首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The present study aimed to elucidate visual evoked potentials (VEP) changes in MPTP induced Parkinson’s disease (PD) and investigate the possible benefical effects of neuronal (n) and inducible (i) nitric oxide synthase (NOS) inhibitors on altered VEPs, lipid peroxidation and apoptosis. 3 months old C57BL/6 mice were randomly divided into 6 groups which included control (C), 7-nitra indazole treated (7-NI), S-methylisothiourea (SMT) treated, 1,2,3,6-tetrahydropyridine (MPTP) treated, 7-NI + MPTP treated and SMT + MPTP treated. Motor activity of mice was evaluated via the pole test. At the end of the experimental period VEPs were recorded, brain and retina tissues were removed for biochemical analysis. Dopaminergic neuron death at substantia nigra (SN) was determined by immunohistochemical analysis of tyrosine hydroxylase (TH). Immunohistochemical staining was also performed to determine iNOS and nNOS in all tissue sections. Mice with experimental PD exhibited decreased motor activity. Dopaminergic cell death at pars compacta of SN (SNpc) was significantly increased in MPTP treated group compared to control. Diminished Parkinsonism symptoms were observed in 7-NI + MPTP and SMT + MPTP groups. Treatment with 7-NI and SMT decreased dopaminergic cell death in MPTP treated mice. Caspase-3 activity, nitrite/nitrate and 4-hydroxynonenal (4-HNE) levels were significantly increased in SN of MPTP treated mice compared to control. Treatment with 7-NI and SMT significantly decreased elevated caspase-3 activity, nitrite/nitrate and 4-HNE levels in SN of MPTP treated mice. No significant difference in above parameters were observed in the retina. VEP latencies were significantly prolonged in MPTP group compared to control group. 7-NI and SMT treatment caused a significant decrease in VEP latencies in MPTP treated mice compared to none treated MPTP group. This data shows that 7-NI and SMT improves prolonged VEP latencies. The protective effects of 7-NI and SMT on VEP alterations can be related to decreased dopaminergic cell death and reduced lipid peroxidation.  相似文献   

3.
The parkinsonian inducing agent 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and its corresponding five-membered ring analogue 1-methyl-3-phenyl-3-pyrroline are cyclic tertiary allylamines and good substrates of monoamine oxidase B (MAO-B). The MAO-B catalyzed 2-electron α-carbon oxidation of this class of substrates appears to be dependent on the presence of the allylic π-bond since the corresponding saturated piperidinyl analogue of MPTP is reported not to be an MAO-B substrate. The only saturated cyclic tertiary amine known to act as an MAO-B substrate is the 3,4-cyclopropyl analogue of MPTP, 3-methyl-6-phenyl-3-azabicyclo[4.1.0]heptane. As part of our ongoing studies we have examined the MAO-B substrate properties of the corresponding pyrrolidinyl analogue, 1-methyl-3-phenylpyrrolidine, and the 3,4-cyclopropyl analogue, 3-methyl-1-phenyl-3-azabicyclo[3.1.0]hexane. The results document that both the pyrrolidinyl analogue [Km = 234 μM; Vmax = 8.37 nmol/(min-mg mitochondrial protein)] and the 3,4-cyclopropyl analogue [Km = 148 μM; Vmax = 16.9 nmol/(min-mg mitochondrial protein)] are substrates of baboon liver mitochondrial MAO-B. We also have compared the neurotoxic potential of these compounds in the C57BL/6 mouse. The results led us to conclude that these compounds are not MPTP-type neurotoxins.  相似文献   

