probes with ID values less than 2.0 were redesigned.

TABLE 2.

TMLGT probes and probe performance data
ProbebTarget (n)cProbe sequencedIDeSensitivity (%)Specificity (%)
VGCb-21Lineage I (506)AATCCTTTCTTTAATCTCAAATCAgcggaagcttgggaagcggtc7.3100100
VGCa-94Lineage ICTTTCTATCTTTCTACTCAATAATcaacccgatgttcttcctgtc51.7100100
VGCc-8Lineage II (340)AATCCTTTTACATTCATTACTTACattagctgattcgctttcct14.1100100
INLb-51Lineage IITCATTTCAATCAATCATCAACAATagcgccaataaagctggc21.9100100
VGCb-19Lineage III (50)TCAATCAATTACTTACTCAAATACccgctattaaaatgtactcca31.0100100
VGCb-29Lineage IIIAATCTTACTACAAATCCTTTCTTTggtataccgctattaaaatgt45.1100100
LMO-17Lineage IV (10)CTTTAATCCTTTATCACTTTATCAgaaccaaacaatgttattggt11.8100100
VGCa-27Lineage IVCTTTTCAAATCAATACTCAACTTTttaacgacggtaacgtgccac58.3100100
INLb-84Serogroup 4b (213)TCAACTAACTAATCATCTATCAATggtaaaaatatgcgaatattg9.7100100
INLb-85Serogroup 4bATACTACATCATAATCAAACATCActcgtgaacaagctttcc5.5100100
INLb-16Serogroup 1/2b (293)AATCAATCTTCATTCAAATCATCAggtaaaaatatgcgtatctta11.7100100
INLb-100Serogroup 1/2bCTATCTTTAAACTACAAATCTAACgtgaataagctatcggtctat13.0100100
LMO-42Serogroup 1/2a (268)CTATCTTCATATTTCACTATAAACtggcgttgctgrctaagtttg6.6100100
VGCb-40Serogroup 1/2aCTTTCTACATTATTCACAACATTAaatcaagcsgctcatatgaag10.410098.6
LMO-9Serogroup 1/2c (72)TAATCTTCTATATCAACATCTTACtttactggtgaaatggcg13.5100100
VGCb-5Serogroup 1/2cCAATTCAAATCACAATAATCAATCaagattacgaatcgcttccac20.898.6100
LMO-10ECI (111)ATCATACATACATACAAATCTACAatgattaaaagtcagggaaag19.0100100
LMO-28ECICTACAAACAAACAAACATTATCAAaatcgaggcttacgaacgt23.7100100
VGCc-80ECIa (44)CTAACTAACAATAATCTAACTAACactacaacgaaaacagcgc10.7100100
VGCa-35ECIaCAATTTCATCATTCATTCATTTCAgttacttttatgtcgagt9.2100100
LMO-12ECII (35)TACACTTTCTTTCTTTCTTTCTTTataccgattatttggacggtt3.8100100
LMO-30ECIITTACCTTTATACCTTTCTTTTTACgacttgtagcagttgatttcaa7.5100100
VGCc-45ECIII (10)TCATTTCACAATTCAATTACTCAActcttatttgcttttgttggtc21.110099.4
INLa-3ECIIITACACTTTATCAAATCTTACAATCgagcttaatgaaaatcagcta17.010099.4
INLa-1INLa controlCTTTAATCTCAATCAATACAAATCagaagtggaagctgggaaNAaNANA
INLb-13INLb controlCAATAAACTATACTTCTTCACTAAtgcacctaaacctccgacNANANA
LMO-88LMO controlTTACTTCACTTTCTATTTACAATCccgtttccttatgccacaNANANA
VGCa-23VGCa controlTTCAATCATTCAAATCTCAACTTTcaagycctaagacgccaatcgNANANA
VGCb-25VGCb controlCTTTTCAATTACTTCAAATCTTCAgcatgcgttagttcatgrccaNANANA
VGCc-82VGCc controlTACATACACTAATAACATACTCATgactgcatgctagaatctaagNANANA
Open in a separate windowaNA, not applicable for positive amplicon control probes.bLuminex microsphere sets (Luminex Corporation) used for hybridization reactions are indicated following the hyphen.cn, number of isolates representing the target subtype among the 906 tested isolates.dThe 5′ sequence tag portions of extension probes are capitalized. See IUPAC codes for definitions of degenerate bases.eID, index of discrimination.Validation of the TMLGT assay was performed using 906 L. monocytogenes isolates for which the lineage, major serogroup, and epidemic clone type had been determined independently (see Table S1 in the supplemental material). A subset of 92 isolates, including at least five isolates from each lineage, serogroup, and epidemic clone type, was used to evaluate the discriminatory power of subtype-specific probes and the repeatability of the assay (see Table S1). Two independent runs of the 30-probe TMLGT assay produced identical results for these 92 isolates. In addition, genotypes matched expectations for all isolate/probe combinations, and the fluorescence intensities for positive genotypes (those targeted by a particular probe) were 3.8 to 58.3 (mean, 18.5) times as high as background values for isolates with negative genotypes (those not targeted by a particular probe) (Table (Table2).2). The performances of individual probes also were assessed in terms of sensitivity and specificity, where sensitivity is defined as the percentage of positive samples that produced positive results and specificity indicates