共查询到20条相似文献,搜索用时 0 毫秒
1.
In Dictyostelium discoideum, the secreted proteins AprA and CfaD function as reporters of cell density and regulate cell number by inhibiting proliferation at high cell densities. AprA also functions to disperse groups of cells at high density by acting as a chemorepellent. However, the signal transduction pathways associated with AprA and CfaD are not clear, and little is known about how AprA affects the cytoskeleton to regulate cell movement. We found that the p21-activated kinase (PAK) family member PakD is required for both the proliferation-inhibiting activity of AprA and CfaD and the chemorepellent activity of AprA. Similar to cells lacking AprA or CfaD, cells lacking PakD proliferate to a higher cell density than wild-type cells. Recombinant AprA and CfaD inhibit the proliferation of wild-type cells but not cells lacking PakD. Like AprA and CfaD, PakD affects proliferation but does not significantly affect growth (the accumulation of mass) on a per-nucleus basis. In contrast to wild-type cells, cells lacking PakD are not repelled from a source of AprA, and colonies of cells lacking PakD expand at a slower rate than wild-type cells, indicating that PakD is required for AprA-mediated chemorepulsion. A PakD-GFP fusion protein localizes to an intracellular punctum that is not the nucleus or centrosome, and PakD-GFP is also occasionally observed at the rear cortex of moving cells. Vegetative cells lacking PakD show excessive actin-based filopodia-like structures, suggesting that PakD affects actin dynamics, consistent with previously characterized roles of PAK proteins in actin regulation. Together, our results implicate PakD in AprA/CfaD signaling and show that a PAK protein is required for proper chemorepulsive cell movement in Dictyostelium. 相似文献
2.
3.
CHRISTOPHER D. TOWN DIAN. KRILL AVIV I. HASSID 《Development, growth & differentiation》1985,27(2):111-116
Evidence is presented that a panel of non-steroidal anti-inflammatory drugs inhibit both developmental gene expression and terminal cell differentiation in the slime mold Dictyostelium discoideum. Incubation of developing cells with a number of these drugs also prevents the accumulation in the cells of two lipid species which have chromatographic properties similar to authentic eicosanoids. The results raise the possibility that Dicytostelium cells synthesize eicosanoid-like lipids which are required for normal development. 相似文献
4.
H V Rickenberg H J Rahmsdorf A Campbell M J North J Kwasniak J M Ashworth 《Journal of bacteriology》1975,124(1):212-219
Sugars such as glucose, maltose, and trehalose, which are metabolized by Dictyostelium discoideum and which enhance vegetative growth, inhibit the development of the slime mold at concentrations which stimulate growth maximally. They block the acquisition of aggregation competence as well as aggregation. The same sugars also inhibit the degradation of preformed glycogen ribonucleic acid, and protein, which is characteristic of development and which occurs when the amoebas are starved by incubation in dilute phosphate buffer. 相似文献
5.
SDF-2 Induction of Terminal Differentiation in Dictyostelium discoideum Is Mediated by the Membrane-Spanning Sensor Kinase DhkA
下载免费PDF全文

Nancy Wang Fredrik Sderbom Christophe Anjard Gad Shaulsky William F. Loomis 《Molecular and cellular biology》1999,19(7):4750-4756
SDF-2 is a peptide released by prestalk cells during culmination that stimulates prespore cells to encapsulate. Genetic evidence indicates that the response is dependent on the dhkA gene. This gene encodes a member of the histidine kinase family of genes that functions in two-component signal transduction pathways. The sequence of the N-terminal half of DhkA predicts two hydrophobic domains separated by a 310-amino-acid loop that could bind a ligand. By inserting MYC6 epitopes into DhkA, we were able to show that the loop is extracellular while the catalytic domain is cytoplasmic. Cells expressing the MYC epitope in the extracellular domain of DhkA were found to respond only if induced with 100-fold-higher levels of SDF-2 than required to induce dhkA+ cells; however, they could be induced to sporulate by addition of antibodies specific to the MYC epitope. To examine the enzymatic activity of DhkA, we purified the catalytic domain following expression in bacteria and observed incorporation of labelled phosphate from ATP consistent with histidine autophosphorylation. Site-directed mutagenesis of histidine1395 to glutamine in the catalytic domain blocked autophosphorylation. Furthermore, genetic analyses showed that histidine1395 and the relay aspartate2075 of DhkA are both critical to its function but that another histidine kinase, DhkB, can partially compensate for the lack of DhkA activity. Sporulation is drastically reduced in double mutants lacking both DhkA and DhkB. Suppressor studies indicate that the cyclic AMP (cAMP) phosphodiesterase RegA and the cAMP-dependent protein kinase PKA act downstream of DhkA. 相似文献
6.
