首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The ability to undergo dramatic morphological changes in response to extrinsic cues is conserved in fungi. We have used the model yeast Schizosaccharomyces pombe to determine which intracellular signal regulates the dimorphic switch from the single-cell yeast form to the filamentous invasive growth form. The S. pombe Asp1 protein, a member of the conserved Vip1 1/3 inositol polyphosphate kinase family, is a key regulator of the morphological switch via the cAMP protein kinase A (PKA) pathway. Lack of a functional Asp1 kinase domain abolishes invasive growth which is monopolar, while an increase in Asp1-generated inositol pyrophosphates (PP) increases the cellular response. Remarkably, the Asp1 kinase activity encoded by the N-terminal part of the protein is regulated negatively by the C-terminal domain of Asp1, which has homology to acid histidine phosphatases. Thus, the fine tuning of the cellular response to environmental cues is modulated by the same protein. As the Saccharomyces cerevisiae Asp1 ortholog is also required for the dimorphic switch in this yeast, we propose that Vip1 family members have a general role in regulating fungal dimorphism.Eucaryotic cells are able to define and maintain a particular cellular organization and thus cellular morphology by executing programs modulated by internal and external signals. For example, signals generated within a cell are required for the selection of the growth zone after cytokinesis in the fission yeast Schizosaccharomyces pombe or the emergence of the bud in Saccharomyces cerevisiae (37, 44, 81). Cellular morphogenesis is also subject to regulation by a wide variety of external signals, such as growth factors, temperature, hormones, nutrient limitation, and cell-cell or cell-substrate contact (13, 34, 66, 75, 81). Both types of signals will lead to the selection of growth zones accompanied by the reorganization of the cytoskeleton.The ability to alter the growth form in response to environmental conditions is an important virulence-associated trait of pathogenic fungi which helps the pathogen to spread in and survive the host''s defense system (7, 32). Alteration of the growth form in response to extrinsic signals is not limited to pathogenic fungi but is also found in the model yeasts S. cerevisiae and S. pombe, in which it appears to represent a foraging response (1, 24).The regulation of polarized growth and the definition of growth zones have been studied extensively with the fission yeast S. pombe. In this cylindrically shaped organism, cell wall biosynthesis is restricted to one or both cell ends in a cell cycle-regulated manner and to the septum during cytokinesis (38). This mode of growth requires the actin cytoskeleton to direct growth and the microtubule cytoskeleton to define the growth sites (60). In interphase cells, microtubules are organized in antiparallel bundles that are aligned along the long axis of the cell and grow from their plus ends toward the cell tips. Upon contact with the cell end, microtubule growth will first pause and then undergo a catastrophic event and microtubule shrinkage (21). This dynamic behavior of the microtubule plus end is regulated by a disparate, conserved, microtubule plus end group of proteins, called the +TIPs. The +TIP complex containing the EB1 family member Mal3 is required for the delivery of the Tea1-Tea4 complex to the cell tip (6, 11, 27, 45, 77). The latter complex docks at the cell end and recruits proteins required for actin nucleation (46, 76). Thus, the intricate cross talk between the actin and the microtubule cytoskeleton at specific intracellular locations is necessary for cell cycle-dependent polarized growth of the fission yeast cell.The intense analysis of polarized growth control in single-celled S. pombe makes this yeast an attractive organism for the identification of key regulatory components of the dimorphic switch. S. pombe multicellular invasive growth has been observed for specific strains under specific conditions, such as nitrogen and ammonium limitation and the presence of excess iron (1, 19, 50, 61).Here, we have identified an evolutionarily conserved key regulator of the S. pombe dimorphic switch, the Asp1 protein. Asp1 belongs to the highly conserved family of Vip1 1/3 inositol polyphosphate kinases, which is one of two families that can generate inositol pyrophosphates (PP) (17, 23, 42, 54). The inositol polyphosphate kinase IP6K family, of which the S. cerevisiae Kcs1 protein is a member, is the “classical” family that can phosphorylate inositol hexakisphosphate (IP6) (70, 71). These enzymes generate a specific PP-IP5 (IP7), which has the pyrophosphate at position 5 of the inositol ring (20, 54). The Vip1 family kinase activity was unmasked in an S. cerevisiae strain with KCS1 and DDP1 deleted (54, 83). The latter gene encodes a nudix hydrolase (14, 68). The mammalian and S. cerevisiae Vip1 proteins phosphorylate the 1/3 position of the inositol ring, generating 1/3 diphosphoinositol pentakisphosphate (42). Both enzyme families collaborate to generate IP8 (17, 23, 42, 54, 57).Two modes of action have been described for the high-energy moiety containing inositol pyrophosphates. First, these molecules can phosphorylate proteins