the percentage of negative samples that produce negative results (5). Based on results from all 906 isolates analyzed by TMLGT, probe sensitivity was at least 98.6% and 23 of the 24 subtype-specific probes exhibited 100% sensitivity (Table (Table2).2). The specificities for all probes were also greater than 98.6%, and 21 of the 24 subtype-specific probes exhibited 100% specificity (Table (Table22).All but three of the 906 isolates in the validation panel were fully and accurately typed relative to lineage, serogroup, and epidemic clone by using the TMLGT assay (typeability, 99.9%; accuracy of isolate assignment, 99.8%). One of the lineage II isolates, NRRL B-33880, could not be assigned to a serogroup based on the TMLGT results because this isolate was positive for one of the serogroup 1/2a probes (VGCb-40) and one of the serogroup 1/2c probes (LMO-9). This isolate was previously identified as a member of serogroup 1/2c based on mapping lineage-specific MLGT data onto a multilocus phylogeny (34) but produced a serogroup 1/2a-specific banding pattern (data not shown) with the multiplex PCR assay described by Doumith et al. (7). Similar strains, including the common laboratory strain EGD-e, were found to have genomes that are more similar to serogroup 1/2c strains than to strains from the 1/2a serogroup (8, 33) and likely represent intermediates in the evolution of the 1/2c clade from 1/2a ancestors. There is a poor correlation between genomic and antigenic variation for such isolates (34), consistent with the ambiguous results produced by application of the TMLGT assay to NRRL B-33880. The two other problematic isolates, NRRL B-33555 and NRRL B-33559, were accurately identified based on TMLGT data as lineage II isolates from the 1/2a serogroup. However, these two isolates were positive for both ECIII-specific probes in the TMLGT assay but have lineage-specific MLGT haplotypes (Lm2.46), indicating that they are representatives of a sister group closely related to ECIII (33).In 2005, the Food Safety and Inspection Service (FSIS) implemented an approach to inspection that includes consideration of relative risk in order to determine L. monocytogenes sampling frequency among establishments that produce certain RTE products. This approach incorporates information on production volume, outgrowth potential in the product, steps taken to prevent postlethality contamination, and FSIS sampling history. However, L. monocytogenes subtype-specific variation in ecology and virulence indicates that information on the lineage, major serogroup, and epidemic clone identities of isolates could be used to inform assessments of relative risk and to improve inspection programs that are based on consideration of risk. Several PCR-based methods have been described for differentiation of various combinations of these subgroups (1-3, 5, 7, 10, 35, 37); however, these approaches have focused on a single subgroup or a smaller set of subgroups than is differentiated by TMLGT analysis. Although we previously developed a set of three MLGT assays that can be used to differentiate all of the major serogroups and epidemic clones of L. monocytogenes (9, 33, 34), those assays did not include probes for lineage discrimination and require identification of the lineage prior to application of one of three unique sets of probes. In addition, the MLGT assays were designed to maximize strain discrimination, as opposed to subgroup identification, and require the use of at least twice as many probes as is needed for TMLGT analysis. MLGT data analysis is also more complicated than analysis of TMLGT data, and serogroup or epidemic clone type identification via MLGT requires phylogenetic analyses to place novel haplotypes within an established phylogenetic framework.In the present study, we developed the first assay for simultaneous discrimination of the four lineages, the four