Inhibition of cell adhesion in Dictyostelium discoideum by tunicamycin is prevented by leupeptin 总被引:2,自引:0,他引:2
The carbohydrate requirement for cell adhesion of aggregation-competent cells of Dictyostelium discoideum has been examined by use of a selective glycosylation inhibitor of N-glycosyl protein, tunicamycin (TM). TM completely inhibited EDTA-stable cell adhesion and glycosylation of some membrane glycoproteins in aggregation-competent cells of D. discoideum (Yamada, H., et al. (1982) J. Biochem. 92, 399-406). The present study showed that the inhibition of EDTA-stable cell adhesion by TM was prevented significantly when the cells were treated with TM in the presence of a protease inhibitor, leupeptin (LP), whereas the inhibition of glycosylation by TM was not prevented. The cell extract of aggregation-competent cells contained acid proteases, and LP strongly inhibited acid protease from D. discoideum in vitro. On analysis by SDS-polyacrylamide gel electrophoresis (PAGE), many protein bands present in the membrane fraction of control cells disappeared or decreased on TM treatment of the cells in the absence of LP, however, some of these proteins were restored when the cells were treated with TM in the presence of LP. These results strongly support an idea that EDTA-stable cell adhesion characteristic to aggregation-competent cells is mediated by glycoproteins with asparagine-linked carbohydrate. However, the requirement for the carbohydrate moiety of the glycoprotein in cell adhesion appears to be indirect in that it acts to protect the protein moiety from proteolytic degradation. 相似文献
7.
The effects of tunicamycin on protein glycosylation and cell differentiation were examined during early development of Dictyostelium discoideum. Tunicamycin inhibited cell growth reversibly in liquid medium. At a concentration of 3 μg/ml, tunicamycin completely inhibited morphogenesis and cell differentiation in developing cells. These cells remained as a smooth lawn and failed to undergo chemotactic migration. The expression of EDTA-resistant contact sites was also inhibited. The inhibition by tunicamycin was reversible if cells were washed free of the drug within the first 10 hr of incubation. After 12 hr of development, cells were protected from the drug by the sheath. When cells were treated with tunicamycin during the first 10 hr of development, incorporation of [3H]mannose and [3H] fucose was inhibited by approximately 75% within 45 min while no significant inhibition of [3H]leucine incorporation was observed during the initial 3 hr of drug treatment. The inhibition of protein glycosylation was further evidenced by the reduction in number of glycoproteins “stained” with 125I-labelled con A. A number of developmentally regulated high-molecular-weight glycoproteins, including the contact site A glycoprotein (gp80), were undetectable when cells were labelled with [3H]fucose in the presence of tunicamycin. It is therefore evident that glycoproteins with N-glycosidically linked carbohydrate moieties may play a crucial role in intercellular cohesiveness and early development of D. discoideum. 相似文献
8.