4.
5.
Apoptotic signaling plays an important role in skeletal muscle degradation, atrophy, and dysfunction. Mitochondria are central executers of apoptosis by directly participating in caspase-dependent and caspase-independent cell death signaling. Given the important apoptotic role of mitochondria, altering mitochondrial content could influence apoptosis. Therefore, we examined the direct effect of modest, but physiological increases in mitochondrial biogenesis and content on skeletal muscle apoptosis using a cell culture approach. Treatment of L6 myoblasts with SNAP or AICAR (5 h/day for 5 days) significantly increased PGC-1, AIF, cytochrome c, and MnSOD protein content as well as MitoTracker staining. Following induction of mitochondrial biogenesis, L6 myoblasts displayed decreased sensitivity to apoptotic cell death as well as reduced caspase-3 and caspase-9 activation following exposure to staurosporine (STS) and C2-ceramide. L6 myoblasts with higher mitochondrial content also exhibited reduced apoptosis and AIF release following exposure to hydrogen peroxide (H2O2). Analysis of several key apoptosis regulatory proteins (ARC, Bax, Bcl-2, XIAP), antioxidant proteins (catalase, MnSOD, CuZnSOD), and reactive oxygen species (ROS) measures (DCF and MitoSOX fluorescence) revealed that these mechanisms were not responsible for the observed cellular protection. However, myoblasts with higher mitochondrial content were less sensitive to Ca2 +-induced mitochondrial permeability transition pore formation (mPTP) and mitochondrial membrane depolarization. Collectively, these data demonstrate that increased mitochondrial content at physiological levels provides protection against apoptotic cell death by decreasing caspase-dependent and caspase-independent signaling through influencing mitochondrial Ca2 +-mediated apoptotic events. Therefore, increasing mitochondrial biogenesis/content may represent a potential therapeutic approach in skeletal muscle disorders displaying increased apoptosis.  相似文献   

6.
Heavy metals, typified by arsenite (As(III)), have been implicated in altering the carcinogenicity of aryl hydrocarbon receptor (AhR) ligands, typified by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), by modulating the induction of the Cyp1a1 enzyme, but the mechanism remains unresolved. In this study, the effects of As(III) on Cyp1a1 expression and activity were investigated in C57BL/6 mouse livers and isolated hepatocytes. For this purpose, C57BL/6 mice were injected intraperitoneally with As(III) (12.5 mg/kg) in the absence and presence of TCDD (15 μg/kg) for 6 and 24 h. Furthermore, isolated hepatocytes from C57BL/6 mice were treated with As(III) (1, 5, and 10 μM) in the absence and presence of TCDD (1 nM) for 3, 6, 12, and 24 h. At the in vivo level, As(III) decreased the TCDD-mediated induction of Cyp1a1 mRNA at 6 h while potentiating its mRNA, protein, and catalytic activity levels at 24 h. At the in vitro level, As(III) decreased the TCDD-mediated induction of Cyp1a1 mRNA in a concentration- and time-dependent manner. Moreover, As(III) decreased the TCDD-mediated induction of Cyp1a1 protein and catalytic activity levels at 24 h. Interestingly, As(III) increased the serum hemoglobin (Hb) levels in animals treated for 24 h. Upon treatment of isolated hepatocytes with Hb alone, there was an increase in the nuclear accumulation of AhR and AhR-dependent luciferase activity. Furthermore, Hb potentiated the TCDD-induced AhR-dependent luciferase activity. Importantly, when isolated hepatocytes were treated for 5 h with As(III) in the presence of TCDD and the medium was then replaced with new medium containing Hb, there was potentiation of the TCDD-mediated effect. Taken together, these results demonstrate for the first time that there is a differential modulation of the TCDD-mediated induction of Cyp1a1 by As(III) in C57BL/6 mouse livers and isolated hepatocytes. Thus, this study implicates Hb as an in vivo-specific modulator.  相似文献   

7.
《Cytokine》2008,41(3):226-234
The aim of this study is to determine if there is an antagonistic effect between tumour necrosis factor (TNF)-α and the immunoregulatory interleukin (IL)-10 on chondrocytes survival. Serum-starved primary human articular chondrocytes were stimulated with either 10 ng/ml recombinant TNF-α, IL-10 or a combination of both (at 10 ng/ml each). Chondrocyte apoptosis was determined by measuring caspase-3/7, -8 and -9 activities using caspase assays. Mitochondrial apoptotic inducer bax, and the suppressor bcl-2 were evaluated using western blotting at 48 h. Results indicated that TNF-α increased caspase activities and resulted in a significant (p = 0.001) increase in bax/bcl-2 ratio. Stimulation with IL-10 did not alter caspase activities, while co-treatment with IL-10 and TNF-α inhibited TNF-α induced caspase activities and significantly (p > 0.004) impaired bax/bcl-2 ratio. At 24 h, mRNA levels for collagen type II, TNF-α and IL-10 were determined using real-time RT-PCR. Stimulation with TNF-α or TNF-α and IL-10 significantly inhibited collagen type II and increased IL-10 and TNF-α mRNA expression. IL-10 modulated the pro-apoptotic capacity of TNF-α in chondrocytes as shown by the decrease in caspase activities and bax/bcl-2 ratio compared to TNF-α stimulated chondrocytes, suggesting a mostly antagonistic interplay of IL-10 and TNF-α on mitochondrial apoptotic pathways.  相似文献   