major serogroups, and the four previously described epidemic clones of L. monocytogenes. The assay includes multiple markers for each of these subtype probes as well as control probes to ensure that negative probe data were not the result of amplification failure, providing a high degree of internal validation required for use in inspection programs that consider risk in making sampling decisions. In addition, the utility of the assay has been validated with a large and diverse panel of 906 isolates, including 567 isolates from FSIS surveillance of RTE products and processing facilities (see Table S1 in the supplemental material). Data produced by the TMLGT assay are amenable to high-throughput analysis, and a simple spreadsheet utility has been developed to semiautomate subtype identifications and to alert investigators to potentially conflicting probe data (available upon request). In addition to having a potential application in inspection programs, the TMLGT assay provides a rapid and accurate means of characterizing L. monocytogenes isolates from different environments, which would facilitate pathogen tracking and improve understanding of L. monocytogenes ecology.   相似文献   

14.
15.
16.
17.
The human gut microbe Bacteroides fragilis can alter the expression of its surface molecules, such as capsular polysaccharides and SusC/SusD family outer membrane proteins, through reversible DNA inversions. We demonstrate here that DNA inversions at 12 invertible regions, including three gene clusters for SusC/SusD family proteins, were controlled by a single tyrosine site-specific recombinase (Tsr0667) encoded by BF0667 in B. fragilis strain YCH46. Genetic disruption of BF0667 diminished or attenuated shufflon-type DNA inversions at all three susC/susD genes clusters, as well as simple DNA inversions at nine other loci, most of which colocalized with susC/susD family genes. The inverted repeat sequences found within the Tsr0667-regulated invertible regions shared the consensus motif sequence AGTYYYN4GDACT. Tsr0667 specifically mediated the DNA inversions of 10 of the 12 regions, even under an Escherichia coli background when the invertible regions were exposed to BF0667 in E. coli cells. Thus, Tsr0667 is an additional globally acting DNA invertase in B. fragilis, which probably involves the selective expression of SusC/SusD family outer membrane proteins.The human gut harbors an abundant and diverse microbiota. Bacteroides is one of the most abundant genera of human gut microflora (10, 17, 20), and the biological activities of Bacteroides species are deeply integrated into human physiology through nutrient degradation, the production of short-chain fatty acids, or immunomodulatory molecules (11-14, 24). Recent genomic analyses of Bacteroides have revealed that the bacteria possess redundant abilities not only to bind and degrade otherwise indigestible dietary polysaccharides but also to produce vast arrays of capsular polysaccharide (5, 19, 38, 39). These functional redundancies have been established by the extensive duplication of various genes that encode molecules such as glycosylhydrolases, glycosyltransferases, and outer membrane proteins of the SusC/SusD family (starch utilization system) known to be involved in polysaccharide recognition and transport (7, 27, 28, 30). It has been assumed that these functional redundancies of Bacteroides contribute to the stability of the gut ecosystem (3, 21, 23, 32, 39).Another characteristic feature common in Bacteroides species is that the expression of some of the genes is altered in an on-off manner by reversible DNA inversions at gene promoters or within the protein-coding regions (5, 9, 19, 38, 39). These phase-variable phenotypes are associated with surface architectures such as capsular polysaccharides and SusC/SusD family proteins (5, 6, 16, 19). Our previous genomic analyses of Bacteroides