The life cycle of Dictyostelium discoideum can be divided into two mutually exclusive phases: growth and development. A distinguishing characteristic of the two phases is the absence of intercellular communication during vegative growth, and the many forms of such interaction during development. We have investigated the role of the cell surface membrane during the aggregation and development of this organism. We have asked the question: Are there molecules on the cell surface which are necessary for aggregation, and if so, can they be isolated in a biologically active membrane preparation? Further, when do these molecules appear during normal development, and does the interaction between two neighboring cell surfaces signal the cell or affect their subsequent development in any way? We have been able to isolate a partially purified plasma membrane fraction which is capable of specifically blocking the aggregation of other cells. Additional characterization of this preparation suggests that isolated aggregation phase membranes display a new, or newly exposed, heat-stable component which is capable of interacting with vegetative cells in such a way as to halt development. 相似文献
9.
Aggregation of Dictyostelium amoebae is inhibited by light. White light intensities 102 W · cm-2 cause an inhibition which reaches a saturation at 2 · 103 W · cm-2. The action spectrum, based on photon fluence-response curves, shows a major peak around 405 nm and extends through most of the visible spectrum with a secondary maximum at about 530 nm. The action spectrum of the inhibition of aggregation resembles the action spectrum of accumulations of amoebae in light traps and the action spectrum of photodispersal from light traps; it does not resemble the action spectrum of phototaxis in pseudoplasmodia. 相似文献
10.
The effect of monochromatic irradiation in and near the UV-Bregion (280320 nm) on motility (speed of movement) andwhite light-induced phototactic orientation was studied in slugsof the cellular slime mold Dictyostelium discoideum (NC-4).Motility decreased to about 50% in UV-B fluences (about 100Jm2 at 280 nm) well below those required to inhibit slugand sorocarp development or to impair viability. At wavelengthsof 270300 nm, the phototactic orientation was almosttotally eliminated by an exposure to U V (about 0.1 Wm2)for as short a time as half an hour when administered at thebeginning of the 24 h exposure to white light. (Received July 22, 1983; Accepted September 27, 1983) 相似文献
11.
Stephanie Santarriaga Amber Petersen Kelechi Ndukwe Anthony Brandt Nashaat Gerges Jamie Bruns Scaglione Kenneth Matthew Scaglione 《The Journal of biological chemistry》2015,290(42):25571-25578
The expression, misfolding, and aggregation of long repetitive amino acid tracts are a major contributing factor in a number of neurodegenerative diseases, including C9ORF72 amyotrophic lateral sclerosis/frontotemporal dementia, fragile X tremor ataxia syndrome, myotonic dystrophy type 1, spinocerebellar ataxia type 8, and the nine polyglutamine diseases. Protein aggregation is a hallmark of each of these diseases. In model organisms, including yeast, worms, flies, mice, rats, and human cells, expression of proteins with the long repetitive amino acid tracts associated with these diseases recapitulates the protein aggregation that occurs in human disease. Here we show that the model organism Dictyostelium discoideum has evolved to normally encode long polyglutamine tracts and express these proteins in a soluble form. We also show that Dictyostelium has the capacity to suppress aggregation of a polyglutamine-expanded Huntingtin construct that aggregates in other model organisms tested. Together, these data identify Dictyostelium as a novel model organism with the capacity to suppress aggregation of proteins with long polyglutamine tracts. 相似文献
12.
M J North 《Biochemical Society transactions》1978,6(2):400-403
13.
Extracellular EDTA suppressed in a dose-dependent manner the phagocytosis of yeast particles by Dictyostelium discoideum cells. Activity was restored fully by the addition of Ca(2+), and partially by the addition of Mn(2+)or Zn(2+), but Mg(2+)was ineffective. The pH-sensitive, Ca(2+)-specific chelator EGTA also inhibited phagocytosis at pH 7.5, but not at pH 5, and Ca(2+)restored the inhibited phagocytosis. In contrast, pinocytosis was unaffected by EDTA. Consistent with the idea that Ca(2+)was required for phagocytosis, D. discoideum growth on bacteria was inhibited by EDTA, which was then restored by the addition of Ca(2+). It is concluded that Ca(2+)was needed for efficient phagocytosis by D. discoideum amoebae. A search for Ca(2+)-dependent membrane proteins enriched in phagosomes revealed the presence of p24, a Ca(2+)-dependent cell-cell adhesion molecule-1 (DdCAD-1) that could be the target of the observed EDTA and EGTA inhibition. DdCAD-1-minus cells, however, had normal phagocytic activity. Furthermore, phagocytosis was inhibited by EDTA and rescued by Ca(2+)in the mutant just as in wild type. Thus, DdCAD-1 was not responsible for the observed Ca(2+)-dependence of phagocytosis, indicating that one or more different Ca(2+)-dependent molecule(s) was involved in the process. 相似文献
14.