8.
Previously, we have shown manganese superoxide dismutase (MnSOD) activity protects quiescent human normal skin fibroblasts (NHFs) from age associated loss in proliferative capacity. The loss in proliferative capacity of aged vs. young quiescent cells is often characterized as the chronological life span, which is clearly distinct from replicative senescence. We investigate the hypothesis that MnSOD activity protects the mitochondrial morphology from age associated damage and preserves the chronological life span of quiescent fibroblasts. Aged quiescent NHFs exhibited abnormalities in mitochondrial morphology including abnormal cristae formation and increased number of vacuoles. These results correlate with the levels of cellular reactive oxygen species (ROS) and mitochondrial morphology in MnSOD homozygous and heterozygous knockout mouse embryonic fibroblasts. The abnormalities in mitochondrial morphology in aged quiescent NHFs cultured in presence of 21% oxygen concentration were more severe than NHFs cultured in 4% oxygen environment. The alteration in mitochondrial morphology was associated with a significant increase in cell population doubling: 54 h in 21% compared to 44 h in 4% oxygen environment. Overexpression of MnSOD decreased ROS levels, and preserved mitochondrial morphology in aged quiescent NHFs. These results demonstrate that MnSOD activity protects mitochondrial morphology and preserves the proliferative capacities of quiescent NHFs from age associated loss.  相似文献   

9.
10.
Apoptotic cell ratio and mRNA expression of caspase-3, cathepsin B (CTSB), heat shock protein 70 (HSP70), manganese superoxide dismutase (MnSOD), catalase (CAT), glutathione peroxidase (GPx) and thioredoxin (TRx) in hemocytes of white shrimp Litopenaeus vannamei exposed to nitrite-N (20 mg/L) was investigated at different stress time (0, 4, 8, 12, 24, 48 and 72 h). The apoptotic cell ratio and mRNA expression level of CTSB were significantly increased in shrimp exposed to nitrite-N for 48 and 72 h. Caspase-3 mRNA expression level significantly increased by 766.50% and 1811.16% for 24 and 48 h exposure, respectively. HSP70 expression level significantly increased at 8 and 72 h exposure. MnSOD mRNA expression in hemocytes up-regulated at 8 and 48 h, while CAT mRNA expression level increased at 24 and 48 h. GPx expression showed a trend that increased first and then decreased. Significant increases of GPx expression were observed at 8 and 12 h exposure. Expression level of TRx reached its highest level after 48 h exposure. These results suggest that nitrite exposure induces expression of apoptosis-related genes in hemocytes, and subsequently caused hemocyte apoptosis. Meanwhile, expression levels of HSP70 and antioxidant enzymes up-regulated to protect the hemocyte against nitrite stress.  相似文献   

11.
To develop a two-stage in vitro technique that simulates both pre-caecal and hind gut digestion processes, four enzymatic pre-digestion treatments by pepsin and α-amylase (ET0 = control, ET1 = 2 h pepsin + 2 h amylase, ET2 = 2 h pepsin + 4 h amylase, ET3 = 8 h pepsin + 16 h amylase) were tested on oat hay (OH), barley grain (BG) and soybean meal (SBM). Investigated parameters were enzymatic organic matter digestibility (OMDe), and gas production (G48h, G72h) and OM digestibility (OMD) using horse faeces as a source of microbial inoculum.Enzymatic pre-digestion treatments affected (P<0.05) investigated parameters and their ranking differed among feeds. Only OMD of BG and SBM were higher after the pre-digestion treatment. OMD prior to (ET0) and after ET3 application were, successively, 0.357 versus 0.351 (OH), 0.71 versus 0.79 (BG) and 0.70 versus 0.78 (SBM). Net gas production overestimated fermentation potential of non-pre-digested feeds. G72h (ml/g DM) prior to (ET0) and after ET3 application were, successively, 80.3 versus 58.0 (OH), 151.7 versus 30.4 (BG) and 110.6 versus 37.7 (SBM).It was concluded that the enzymatic pre-digestion treatments effects varied among tested feeds, and that the suggested procedure be extended and validated with a large array of feeds of known digestibility values.  相似文献   