fragilis strain YCH46 revealed that it contained as many as 31 invertible regions in its chromosome (19). These invertible regions can be grouped into six classes according to the internal motif sequences within inverted repeat sequences (IRs) (Table (Table1).1). The DNA inversions within these regions are thought to be controlled by site-specific DNA invertases specific to each class. B. fragilis strain YCH46 contains 33 tyrosine site-specific recombinases (Tsr) genes and four serine site-specific recombinases (Ssr) genes. Generally, DNA invertases mediate DNA inversions at adjacent regions, such as FimB and FimE, that flip their immediate downstream promoters to generate a phase-variable phenotype of type I pili in Escherichia coli (15). B. fragilis is unique in that this anaerobe possesses not only locally acting DNA invertases but also globally acting DNA invertases that mediate DNA inversions at distant loci (8, 29). It has been reported that B. fragilis possesses at least two types of master DNA invertase that regulate DNA inversions at multiple loci simultaneously (8, 29). One is Mpi, an Ssr that mediates the on-off switching of 13 promoter regions (corresponding to class I regions in B. fragilis strain YCH46), including seven promoter regions for capsular polysaccharide biosynthesis in B. fragilis strain NCTC9343 (8). The other master DNA invertase is Tsr19, a Tsr that regulates DNA inversions at two distantly located promoter regions (corresponding to class IV regions in B. fragilis strain YCH46) associated with the large encapsulation phenotype (6, 26, 29). The invertible regions contain specific consensus motifs within the IRs corresponding to each DNA invertase and constitute a regulatory unit. We designated this type of regulatory unit as an “inverlon,” which consists of at least two invertible regions controlled by a single master DNA invertase.

TABLE 1.

Classification of the invertible regions in B. fragilis strain YCH46 based on internal motif sequences within IRs
ClassaNo.Consensus motif sequencesbMaster DNA invertase genecRegulated genesSource or reference(s)
I14ARACGTWCGTBF2765 (mpi)Capsular polysaccharide biosynthesis genes8
II10AGTTC{N5}GAACTBF0667susC/susD paralogsThis study
III3GTTAC{N7}GTAACBF3038, BF4033, BF4283Putative outer membrane protein genes36
IV2TACTTANTAGGTAANAGAABF2766Extracellular polysacharide biosynthesis genes6, 26, 29
V1TCTGCAAAGNCTTTGCAGABF0667susC/susD paralogsThis study
VI1ACTAAGTTCTATCGGBF0667susC/susD paralogsThis study
Open in a separate windowaOur previous classification of the invertible regions identified in B. fragilis strain YCH46 genome (19).bConsensus motif sequences found within IRs are shown. R = A or G, W = A or T, and N = A, G, C, or T.cThe gene identifications in B. fragilis strain YCH46 genome are shown.Our previous studies indicated that an additional inverlon other than the Mpi- and Tsr19-regulated inverlons is present in B. fragilis, based on the finding that at least 10 invertible regions (corresponding to class II regions in B. fragilis strain YCH46) contain a particular consensus motif sequence (AAGTTCN5GAACTT) within their IRs (19) but do not appear to colocalize with a DNA invertase gene. The majority of the class II regions were associated with the selective switching of a particular set of susC/susD family genes. Since the SusC/SusD family of outer membrane proteins play an important role in polysaccharide utilization by Bacteroides (3, 23, 32), the inverlon associated with the phase variation of SusC/SusD family proteins would likely be involved in the survival of this anaerobe in the distal gut.In the present study, we sought to identify the DNA invertase regulating the additional inverlon in B. fragilis. Our results indicated that the Tsr encoded by BF0667 is a master DNA invertase for this inverlon (designated the Tsr0667-inverlon) in B. fragilis.  相似文献   

18.