A study of the effects of steroid hormones on the development of Dictyostelium discoideum has shown that 4 × 10?5M progesterone, and to a lesser extent dehydro-epiandrosterone, oestradiol and testosterone, inhibit both the growth and aggregation of these amoebae. Pregnenolone is active at lower concentrations (3 × 10?6M), but at the level of growth only. Progesterone exerts its inhibitory action throughout the aggregation phase. The steroid prevents starved cells from becoming aggregation competent, and inhibits the aggregation of amoebae previously allowed to achieve the competent stage. However, unlike other agents such as dinitrophenol or EDTA, the steroid does not considerably affect cell morphology. Upon addition of progesterone cells become rounded, but after a brief lag they regain their ability to adhere to solid supports and form pseudopods. The fact that the steroids active on Dictyostelium are among the most liposoluble might indicate that their inhibitory action is dependent upon their incorporation into membrane lipids. 相似文献
15.
Deenadayalan Bakthavatsalam Michael J. V. White Sarah E. Herlihy Jonathan E. Phillips Richard H. Gomer 《Eukaryotic cell》2014,13(3):376-382
Retinoblastoma-like proteins regulate cell differentiation and inhibit cell proliferation. The Dictyostelium discoideum retinoblastoma orthologue RblA affects the differentiation of cells during multicellular development, but it is unclear whether RblA has a significant effect on Dictyostelium cell proliferation, which is inhibited by the secreted proteins AprA and CfaD. We found that rblA− cells in shaking culture proliferate to a higher density, die faster after reaching stationary density, and, after starvation, have a lower spore viability than wild-type cells, possibly because in shaking culture, rblA− cells have both increased cytokinesis and lower extracellular accumulation of CfaD. However, rblA− cells have abnormally slow proliferation on bacterial lawns. Recombinant AprA inhibits the proliferation of wild-type cells but not that of rblA− cells, whereas CfaD inhibits the proliferation of both wild-type cells and rblA− cells. Similar to aprA− cells, rblA− cells have a normal mass and protein accumulation rate on a per-nucleus basis, indicating that RblA affects cell proliferation but not cell growth. AprA also functions as a chemorepellent, and RblA is required for proper AprA chemorepellent activity despite the fact that RblA does not affect cell speed. Together, our data indicate that an autocrine proliferation-inhibiting factor acts through RblA to regulate cell density in Dictyostelium, suggesting that such factors may signal through retinoblastoma-like proteins to control the sizes of structures such as developing organs or tumors. 相似文献
16.
Administration of a carbamate pesticide carbaryl (1-Naphthyl-N-methyl carbamate) at a concentration of 60 and 100 ppm greatly inhibits the endocytotic functions during growth of the cellular slime mold D. discoideum. The ingestion of fluorescien isothiocynate (FITC) labeled E. coli is reduced between 30 and 40% in the treated cells as compared to controls. Similarly, the uptake of FITC-labeled dextran, which has been used as fluid-phase marker for pinocytosis also show 40-50% inhibition in the treated cells. 3H-leucine uptake and incorporation are also inhibited in the treated cells. SDS-PAGE analysis of cytoskeletal proteins shows a higher actin association with the membrane of treated cells. The results demonstrate the detrimental effects of Carbamate on the soil microbe even at a very low concentration and the efficacy of the slime mold cells as a biosensor for the carbamate-induced cytotoxicity. 相似文献
17.