by a nonenzymatic transfer of a phosphate group to specific prephosphorylated serine residues (2, 8, 69). Second, inositol pyrophosphates can regulate protein function by reversible binding to the S. cerevisiae Pho80-Pho85-Pho81 complex (39, 40). This cyclin-cyclin-dependent kinase complex is inactivated by inositol pyrophosphates generated by Vip1 when cells are starved of inorganic phosphate (39, 41, 42).Regulation of phosphate metabolism in S. cerevisiae is one of the few roles specifically attributed to a Vip1 kinase. Further information about the cellular function of this family came from the identification of the S. pombe Vip1 family member Asp1 as a regulator of the actin nucleator Arp2/3 complex (22). The 106-kDa Asp1 cytoplasmic protein, which probably exists as a dimer in vivo, acts as a multicopy suppressor of arp3-c1 mutants (22). Loss of Asp1 results in abnormal cell morphology, defects in polarized growth, and aberrant cortical actin cytoskeleton organization (22).The Vip1 family proteins have a dual domain structure which consists of an N-terminal “rimK”/ATP-grasp superfamily domain found in certain inositol signaling kinases and a C-terminal part with homology to histidine acid phosphatases present in phytase enzymes (28, 53, 54). The N-terminal domain is required and sufficient for Vip1 family kinase activity, and an Asp1 variant with a mutation in a catalytic residue of the kinase domain is unable to suppress mutants of the Arp2/3 complex (17, 23, 54). To date, no function has been described for the C-terminal phosphatase domain, and this domain appears to be catalytically inactive (17, 23, 54).Here we describe a new and conserved role for Vip1 kinases in regulating the dimorphic switch in yeasts. Asp1 kinase activity is essential for cell-cell and cell-substrate adhesion and the ability of S. pombe cells to grow invasively. Interestingly, Asp1 kinase activity is counteracted by the putative phosphatase domain of this protein, a finding that allows us to describe for the first time a function for the C-terminal part of Vip1 proteins.  相似文献   

2.
Analysis of Lyme borreliosis (LB) spirochetes, using a novel multilocus sequence analysis scheme, revealed that OspA serotype 4 strains (a rodent-associated ecotype) of Borrelia garinii were sufficiently genetically distinct from bird-associated B. garinii strains to deserve species status. We suggest that OspA serotype 4 strains be raised to species status and named Borrelia bavariensis sp. nov. The rooted phylogenetic trees provide novel insights into the evolutionary history of LB spirochetes.Multilocus sequence typing (MLST) and multilocus sequence analysis (MLSA) have been shown to be powerful and pragmatic molecular methods for typing large numbers of microbial strains for population genetics studies, delineation of species, and assignment of strains to defined bacterial species (4, 13, 27, 40, 44). To date, MLST/MLSA schemes have been applied only to a few vector-borne microbial populations (1, 6, 30, 37, 40, 41, 47).Lyme borreliosis (LB) spirochetes comprise a diverse group of zoonotic bacteria which are transmitted among vertebrate hosts by ixodid (hard) ticks. The most common agents of human LB are Borrelia burgdorferi (sensu stricto), Borrelia afzelii, Borrelia garinii, Borrelia lusitaniae, and Borrelia spielmanii (7, 8, 12, 35). To date, 15 species have been named within the group of LB spirochetes (6, 31, 32, 37, 38, 41). While several of these LB species have been delineated using whole DNA-DNA hybridization (3, 20, 33), most ecological or epidemiological studies have been using single loci (5, 9-11, 29, 34, 36, 38, 42, 51, 53). Although some of these loci have been convenient for species assignment of strains or to address particular epidemiological questions, they may be unsuitable to resolve evolutionary relationships among LB species, because it is not possible to define any outgroup. For example, both the 5S-23S intergenic spacer (5S-23S IGS) and the gene encoding the outer surface protein A (ospA) are present only in LB spirochete genomes (36, 43). The advantage of using appropriate housekeeping genes of LB group spirochetes is that phylogenetic trees can be rooted with sequences of relapsing fever spirochetes. This renders the data amenable to detailed evolutionary studies of LB spirochetes.LB group spirochetes differ remarkably in their patterns and levels of host association, which are likely to affect their population structures (22, 24, 46, 48). Of the three main Eurasian Borrelia species, B. afzelii is adapted to rodents, whereas B. valaisiana and most strains of B. garinii are maintained by birds (12, 15, 16, 23, 26, 45). However, B. garinii OspA serotype 4 strains in Europe have been shown to be transmitted by rodents (17, 18) and, therefore, constitute a distinct ecotype within B. garinii. These strains have also been associated with high pathogenicity in humans, and their finer-scale geographical distribution seems highly focal (10, 34, 52, 53).In this study, we analyzed the intra- and interspecific phylogenetic relationships of B. burgdorferi, B. afzelii, B. garinii, B. valaisiana, B. lusitaniae, B. bissettii, and B. spielmanii by means of a novel MLSA scheme based on chromosomal housekeeping genes (30, 48).  相似文献   

3.
4.