12.
A total of 15 novel benzimidazole derivatives were designed, synthesized and evaluated for their SIRT1 and SIRT2 inhibitory activity. All compounds showed better inhibition on SIRT2 as compared to SIRT1. Among these, compound 5j displayed the best inhibitory activity for SIRT1 (IC50 = 58.43 μM) as well as for SIRT2 (IC50 = 45.12 μM). Cell cytotoxicity assays also showed that compound 5j possesses good antitumor activity against two different cancer cell lines derived from breast cancer (MCF-7 and MDA-MB-468). A simple structure–activity-relationship (SAR) study of the newly synthesized benzimidazole derivatives was also discussed.  相似文献   

13.
The cytotoxic effects and biotransformation of harmine and harmaline, which are known β-carboline alkaloids and potent hallucinogens, were studied in freshly isolated rat hepatocytes. The exposure of hepatocytes to harmine caused not only concentration (0–0.50 mM)- and time (0–3 h)-dependent cell death accompanied by the formation of cell blebs and the loss of cellular ATP, reduced glutathione, and protein thiols but also the accumulation of glutathione disulfide. Of the other analogues examined, the cytotoxic effects of harmaline and harmol (a metabolite of harmine) at a concentration of 0.5 mM were less than those of harmine. The loss of mitochondrial membrane potential and generation of oxygen radical species in hepatocytes treated with harmine were greater than those with harmaline and harmol. In the oxygen consumption of mitochondria isolated from rat liver, the ratios of state-3/state-4 respiration of these β-carbolines were decreased in a concentration-dependent manner. In addition, harmine resulted in the induction of the mitochondrial permeability transition (MPT), and the effects of harmol and harmaline were less than those of harmine. At a weakly toxic level of harmine (0.25 mM), it was metabolized to harmol and its monoglucuronide and monosulfate conjugates, and the amounts of sulfate rather than glucuronide predominantly increased with time. In the presence of 2,5-dichloro-4-nitrophenol (50 μM; an inhibitor of sulfotransferase), harmine-induced cytotoxicity was enhanced, accompanied by decrease in the amount of harmol-sulfate conjugate, due to an increase in the amount of unconjugated harmol and the inhibition of harmine loss. Taken collectively, these results indicate that (a) mitochondria are target organelles for harmine, which elicits cytotoxicity through mitochondrial failure related to the induction of the MPT, mitochondrial depolarization, and inhibition of ATP synthesis; and (b) the toxic effects of harmine are greater than those of either its metabolite harmol or its analogue harmaline, suggesting that the onset of harmine-induced cytotoxicity may depend on the initial and/or residual concentrations of harmine rather than on those of its metabolites.  相似文献   

14.
Mitochondrial biogenesis emerges as a compensatory mechanism involved in the recovery process in endotoxemia and sepsis. The aim of this work was to analyze the time course of the cardiac mitochondrial biogenesis process occurring during endotoxemia, with emphasis on the quantitative analysis of mitochondrial function. Female Sprague-Dawley rats (45 days old) were ip injected with LPS (10 mg/kg). Measurements were performed at 0–24 h after LPS administration. PGC-1α and mtTFA expression for biogenesis and p62 and LC3 expression for autophagy were analyzed by Western blot; mitochondrial DNA levels by qPCR, and mitochondrial morphology by transmission electron microscopy. Mitochondrial function was evaluated as oxygen consumption and respiratory chain complex activity. PGC-1α and mtTFA expression significantly increased in every time point analyzed, and mitochondrial mass was increased by 20% (P<0.05) at 24 h. p62 expression was significantly decreased in a time-dependent manner. LC3-II expression was significantly increased at all time points analyzed. Ultrastructurally, mitochondria displayed several abnormalities (internal vesicles, cristae disruption, and swelling) at 6 and 18 h. Structures compatible with fusion/fission processes were observed at 24 h. A significant decrease in state 3 respiration was observed in every time point analyzed (LPS 6 h: 20%, P<0.05). Mitochondrial complex I activity was found decreased by 30% in LPS-treated animals at 6 and 24 h. Complex II and complex IV showed decreased activity only at 24 h. The present results show that partial restoration of cardiac mitochondrial architecture is not accompanied by improvement of mitochondrial function in acute endotoxemia. The key implication of our study is that cardiac failure due to bioenergetic dysfunction will be overcome by therapeutic interventions aimed to restore cardiac mitochondrial function.  相似文献   