The microbial biotransformation of Δ9-tetrahydrocannabinol was investigated using a collection of 206 alkane-degrading strains. Fifteen percent of these strains, mainly gram-positive strains from the genera Rhodococcus, Mycobacterium, Gordonia, and Dietzia, yielded more-polar derivatives. Eight derivatives were produced on a mg scale, isolated, and purified, and their chemical structures were elucidated with the use of liquid chromatography-mass spectrometry, 1H-nuclear magnetic resonance (1H-NMR), and two-dimensional NMR (1H-1H correlation spectroscopy and heteronuclear multiple bond coherence). All eight biotransformation products possessed modified alkyl chains, with hydroxy, carboxy, and ester functionalities. In a number of strains, β-oxidation of the initially formed C5 carboxylic acid led to the formation of a carboxylic acid lacking two methylene groups.Δ9-Tetrahydrocannabinol (Δ9-THC) is the decarboxylated product of the corresponding Δ9-THC acid, the major cannabinoid present in the cannabis plant (Cannabis sativa L., Cannabaceae). This compound is officially registered as a drug for the stimulation of appetite and antiemesis in patients under chemotherapy and human immunodeficiency virus therapy regimens. Other biological activities ascribed to this compound include lowering intraocular pressure in glaucoma, acting as an analgesic for muscle relaxation, immunosuppression, sedation, bronchodilation, and neuroprotection (11).Δ9-THC and many of its derivatives are highly lipophilic and poorly water soluble. Calculations of the n-octanol/water partition coefficient (Ko/w) of Δ9-THC at neutral pH vary between 6,000, using the shake flask method (15), and 9.44 × 106, by reverse-phase high-performance liquid chromatography estimation (19). The poor water solubility and high lipophilicity of cannabinoids cause their absorption across the lipid bilayer membranes and fast elimination from blood circulation. In terms of the “Lipinsky rule of 5” (14), the high lipophilicity of cannabinoids hinders the further development of these compounds into large-scale pharmaceutical products.To generate more water-soluble analogues, one can either apply de novo chemical synthesis (as, e.g., in reference 16) or modify naturally occurring cannabinoids, e.g., by introducing hydroxy, carbonyl, or carboxy groups. Chemical hydroxylation of compounds such as cannabinoids is difficult (Δ9-THC is easily converted into Δ8-THC under mild conditions), and therefore microbial biotransformation of cannabinoids is potentially a more fruitful option to achieve this goal.So far, studies on biotransformation of Δ9-THC were mainly focused on fungi, which led to the formation of a number of mono- and dihydroxylated derivatives. Previous reports on the biotransformation of cannabinoids by various microorganisms are summarized in Table Table1.1. The aim of the present study was to test whether bacterial strains are capable of transforming Δ9-THC into new products (with potentially better pharmaceutical characteristics) at a higher yield and specificity than previously found for fungal strains. For this purpose, we have chosen to use a collection of alkane-degrading strains, since it was shown in previous studies (8, 18, 20) that alkane oxygenases often display a broad substrate range. Production of novel cannabinoid derivatives that might have interesting pharmacological activities was another objective of this project.

TABLE 1.

Previous biotransformation experiments conducted using various microorganisms to transform cannabinoids
Cannabinoid(s)aMicroorganism(s) usedNo. of transformed productsReference
Δ9-THCCunninghamella blakesleeana63
Δ8-THCPellicularia filamentosa421
Δ8-THCStreptomyces lavendulae421
Δ6a,10a-THC400 cultures (soil microorganisms)Various1
Nabilone400 cultures (soil microorganisms)Various1
Δ6a,10a-THC358 cultures containing bacteria, actinomycetes, and molds310
Δ9-THC, Δ8-THC, CBD, CBNSyncephalastrum racemosum, Mycobacterium rhodochrousVarious17
Δ9-THCChaetomium globosum37
Δ9-THC51 fungal strains84
NabiloneMicrobesVarious2
Δ9-THCFusarium nivale, Gibberella fujikuroi, and Thamnidium elegans85
Open in a separate windowaCBD, cannabidiol; CBN, cannabinol.  相似文献   

19.