Imprinted gene expression corresponds to parental allele-specific DNA CpG methylation and chromatin composition. Histone tail covalent modifications have been extensively studied, but it is not known whether modifications in the histone globular domains can also discriminate between the parental alleles. Using multiplex chromatin immunoprecipitation-single nucleotide primer extension (ChIP-SNuPE) assays, we measured the allele-specific enrichment of H3K79 methylation and H4K91 acetylation along the H19/Igf2 imprinted domain. Whereas H3K79me1, H3K79me2, and H4K91ac displayed a paternal-specific enrichment at the paternally expressed Igf2 locus, H3K79me3 was paternally biased at the maternally expressed H19 locus, including the paternally methylated imprinting control region (ICR). We found that these allele-specific differences depended on CTCF binding in the maternal ICR allele. We analyzed an additional 11 differentially methylated regions (DMRs) and found that, in general, H3K79me3 was associated with the CpG-methylated alleles, whereas H3K79me1, H3K79me2, and H4K91ac enrichment was specific to the unmethylated alleles. Our data suggest that allele-specific differences in the globular histone domains may constitute a layer of the “histone code” at imprinted genes.Imprinted genes are defined by the characteristic monoallelic silencing of either the paternally or maternally inherited allele. Most imprinted genes exist in imprinted gene clusters (10), and these clusters are usually associated with one or more differentially methylated regions (DMRs) (27, 65). DNA methylation at DMRs is essential for the allele-specific expression of most imprinted genes (31). Maternal or paternal allele-specific DNA methylation of a subset of DMRs (germ line DMRs) is gamete specific (27, 39). These maternal or paternal methylation differences are established during oogenesis or spermatogenesis, respectively, by the de novo DNA methyltransferases Dnmt3a and Dnmt3b together with Dnmt3L (5, 26, 48). The gamete-specific methylation differences set the stage for the parental allele-specific action of germ line DMRs, some of which have been shown to control the monoallelic expression of the associated genes in the respective domains (11, 34, 36, 53, 66, 71-73, 77). These DMRs are called imprinting control regions (ICRs).Two recurring themes have been reported for ICR action. ICRs can function as DNA methylation-regulated promoters of a noncoding RNA or as methylation-regulated insulators. Recent evidence suggests that both of these mechanisms involve chromatin organization by either the noncoding RNA (45, 50) or the CTCF insulator protein (17, 32) along the respective imprinted domains. The CTCF insulator binds in the unmethylated maternal allele of the H19/Igf2 ICR and blocks the access of the Igf2 promoters to the shared downstream enhancers. CTCF cannot bind in the methylated paternal ICR allele; hence, here the Igf2 promoters have access to the enhancers (4, 18, 24, 25, 62). When CTCF binding is abolished in the ICR of the maternal allele, Igf2 expression becomes biallelic, and H19 expression is missing from both alleles (17, 52, 58, 63). Importantly, CTCF is the single major organizer of the allele-specific chromatin along the H19/Igf2 imprinted domain (17). Significantly, CTCF recruits, at a distance, Polycomb-mediated H3K27me3 repressive marks at the Igf2 promoter and at the Igf2 DMRs (17, 32).A role for chromatin composition is suggested in the parental allele-specific expression of imprinted genes. Repressive histone tail covalent modifications, such as H3K9me2 H3K9me3, H4K20me3, H3K27me3, and the symmetrically methylated H4R3me2 marks, are generally associated with the methylated DMR alleles, while activating histone tail covalent modifications, such as acetylated histone tails and also H3K4me2 and H3K4me3, are characteristic of the unmethylated alleles (7-9, 12-15, 17, 21, 33, 35, 43, 44, 51, 55, 56, 67, 69, 74, 75). Importantly, the maintenance of imprinted gene expression depends on the allele-specific chromatin differences. ICR-dependent H3K9me2 and H3K27me3 enrichment in the paternal allele (67) is required for paternal repression of a set of imprinted genes along the Kcnq1 imprinted domain in the placenta (30). Imprinted Cdkn1c and Cd81 expression depends on H3K27 methyltransferase Ezh2 activity in the extraembryonic ectoderm (64). Similarly, H3K9 methyltransferase Ehmt2 is required for parental allele-specific expression of a number of imprinted genes, including Osbpl5, Cd81, Ascl2, Tfpi2, and Slc22a3 in the placenta (44, 45, 70).There is increasing evidence that covalent modifications, not only in the histone tails but also in the histone globular domains, carry essential information for development and gene regulation. The H3K79 methyltransferase gene is essential for development in Drosophila (60) and in mice (22). H3K79 methylation is required for telomeric heterochromatin silencing in Drosophila (60), Saccharomyces cerevisiae (47, 68), and mice (22). The H4K91 residue regulates nucleosome assembly (76). Whereas mutations at single acetylation sites in the histone tails have only minor consequences, mutation of the H4K91 site in the histone H4 globular domain causes severe defects in silent chromatin formation and DNA repair in yeast (37, 42, 76).Contrary to the abundant information that exists regarding the allele-specific chromatin composition at DMRs of imprinted genes, no information is available about the parental allele-specific marking in the histone globular domains at the DMRs. We hypothesized that chromatin marks in the globular domains of histones also distinguish the parental alleles of germ line DMRs. In order to demonstrate this, we measured the allele-specific enrichment of H3K79me1, H3K79me2, H3K79me3, and H4K91ac at 11 mouse DMRs using quantitative multiplex chromatin immunoprecipitation-single nucleotide primer extension (ChIP-SNuPE) assays. In general, H3K79me3 was associated with the methylated allele at most DMRs, whereas the unmethylated allele showed enrichment for H3K79me1, H3K79me2, and H4K91ac. These results are consistent with the possibility that allele-specific differences in the globular domains of histones contribute to the “histone code” at DMRs.  相似文献   

5.