15.
Since resveratrol is considered to exert a unique dual effect, protective for normal cells but toxic to tumor cells, its action on undifferentiated (original) and differentiated PC12 cells was analyzed, because undifferentiated cells are tumorigenic and differentiated ones are neuronal in nature. Compared to resveratrol-untreated cells in both undifferentiated and differentiated cell groups, cells treated with different doses of resveratrol, at dosages of 1, 10 and 100 μM, showed the following alterations. Dying/dead cells were significantly increased in a dose-dependent manner in undifferentiated cells, but they were unchanged at doses of up to 10 μM resveratrol in differentiated cells. In living cells, neurites were short in undifferentiated cells, but drastically elongated with an increased number in differentiated cells. The expression of SIRT1 was drastically reduced in undifferentiated cells, but stable in differentiated cells. SIRT3 was significantly enhanced in a dose-dependent manner at resveratrol doses of up to 10 μM in both cells, with reduction and more enhanced at a dosage of 100 μM in undifferentiated and differentiated cells, respectively. Mitochondrial number and ATP synthase β subunit expression was unaltered at doses of up to 10 μM and were significantly reduced at doses of 100 μM in undifferentiated cells, but they were significantly increased in a dose-dependent manner, with a slight reduction in the ATP synthase at doses of 100 μM, in differentiated cells. In a dose-dependent manner, the number of autophagosomes and the LC3-II/LC3-I ratio were significantly less in undifferentiated cells and greater in differentiated cells. Also, in a dose-dependent manner, the expression of phosphorylated AMP-activated kinase (AMPK) was significantly less in undifferentiated cells and greater in differentiated cells. Resveratrol-induced AMPK suppression and activation, possibly through the modulation of SIRT protein activity, may thus be related to the inhibition and promotion of mitochondrial and autophagic functions, leading to cell death and survival in undifferentiated and differentiated cells, respectively.  相似文献   

16.
Flavonoids are a large group of polyphenolic compounds that have received considerable attention because of their biological and physiological importance. The flavone (2-phenyl-4H-1-benzopyran-4one) used in this work is found in some cereal grains and generates several biological activities, including: apoptosis induction, cell cycle arrest, caspase activation and inhibition of tumor cell proliferation. However, its effects on the hepatic mitochondrial metabolism are still unknown. We evaluated the effect of flavone on the metabolism of mitochondria isolated from rat liver. Polarographic experiments using 200 μmol L?1 flavone and rat liver mitochondria oxidizing glutamate or succinate indicated that both substrates underwent: (i) reduction of state 3 respiration; (ii) stimulation of state 4 respiration; (iii) reduction of the respiratory control coefficient; and (iv) reduction of the ADP/O ratio. An analysis of the activity of enzymatic complexes in the respiratory chain showed that flavone acts between complexes I and III. Flavone reduced the membrane electric potential at doses of 100, 150 and 200 μmol L?1. Flavone at certain doses (75–200 μmol L?1) reduced mitochondrial swelling in the presence of valinomycin and KNO3, suggesting that flavone could induce changes in mitochondrial membrane properties. These results demonstrate that the inhibition of mitochondrial enzymes in the respiratory chain coupled with the effects on membrane properties are promoted by the core structure of flavones, and these effects may be in part responsible for the cytotoxic effects of flavones.  相似文献   

17.
Bacterial manganese superoxide dismutase (MnSOD) has been shown to localize to the chromosomal portion of the cell and impart protection from ionizing radiation to DNA. The binding affinity of bacterial MnSOD to non-sequence specific double stranded oligomeric DNA has been quantitated previously by nitrocellulose filter binding and gel shift assays. In the current study we have examined the equilibrium binding of Escherichia coli MnSOD to poly(U), poly(A), poly(C), poly(dU) and double-stranded (ds) DNA. Equilibrium association constant, Kobs, was measured by monitoring intrinsic tryptophan fluorescence quenching. Based on the extent of quenching, Kobs was determined as a function of monovalent salt (MX) concentration and type, as well as temperature, from which ΔG°obs and ΔH°obs were determined. It was found that the polynucleotides bind to MnSOD in the following affinity hierarchy, poly(dU) > poly(U) > dsDNA > poly(A) > poly(C). The differences in the hierarchy were not large in magnitude as the poly(dU) bound with less than a 100-fold higher affinity than poly(C) at any given [MX]. For each polynucleotide, Kobs decreases only slightly with increasing [K+], surprising for a relatively non-specific nucleic acid protein. Thus, our finding that MnSOD can bind to RNA leads to the possibility that MnSOD may confer protection to RNA, as well. This is, as of yet, untested. Typically one would expect strong electrostatic interactions to dominate a non-specific binding event like that, but our results show an unexpectedly strong non-electrostatic contribution to the binding.  相似文献   