Arthrobacter sp. strain JBH1 was isolated from nitroglycerin-contaminated soil by selective enrichment. Detection of transient intermediates and simultaneous adaptation studies with potential intermediates indicated that the degradation pathway involves the conversion of nitroglycerin to glycerol via 1,2-dinitroglycerin and 1-mononitroglycerin, with concomitant release of nitrite. Glycerol then serves as the source of carbon and energy.Nitroglycerin (NG) is manufactured widely for use as an explosive and a pharmaceutical vasodilator. It has been found as a contaminant in soil and groundwater (7, 9). Due to NG''s health effects as well as its highly explosive nature, NG contamination in soils and groundwater poses a concern that requires remedial action (3). Natural attenuation and in situ bioremediation have been used for remediation in soils contaminated with certain other explosives (16), but the mineralization of NG in soil and groundwater has not been reported.To date, no pure cultures able to grow on NG as the sole carbon, energy, and nitrogen source have been isolated. Accashian et al. (1) observed growth associated with the degradation of NG under aerobic conditions by a mixed culture originating from activated sludge. The use of NG as a source of nitrogen has been studied in mixed and pure cultures during growth on alternative sources of carbon and energy (3, 9, 11, 20). Under such conditions, NG undergoes a sequential denitration pathway in which NG is transformed to 1,2-dinitroglycerin (1,2DNG) or 1,3DNG followed by 1-mononitroglycerin (1MNG) or 2MNG and then glycerol, under both aerobic and anaerobic conditions (3, 6, 9, 11, 20), and the enzymes involved in denitration have been characterized in some detail (4, 8, 15, 21). Pure cultures capable of completely denitrating NG as a source of nitrogen when provided additional sources of carbon include Bacillus thuringiensis/cereus and Enterobacter agglomerans (11) and a Rhodococcus species (8, 9). Cultures capable of incomplete denitration to MNG in the presence of additional carbon sources were identified as Pseudomonas putida, Pseudomonas fluorescens (4), an Arthobacter species, a Klebsiella species (8, 9), and Agrobacterium radiobacter (20).Here we describe the isolation of bacteria able to degrade NG as the sole source of carbon, nitrogen, and energy. The inoculum for selective enrichment was soil historically contaminated with NG obtained at a facility that formerly manufactured explosives located in the northeastern United States. The enrichment medium consisted of minimal medium prepared as previously described (17) supplemented with NG (0.26 mM), which was synthesized as previously described (18). During enrichment, samples of the inoculum (optical density at 600 nm [OD600] ∼ 0.03) were diluted 1/16 in fresh enrichment medium every 2 to 3 weeks. Isolates were obtained by dilution to extinction in NG-supplemented minimal medium. Cultures were grown under aerobic conditions in minimal medium at pH 7.2 and 23°C or in tryptic soy agar (TSA; 1/4 strength).Early stages of enrichment cultures required extended incubation with lag phases of over 200 h and exhibited slow degradation of NG (less than 1 μmol substrate/mg protein/h). After a number of transfers over 8 months, the degradation rates increased substantially (2.2 μmol substrate/mg protein/h). A pure culture capable of growth on NG was identified based on 16S rRNA gene analysis (504 bp) as an Arthrobacter species with 99.5% similarity to Arthrobacter pascens (GenBank accession no. GU246730). Purity of the cultures was confirmed microscopically and by formation of a single colony type on TSA plates. 