6.
7.
Sister chromatid recombination (SCR) is a potentially error-free pathway for the repair of DNA lesions associated with replication and is thought to be important for suppressing genomic instability. The mechanisms regulating the initiation and termination of SCR in mammalian cells are poorly understood. Previous work has implicated all the Rad51 paralogs in the initiation of gene conversion and the Rad51C/XRCC3 complex in its termination. Here, we show that hamster cells deficient in the Rad51 paralog XRCC2, a component of the Rad51B/Rad51C/Rad51D/XRCC2 complex, reveal a bias in favor of long-tract gene conversion (LTGC) during SCR. This defect is corrected by expression of wild-type XRCC2 and also by XRCC2 mutants defective in ATP binding and hydrolysis. In contrast, XRCC3-mediated homologous recombination and suppression of LTGC are dependent on ATP binding and hydrolysis. These results reveal an unexpectedly general role for Rad51 paralogs in the control of the termination of gene conversion between sister chromatids.DNA double-strand breaks (DSBs) are potentially dangerous lesions, since their misrepair may cause chromosomal translocations, gene amplifications, loss of heterozygosity (LOH), and other types of genomic instability characteristic of human cancers (7, 9, 21, 40, 76, 79). DSBs are repaired predominantly by nonhomologous end joining or homologous recombination (HR), two evolutionarily conserved DSB repair mechanisms (8, 12, 16, 33, 48, 60, 71). DSBs generated during the S or G2 phase of the cell cycle may be repaired preferentially by HR, using the intact sister chromatid as a template for repair (12, 26, 29, 32, 71). Sister chromatid recombination (SCR) is a potentially error-free pathway for the repair of DSBs, which has led to the proposal that SCR protects against genomic instability, cancer, and aging. Indeed, a number of human cancer predisposition genes are implicated in SCR control (10, 24, 45, 57, 75).HR entails an initial processing of the DSB to generate a free 3′ single-stranded DNA (ssDNA) overhang (25, 48, 56). This is coupled to the loading of Rad51, the eukaryotic homolog of Escherichia coli RecA, which polymerizes to form an ssDNA-Rad51 “presynaptic” nucleoprotein filament. Formation of the presynaptic filament is tightly regulated and requires the concerted action of a large number of gene products (55, 66, 68). Rad51-coated ssDNA engages in a homology search by invading homologous duplex DNA. If sufficient homology exists between the invading and invaded strands, a triple-stranded synapse (D-loop) forms, and the 3′ end of the invading (nascent) strand is extended, using the donor as a template for gene conversion. This recombination intermediate is thought to be channeled into one of the following two major subpathways: classical gap repair or synthesis-dependent strand annealing (SDSA) (48). Gap repair entails the formation of a double Holliday junction, which may resolve into either crossover or noncrossover products. Although this is a major pathway in meiotic recombination, crossing-over is highly suppressed in somatic eukaryotic cells (26, 44, 48). Indeed, the donor DNA molecule is seldom rearranged during somatic HR, suggesting that SDSA is the major pathway for the repair of somatic DSBs (26, 44, 49, 69). SDSA terminates when the nascent strand is displaced from the D-loop and pairs with the second end of the DSB to form a noncrossover product. The mechanisms underlying displacement of the nascent strand are not well understood. However, failure to displace the nascent strand might be expected to result in the production of longer gene conversion tracts during HR (36, 44, 48, 63).Gene conversion triggered in response to a Saccharomyces cerevisiae or mammalian chromosomal DSB generally results in the copying of a short (50- to 300-bp) stretch of information from the donor (short-tract gene conversion [STGC]) (14, 47, 48, 67, 69). A minority of gene conversions in mammalian cells entail more-extensive copying, generating gene conversion tracts that are up to several kilobases in length (long-tract gene conversion [LTGC]) (26, 44, 51, 54, 64). In yeast, very long gene conversions can result from break-induced replication (BIR), a highly processive form of gene conversion in which a bona fide replication fork is thought to be established at the recombination synapse (11, 36, 37, 39, 61, 63). In contrast, SDSA does not require lagging-strand polymerases and appears to be much less processive than a conventional replication fork (37, 42, 78). BIR in yeast has been proposed to play a role in LOH in aging yeast, telomere maintenance, and palindromic gene amplification (5, 41, 52). It is unclear to what extent a BIR-like mechanism operates in mammalian cells, although BIR has been invoked to explain telomere elongation in tumors lacking telomerase (13). It is currently unknown whether LTGC and STGC in somatic mammalian cells are products of mechanistically distinct pathways or whether they represent alternative outcomes of a common SDSA pathway.Vertebrate cells contain five Rad51 paralogs—polypeptides with limited sequence homology to Rad51—Rad51B, Rad51C, Rad51D, XRCC2, and XRCC3 (74). The Rad51 paralogs form the following two major complexes: Rad51B/Rad51C/Rad51D/XRCC2 (BCDX2) and Rad51C/XRCC3 (CX3) (38, 73). Genetic deletion of any one of the rad51 