Dictyostelium is an attractive model system for the study of mechanisms basic to cellular function or complex multicellular developmental processes. Recent advances in Dictyostelium genomics have generated a wide spectrum of resources. However, much of the current genomic sequence information is still not currently available through GenBank or related databases. Thus, many investigators are unaware that extensive sequence data from Dictyostelium has been compiled, or of its availability and access. Here, we discuss progress in Dictyostelium genomics and gene annotation, and highlight the primary portals for sequence access, manipulation and analysis (http://genome.imb-jena.de/dictyostelium/; http://dictygenome.bcm.tmc.edu/; http://www.sanger. ac.uk/Projects/D_discoideum/; http://www.csm.biol. tsukuba.ac.jp/cDNAproject.html). 相似文献
18.
Abstract. In an attempt to investigate the pathway of prespore differentiation in the cellular slime mold, Dictyostelium discoideum , we examined the requirements for prespore differentiation under conditions involving no cellular interactions. Aggregation-competent cells of the wild-type NC4 strain incubated in an isolated state were found to differentiate into prespore cells depending on the presence of cAMP, bovine serum albumin, and the prespore inducing factors (PIF) obtained from the conditioned media. Vegetative cells did not differentiate into prespore cells under these conditions. The prespore-inducing activity found in extracts of cells was developmentally regulated and induced by cAMP. PIF was of a low molecular mass (150–400 kilodaltons), was heat, alkali, and acid stable, and was extractable from an acidified water phase using ethylacetate. Purification of the PIF in ethylacetate extracts by gel-permeation chromatography followed by reverse-phase chromatography revealed two major peaks with prespore-inducing activity. On mixing these two fractions, the original activity was restored, indicating that PIF is composed of at least two components. 相似文献
19.
Ras-related genes in Dictyostelium discoideum 总被引:3,自引:0,他引:3
Dictyostelium discoideum, like other eukaryotes, has been shown to express several ras-related genes. Two gene products, Ddras and DdrasG, are highly conserved relative to the human ras proteins. Ddras is expressed at the pseudoplasmodial stage of development, whereas DdrasG is expressed in vegetative cells and during early development. In addition, Dictyostelium possesses three ras-related genes, SAS1, SAS2 and Ddrap1, whose gene products are only partially conserved relative to those of the ras genes. The expression of these three genes is also developmentally regulated. 相似文献
20.
Wen-Cheng Zhang Ya-Jing Peng Gen-Sheng Zhang Wei-Qi He Yan-Ning Qiao Ying-Ying Dong Yun-Qian Gao Chen Chen Cheng-Hai Zhang Wen Li Hua-Hao Shen Wen Ning Kristine E. Kamm James T. Stull Xiang Gao Min-Sheng Zhu 《The Journal of biological chemistry》2010,285(8):5522-5531
Different interacting signaling modules involving Ca2+/calmodulin-dependent myosin light chain kinase, Ca2+-independent regulatory light chain phosphorylation, myosin phosphatase inhibition, and actin filament-based proteins are proposed as specific cellular mechanisms involved in the regulation of smooth muscle contraction. However, the relative importance of specific modules is not well defined. By using tamoxifen-activated and smooth muscle-specific knock-out of myosin light chain kinase in mice, we analyzed its role in tonic airway smooth muscle contraction. Knock-out of the kinase in both tracheal and bronchial smooth muscle significantly reduced contraction and myosin phosphorylation responses to K+-depolarization and acetylcholine. Kinase-deficient mice lacked bronchial constrictions in normal and asthmatic airways, whereas the asthmatic inflammation response was not affected. These results indicate that myosin light chain kinase acts as a central participant in the contractile signaling module of tonic smooth muscle. Importantly, contractile airway smooth muscles are necessary for physiological and asthmatic airway resistance. 相似文献