16S gene sequencing and identification were done by MIDI Labs (Newark, DE) and SeqWright DNA Technology Services (Houston, TX). The Arthrobacter cells stained primarily as Gram-negative rods with a small number of Gram-positive cocci (data not shown); Gram variability is also a characteristic of the closely related Arthrobacter globiformis (2, 19). The optimum growth temperature is 30°C, and the optimum pH is 7.2. Higher pH values were not investigated because NG begins to undergo hydrolysis above pH 7.5 (data not shown). The isolated culture can grow on glycerol, acetate, succinate, citrate, and lactate, with nitrite as the nitrogen source. Previous authors described an Arthrobacter species able to use NG as a nitrogen source in the presence of additional sources of carbon. However, only dinitroesters were formed, and complete mineralization was not achieved (9).To determine the degradation pathway, cultures of the isolated strain (5 ml of inoculum grown on NG to an OD600 of 0.3) were grown in minimal medium (100 ml) supplemented with NG at a final concentration of 0.27 mM. Inoculated bottles and abiotic controls were continuously mixed, and NG, 1,2DNG, 1,3DNG, 1MNG, 2MNG, nitrite, nitrate, CO2, total protein, and optical density were measured at appropriate intervals. Nitroesters were analyzed with an Agilent high-performance liquid chromatograph (HPLC) equipped with an LC-18 column (250 by 4.6 mm, 5 μm; Supelco) and a UV detector at a wavelength of 214 nm (13). Methanol-water (50%, vol/vol) was used as the mobile phase at a flow rate of 1 ml/min. Nitrite and nitrate were analyzed with an ion chromatograph (IC) equipped with an IonPac AS14A anion-exchange column (Dionex, CA) at a flow rate of 1 ml/min. Carbon dioxide production was measured with a Micro Oxymax respirometer (Columbus Instruments, OH), and total protein was quantified using the Micro BCA protein assay kit (Pierce Biotechnology, IL) according to manufacturer''s instructions. During the degradation of NG the 1,2DNG concentration was relatively high at 46 and 72 h (Fig. (Fig.1).1). 1,3DNG, detected only at time zero, resulted from trace impurities in the NG stock solution. Trace amounts of 1MNG appeared transiently, and trace amounts of 2MNG accumulated and did not disappear. Traces of nitrite at time zero were from the inoculum. The concentration of NG in the abiotic control did not change during the experiment (data not shown).Open in a separate windowFIG. 1.Growth of strain JBH1 on NG. ×, NG; ▵, 1,2DNG; ⋄, 1MNG; □, 2MNG; ○, protein.Results from the experiment described above were used to calculate nitrogen and carbon mass balances (Tables (Tables11 and and2).2). Nitrogen content in protein was approximated using the formula C5H7O2N (14). Because all nitrogen was accounted for throughout, we conclude that the only nitrogen-containing intermediate compounds are 1,2DNG and 1MNG, which is consistent with previous studies (6, 9, 20). The fact that most of the nitrogen was released as nitrite is consistent with previous reports of denitration catalyzed by reductase enzymes (4, 8, 21). The minor amounts of nitrate observed could be from abiotic hydrolysis (5, 12) or from oxidation of nitrite. Cultures supplemented with glycerol or other carbon sources assimilated all of the nitrite (data not shown).

TABLE 1.

Nitrogen mass balance
Time (h)% of total initial nitrogen by mass recovered ina:
Total recovery (%)
1MNG2MNG1,2DNG1,3DNGNGProteinNitriteNitrate
0NDbND0.9 ± 0.70.8 ± 0.682 ± 5.20.8 ± 0.214 ± 0.70.8 ± 0.3100 ± 5.3
460.1 ± 0.00.8 ± 0.27.9 ± 0.4ND35 ± 3.62.0 ± 0.549 ± 1.11.7 ± 0.096 ± 4.2
720.1 ± 0.00.9 ± 0.24.3 ± 4.2ND5.0 ± 0.43.3 ± 0.281 ± 4.23.9 ± 1.998 ± 6.8
94ND0.6 ± 0.4NDND0.6 ± 0.43.2 ± 0.095 ± 102.6 ± 1.6102 ± 10
Open in a separate windowaData represent averages of four replicates ± standard deviations.bND, not detected.

TABLE 2.