paralogs in the mouse germ line produces early embryonic lethality, and mouse or chicken cells lacking any of the rad51 paralogs reveal hypersensitivity to DNA-damaging agents, reduced frequencies of HR and of sister chromatid exchanges, increased chromatid-type errors, and defective sister chromatid cohesion (18, 72, 73, 82). Collectively, these data implicate the Rad51 paralogs in SCR regulation. The purified Rad51B/Rad51C complex has been shown to assist Rad51-mediated strand exchange (62). XRCC3 null or Rad51C null hamster cells reveal a bias toward production of longer gene conversion tracts, suggesting a role for the CX3 complex in late stages of SDSA (6, 44). Rad51C copurifies with branch migration and Holliday junction resolution activities in mammalian cell extracts (35), and XRCC3, but not XRCC2, facilitates telomere shortening by reciprocal crossing-over in telomeric T loops (77). These data, taken together with the meiotic defects observed in Rad51C hypomorphic mice, suggest a specialized role for CX3, but not for BCDX2, in resolving Holliday junction structures (31, 58).To further address the roles of Rad51 paralogs in late stages of recombination, we have studied the balance between long-tract (>1-kb) and short-tract (<1-kb) SCR in XRCC2 mutant hamster cells. We found that DSB-induced gene conversion in both XRCC2 and XRCC3 mutant cells is biased in favor of LTGC. These defects were suppressed by expression of wild-type (wt) XRCC2 or XRCC3, respectively, although the dependence upon ATP binding and hydrolysis differed between the two Rad51 paralogs. These results indicate that Rad51 paralogs play a more general role in determining the balance between STGC and LTGC than was previously appreciated and suggest roles for both the BCDX2 and CX3 complexes in influencing the termination of gene conversion in mammals.  相似文献   

8.
Human immunodeficiency virus type 1 (HIV-1) infects target cells by binding to CD4 and a chemokine receptor, most commonly CCR5. CXCR4 is a frequent alternative coreceptor (CoR) in subtype B and D HIV-1 infection, but the importance of many other alternative CoRs remains elusive. We have analyzed HIV-1 envelope (Env) proteins from 66 individuals infected with the major subtypes of HIV-1 to determine if virus entry into highly permissive NP-2 cell lines expressing most known alternative CoRs differed by HIV-1 subtype. We also performed linear regression analysis to determine if virus entry via the major CoR CCR5 correlated with use of any alternative CoR and if this correlation differed by subtype. Virus pseudotyped with subtype B Env showed robust entry via CCR3 that was highly correlated with CCR5 entry efficiency. By contrast, viruses pseudotyped with subtype A and C Env proteins were able to use the recently described alternative CoR FPRL1 more efficiently than CCR3, and use of FPRL1 was correlated with CCR5 entry. Subtype D Env was unable to use either CCR3 or FPRL1 efficiently, a unique pattern of alternative CoR use. These results suggest that each subtype of circulating HIV-1 may be subject to somewhat different selective pressures for Env-mediated entry into target cells and suggest that CCR3 may be used as a surrogate CoR by subtype B while FPRL1 may be used as a surrogate CoR by subtypes A and C. These data may provide insight into development of resistance to CCR5-targeted entry inhibitors and alternative entry pathways for each HIV-1 subtype.Human immunodeficiency virus type 1 (HIV-1) infects target cells by binding first to CD4 and then to a coreceptor (CoR), of which C-C chemokine receptor 5 (CCR5) is the most common (6, 53). CXCR4 is an additional CoR for up to 50% of subtype B and D HIV-1 isolates at very late stages of disease (4, 7, 28, 35). Many other seven-membrane-spanning G-protein-coupled receptors (GPCRs) have been identified as alternative CoRs when expressed on various target cell lines in vitro, including CCR1 (76, 79), CCR2b (24), CCR3 (3, 5, 17, 32, 60), CCR8 (18, 34, 38), GPR1 (27, 65), GPR15/BOB (22), CXCR5 (39), CXCR6/Bonzo/STRL33/TYMSTR (9, 22, 25, 45, 46), APJ (26), CMKLR1/ChemR23 (49, 62), FPLR1 (67, 68), RDC1 (66), and D6 (55). HIV-2 and simian immunodeficiency virus SIVmac isolates more frequently show expanded use of these alternative CoRs than HIV-1 isolates (12, 30, 51, 74), and evidence that alternative CoRs other than CXCR4 mediate infection of primary target cells by HIV-1 isolates is sparse (18, 30, 53, 81). Genetic deficiency in CCR5 expression is highly protective against HIV-1 transmission (21, 36), establishing CCR5 as the primary CoR. The importance of alternative CoRs other than CXCR4 has remained elusive despite many studies (1, 30, 70, 81). Expansion of CoR use from CCR5 to include CXCR4 is frequently associated with the ability to use additional alternative CoRs for viral entry (8, 16, 20, 63, 79) in most but not all studies (29, 33, 40, 77, 78). This finding suggests that the sequence changes in HIV-1 env required for use of CXCR4 as an additional or alternative CoR (14, 15, 31, 37, 41, 57) are likely to increase the potential to use other alternative CoRs.We have used the highly permissive NP-2/CD4 human glioma cell line developed by Soda et al. (69) to classify virus entry via the alternative CoRs CCR1, CCR3, CCR8, GPR1, CXCR6, APJ, CMKLR1/ChemR23, FPRL1, and CXCR4. Full-length molecular clones of 66 env genes from most prevalent HIV-1 subtypes were used to generate infectious virus pseudotypes expressing a luciferase reporter construct (19, 57). Two types of analysis were performed: the level of virus entry mediated by each alternative CoR and linear regression of entry mediated by CCR5 versus all other alternative CoRs. We thus were able to identify patterns of alternative CoR use that were subtype specific and to determine if use of any alternative CoR was correlated or independent of CCR5-mediated entry. The results obtained have implications for the evolution of env function, and the analyses revealed important differences between subtype B Env function and all other HIV-1 subtypes.  相似文献   