18.
Brandt's voles (Lasiopodomys brandti) exposed to cold (5±1 °C) or warm (23±1 °C) showed some physiological and biochemical variations which might be important in adaptation to their environments. Cold acclimation induced increases in resting metabolic rate (RMR) and the serum triiodothyronine (T3) level, the state-4 respiration of liver and muscle mitochondria were activated after 7 days when animals exposed to cold, and the activity of cytochrome c oxidase (COX) of liver and muscle mitochondria tended to rise with cold exposure. RMR and T3 level decreased during warm acclimation. The state-4 respiration of liver mitochondria declined after 3 days and muscle after 7 days when animals exposed to warm, and the activities of COX of liver and muscle mitochondria tended to decrease with warm acclimation. The cold activation of liver and muscle mitochondrial respiration (regulated by T3) was one of the cytological mechanisms of elevating RMR. Both state-4 respiration and COX activity of brown adipose tissue (BAT) mitochondria increased significantly during cold acclimation and decreased markedly after acclimated to warm. The uncoupling protein 1 (UCP1) contents in BAT increased after exposure to cold and decreased after warm acclimation. Nonshivering thermogenesis (NST) plays an important role in the process of thermoregulation under cold acclimation for Brandt's voles. Changes in thermogenesis is a important way to cold adaptation for Brandt's voles in natural environments.  相似文献   

19.
During chronic kidney disease (CKD), drug metabolism is affected leading to changes in drug disposition. Furthermore, there is a progressive accumulation of uremic retention solutes due to impaired renal clearance. Here, we investigated whether uremic toxins can influence the metabolic functionality of human conditionally immortalized renal proximal tubule epithelial cells (ciPTEC) with the focus on UDP-glucuronosyltransferases (UGTs) and mitochondrial activity. Our results showed that ciPTEC express a wide variety of metabolic enzymes, including UGTs. These enzymes were functionally active as demonstrated by the glucuronidation of 7-hydroxycoumarin (7-OHC; Km of 12 ± 2 μM and a Vmax of 76 ± 3 pmol/min/mg) and p-cresol (Km of 33 ± 13 μM and a Vmax of 266 ± 25 pmol/min/mg). Furthermore, a wide variety of uremic toxins, including indole-3-acetic acid, indoxyl sulfate, phenylacetic acid and kynurenic acid, reduced 7-OHC glucuronidation with more than 30% as compared with controls (p < 0.05), whereas UGT1A and UGT2B protein expressions remained unaltered. In addition, our results showed that several uremic toxins inhibited mitochondrial succinate dehydrogenase (i.e. complex II) activity with more than 20% as compared with controls (p < 0.05). Moreover, indole-3-acetic acid decreased the reserve capacity of the electron transport system with 18% (p < 0.03). In conclusion, this study shows that multiple uremic toxins inhibit UGT activity and mitochondrial activity in ciPTEC, thereby affecting the metabolic capacity of the kidney during CKD. This may have a significant impact on drug and uremic retention solute disposition in CKD patients.  相似文献   

20.
Muscle insulin resistance is linked to oxidative stress and decreased mitochondrial function. However, the exact cause of muscle insulin resistance is still unknown. Since offspring of patients with type 2 diabetes mellitus (T2DM) are susceptible to developing insulin resistance, they are ideal for studying the early development of insulin resistance. By using primary muscle cells derived from obese non-diabetic subjects with (FH +) or without (FH ?) a family history of T2DM, we aimed to better understand the link between mitochondrial function, oxidative stress, and muscle insulin resistance. Insulin-stimulated glucose uptake and glycogen synthesis were normal in FH + myotubes. Resting oxygen consumption rate was not different between groups. However, proton leak was higher in FH + myotubes. This was associated with lower ATP content and decreased mitochondrial membrane potential in FH + myotubes. Surprisingly, mtDNA content was higher in FH + myotubes. Oxidative stress level was not different between FH + and FH ? groups. Reactive oxygen species content was lower in FH + myotubes when differentiated in high glucose/insulin (25 mM/150 pM), which could be due to higher oxidative stress defenses (SOD2 expression and uncoupled respiration). The increased antioxidant defenses and mtDNA content in FH + myotubes suggest the existence of compensatory mechanisms, which may provisionally prevent the development of insulin resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号