Carbon mass balance
Time (h)% of total initial carbon by mass recovered in:
Total recovery (%)
1MNGa2MNGa1,2DNGa1,3DNGaNGaProteinaCO2b
0NDcND1.6 ± 1.21.9 ± 0.492 ± 5.84.4 ± 0.9100 ± 8.4
460.5 ± 0.22.6 ± 0.613 ± 0.7ND39 ± 3.913 ± 3.028 ± 5.796 ± 14.1
720.4 ± 0.02.9 ± 0.77.3 ± 7.0ND5.6 ± 0.422 ± 1.259 ± 8.397 ± 17.6
94ND2.8 ± 0.3NDND0.8 ± 0.518 ± 0.371 ± 4.593 ± 5.6
Open in a separate windowaData represent averages of four replicates ± standard deviations.bData represent averages of duplicates ± standard deviations.cND, not detected.In a separate experiment cells grown on NG were added to minimal media containing 1,3DNG, 1,2DNG, 1MNG, or 2MNG and degradation over time was measured. 1,2DNG, 1,3DNG, and 1MNG were degraded at rates of 6.5, 3.8, and 8 μmol substrate/mg protein/hour. No degradation of 2MNG was detected (after 250 h), which indicates that 2MNG is not an intermediate in a productive degradation pathway. Because 1,3DNG was not observed at any point during the degradation of NG and its degradation rate is approximately one-half the degradation rate of 1,2DNG, it also seems not to be part of the main NG degradation pathway used by Arthrobacter sp. strain JBH1. The above observations indicate that the degradation pathway involves a sequential denitration of NG to 1,2DNG, 1MNG, and then glycerol, which serves as the source of carbon and energy (Fig. (Fig.2).2). The productive degradation pathway differs from that observed by previous authors using both mixed (1, 3, 6) and pure cultures (4, 9, 11, 20), in which both 1,3- and 1,2DNG were intermediates during NG transformation. Additionally, in previous studies both MNG isomers were produced regardless of the ratio of 1,2DNG to 1,3DNG (3, 4, 6, 9, 20). Our results indicate that the enzymes involved in denitration of NG in strain JBH1 are highly specific and catalyze sequential denitrations that do not involve 1,3DNG or 2MNG. Determination of how the specificity avoids misrouting of intermediates will require purification and characterization of the enzyme(s) involved.Open in a separate windowFIG. 2.Proposed NG degradation pathway.Mass balances of carbon and nitrogen were used to determine the following stoichiometric equation that describes NG mineralization by Arthrobacter sp. strain JBH1: 0.26C3H5(ONO2)3 + 0.33O2 → 0.03C5H7O2N + 0.63CO2 + 0.75NO2 + 0.75H+ + 0.17H2O. The result indicates that most of the NG molecule is being used for energy. The biomass yield is relatively low (0.057 mg protein/mg NG), with an fs (fraction of reducing equivalents of electron donor used for protein synthesis) of 0.36 (10), which is low compared to the aerobic degradation of other compounds by pure cultures, for which fs ranges between 0.4 and 0.6 (10, 14). The results are consistent with the requirement for relatively large amounts of energy during the initiation of the degradation mechanism (each denitration probably requires 1 mole of NADH or NADPH [21]).Although NG degradation rates were optimal at pH 7.2, they were still substantial at values as low as 5.1. The results suggest that NG degradation is possible even at low pH values typical of the subsurface at sites where explosives were formerly manufactured or sites where nitrite production lowers the pH.NG concentrations above 0.5 mM are inhibitory, but degradation was still observed at 1.2 mM (data not shown). The finding that NG can be inhibitory to bacteria at concentrations that are well below the solubility of the compound is consistent with those of Accashian et al. (1) for a mixed culture.The ability of Arthrobacter sp. strain JBH1 to grow on NG as the carbon and nitrogen source provides the basis for a shift in potential strategies for natural attenuation and bioremediation of NG at contaminated sites. The apparent specificity of the denitration steps raises interesting questions about the evolution of the pathway.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号