9.
Immunogold localization revealed that OmcS, a cytochrome that is required for Fe(III) oxide reduction by Geobacter sulfurreducens, was localized along the pili. The apparent spacing between OmcS molecules suggests that OmcS facilitates electron transfer from pili to Fe(III) oxides rather than promoting electron conduction along the length of the pili.There are multiple competing/complementary models for extracellular electron transfer in Fe(III)- and electrode-reducing microorganisms (8, 18, 20, 44). Which mechanisms prevail in different microorganisms or environmental conditions may greatly influence which microorganisms compete most successfully in sedimentary environments or on the surfaces of electrodes and can impact practical decisions on the best strategies to promote Fe(III) reduction for bioremediation applications (18, 19) or to enhance the power output of microbial fuel cells (18, 21).The three most commonly considered mechanisms for electron transfer to extracellular electron acceptors are (i) direct contact between redox-active proteins on the outer surfaces of the cells and the electron acceptor, (ii) electron transfer via soluble electron shuttling molecules, and (iii) the conduction of electrons along pili or other filamentous structures. Evidence for the first mechanism includes the necessity for direct cell-Fe(III) oxide contact in Geobacter species (34) and the finding that intensively studied Fe(III)- and electrode-reducing microorganisms, such as Geobacter sulfurreducens and Shewanella oneidensis MR-1, display redox-active proteins on their outer cell surfaces that could have access to extracellular electron acceptors (1, 2, 12, 15, 27, 28, 31-33). Deletion of the genes for these proteins often inhibits Fe(III) reduction (1, 4, 7, 15, 17, 28, 40) and electron transfer to electrodes (5, 7, 11, 33). In some instances, these proteins have been purified and shown to have the capacity to reduce Fe(III) and other potential electron acceptors in vitro (10, 13, 29, 38, 42, 43, 48, 49).Evidence for the second mechanism includes the ability of some microorganisms to reduce Fe(III) that they cannot directly contact, which can be associated with the accumulation of soluble substances that can promote electron shuttling (17, 22, 26, 35, 36, 47). In microbial fuel cell studies, an abundance of planktonic cells and/or the loss of current-producing capacity when the medium is replaced is consistent with the presence of an electron shuttle (3, 14, 26). Furthermore, a soluble electron shuttle is the most likely explanation for the electrochemical signatures of some microorganisms growing on an electrode surface (26, 46).Evidence for the third mechanism is more circumstantial (19). Filaments that have conductive properties have been identified in Shewanella (7) and Geobacter (41) species. To date, conductance has been measured only across the diameter of the filaments, not along the length. The evidence that the conductive filaments were involved in extracellular electron transfer in Shewanella was the finding that deletion of the genes for the c-type cytochromes OmcA and MtrC, which are necessary for extracellular electron transfer, resulted in nonconductive filaments, suggesting that the cytochromes were associated with the filaments (7). However, subsequent studies specifically designed to localize these cytochromes revealed that, although the cytochromes were extracellular, they were attached to the cells or in the exopolymeric matrix and not aligned along the pili (24, 25, 30, 40, 43). Subsequent reviews of electron transfer to Fe(III) in Shewanella oneidensis (44, 45) appear to have dropped the nanowire concept and focused on the first and second mechanisms.Geobacter sulfurreducens has a number of c-type cytochromes (15, 28) and multicopper proteins (12, 27) that have been demonstrated or proposed to be on the outer cell surface and are essential for extracellular electron transfer. Immunolocalization and proteolysis studies demonstrated that the cytochrome OmcB, which is essential for optimal Fe(III) reduction (15) and highly expressed during growth on electrodes (33), is embedded in the outer membrane (39), whereas the multicopper protein OmpB, which is also required for Fe(III) oxide reduction (27), is exposed on the outer cell surface (39).OmcS is one of the most abundant cytochromes that can readily be sheared from the outer surfaces of G. sulfurreducens cells (28). It is essential for the reduction of Fe(III) oxide (28) and for electron transfer to electrodes under some conditions (11). Therefore, the localization of this important protein was further investigated.  相似文献   

10.
11.
A segregationally stable expression and secretion vector for Saccharomyces cerevisiae, named pYABD01, was constructed by cloning the yeast gene region encoding the mating pheromone α-factor 1 secretion signal (MFα1s) into the S. cerevisiae high-copy-number expression vector pYES2. The structural genes of the two leaderless peptides of enterocin L50 (EntL50A and EntL50B) from Enterococcus faecium L50 were cloned, separately (entL50A or entL50B) and together (entL50AB), into pYABD01 under the control of the galactose-inducible promoter PGAL1. The generation of recombinant S. cerevisiae strains heterologously expressing and secreting biologically active EntL50A and EntL50B demonstrates the suitability of the MFα1s-containing vector pYABD01 to direct processing and secretion of these antimicrobial peptides through the S. cerevisiae Sec system.Lactic acid bacteria (LAB) are widely known for their ability to produce a variety of ribosomally synthesized proteins or peptides, referred to as bacteriocins, displaying antimicrobial activity against a broad range of gram-positive bacteria and, to a lesser extent, gram-negative bacteria, including spoilage and food-borne pathogenic microorganisms (11, 19, 33, 34, 36, 37). These antimicrobials may be classified into three main classes: (i) the lantibiotics, or posttranslationally modified peptides; (ii) the nonmodified, small, heat-stable peptides; and (iii) the large, heat-labile protein bacteriocins. Class II bacteriocins are further grouped into five subclasses: the subclass IIa (pediocin-like bacteriocins containing the N-terminal conserved motif YGNGVxC), the subclass IIb (two-peptide bacteriocins), the subclass IIc (leaderless bacteriocins), the subclass IId (circular bacteriocins), and the subclass IIe (other peptide bacteriocins) (17, 19, 21, 37). All lantibiotics and most class II bacteriocins are synthesized as biologically inactive precursors containing an N-terminal extension (the so-called double-glycine-type leader sequence or the Sec-dependent signal peptide), which is cleaved off concomitantly with externalization of biologically active bacteriocins by a dedicated ATP-binding cassette transporter and its accessory protein or by the Sec system and the signal peptidases, respectively (11, 17). Interestingly, only a few bacteriocins described to date are synthesized without an N-terminal extension, including enterocin L50 (L50A and L50B) (8), enterocin Q (EntQ) (10), enterocin EJ97 (41), and the bacteriocin LsbB (20).In recent years, there has been an increasing interest in the application of bacteriocinogenic microorganisms and/or their bacteriocins as biopreservatives to guarantee the safety and quality of foods and beverages, such as fermented vegetables and meats, dairy and fish products, and wine and beer (12, 15, 16, 39, 47). Three main strategies for the use of bacteriocins as food biopreservatives have been proposed: (i) addition of a purified/semipurified bacteriocin preparation as a food additive; (ii) use of a substrate previously fermented by a bacteriocin-producing strain as a food ingredient; and/or (iii) inoculation of a culture to produce the bacteriocin in situ in fermented foods (13, 15). The lantibiotic nisin A is the most widely characterized bacteriocin and the only one that has been legally approved in more than 48 countries as a food additive for use in certain types of cheeses (13, 16). Likewise, nisin A has been approved as a beer additive in Australia and New Zealand (16). However, the difficulties encountered in addressing the regulatory approval of new bacteriocins as food additives have spurred the development of the other bacteriocin-based food biopreservation strategies (13, 17).Beer is a beverage with a remarkable microbiological stability and is considered as a food substrate difficult to spoil. However, some LAB, such as Lactobacillus brevis, Lactobacillus lindneri, and Pediococcus damnosus, are able to spoil beer and are recognized as the most hazardous bacteria for breweries, being responsible for approximately 70% of microbial beer spoilage incidents (40, 47). The ever-growing consumer demand for less-processed and less chemically preserved foods and beverages is promoting the development of alternative biocontrol strategies, such as those based on the use of bacteriocins as biopreservatives (12, 15, 39, 47). However, beyond the strict requirements to fulfill legal regulations, the commercial application of bacteriocins as beer additives is hindered mainly by low bacteriocin production yields and increases in production costs (44). Considering that Saccharomyces cerevisiae is commonly used as starter culture for brewing (24, 28, 35), a novel beer biopreservation strategy based on the development of bactericidal S. cerevisiae brewing strains has been proposed to overcome the aforementioned challenges (44, 46, 47). In this respect, the heterologous production of LAB bacteriocins, namely, pediocin PA-1 (PedPA-1) from Pediococcus acidilactici PAC1.0 and plantaricin 423 from Lactobacillus plantarum 423, by laboratory strains of S. cerevisiae has been reported (44, 46).Enterocin L50 (EntL50) is a commonly found bacteriocin composed of two highly related leaderless antimicrobial peptides, enterocin L50A (EntL50A) and enterocin L50B (EntL50B), which possesses a broad antimicrobial spectrum against LAB, food-borne pathogenic bacteria, and human and animal clinical pathogens (8, 9, 10, 11). Previous work by our group showed that EntL50 (EntL50A and EntL50B) may be used as a beer biopreservative to inhibit the growth of beer spoilage bacteria (1). Therefore, genetically engineered strains of S. cerevisiae heterologously expressing and secreting EntL50A and EntL50B have been developed in this work. For this purpose, we constructed the segregationally stable expression and secretion vector pYABD01, which allowed the secretion of biologically active EntL50A and EntL50B directed by MFα1s through the S. cerevisiae Sec system.  相似文献   

12.
Filopodia are dynamic structures found at the leading edges of most migrating cells. IRSp53 plays a role in filopodium dynamics by coupling actin elongation with membrane protrusion. IRSp53 is a Cdc42 effector protein that contains an N-terminal inverse-BAR (Bin-amphipysin-Rvs) domain (IRSp53/MIM homology domain [IMD]) and an internal SH3 domain that associates with actin regulatory proteins, including Eps8. We demonstrate that the SH3 domain functions to localize IRSp53 to lamellipodia and that IRSp53 mutated in its SH3 domain fails to induce filopodia. Through SH3 domain-swapping experiments, we show that the related IRTKS SH3 domain is not functional in lamellipodial localization. IRSp53 binds to 14-3-3 after phosphorylation in a region that lies between the CRIB and SH3 domains. This association inhibits binding of the IRSp53 SH3 domain to proteins such as WAVE2 and Eps8 and also prevents Cdc42-GTP interaction. The antagonism is achieved by phosphorylation of two related 14-3-3 binding sites at T340 and T360. In the absence of phosphorylation at these sites, filopodium lifetimes in cells expressing exogenous IRSp53 are extended. Our work does not conform to current views that the inverse-BAR domain or Cdc42 controls IRSp53 localization but provides an alternative model of how IRSp53 is recruited (and released) to carry out its functions at lamellipodia and filopodia.The ability of a cell to rapidly respond to extracellular cues and direct cytoskeletal rearrangements is dependent on an array of signaling complexes that control actin assembly (58). The protrusive structures at the leading edges of motile cells are broadly defined as lamellipodia or filopodia (14). Lamellae are sheet-like protrusions composed of dendritic actin arrays that drive membrane expansion, with the “lamellipodium” representing a narrow region at the edge of the cell (in culture) characterized by rapid actin polymerization. This F-actin assembly is suggested to require Arp2/3 activity that nucleates new actin filaments from the sides of existing ones (58, 71) and capping proteins that limit the length of these new filaments and stabilize them (7). Arp2/3 activity in turn is regulated by the WASP/WAVE family of proteins, such as N-WASP and WAVE2 (68), whose regulation is a subject of intense interest (12, 29, 36, 41, 56, 76).Filopodia contain parallel bundles of actin filaments containing fascin (22). These are dynamic structures that emanate from the periphery of the cell and are retracted, with occasional attachment (to the dish in culture). Thus, they have been thought to have a sensory or exploratory role during cell migration (28). This is the case for neuronal growth cones, where filopodia sense attractant or repulsive cues and dictate direction in axonal path finding (9, 17, 25, 35). Filopodia have been shown to be important in the context of dendritic-spine development (64, 77), epithelial-sheet closure (26, 60, 79), and cell invasion/metastasis (80, 83).Lamellipodia have been well characterized since the pioneering work of Abercrombie et al. in the early 1970s (2, 3, 4). Filopodia require symmetry breaking at the leading edge (initiation), followed by elongation driven by a filopodial-tip protein complex (14, 28). A few proteins have been identified in this complex; Mena/Vasp serve to prevent capping at the barbed ends of bundled actin filaments (7, 53), and Dia2 promotes F-actin elongation (57, 85). Termination of filopodial elongation is not understood but nonetheless is likely to be tightly regulated. In the absence of F-actin elongation, retraction of the filopodium takes place by a rearward flow of F-actin and filament depolymerization (22).IRSp53 is in a position to play a pivotal role in generating filopodia; this brain-enriched protein was discovered as a substrate of the insulin receptor (87). Subsequently, IRSp53 was identified as an effector for Rac1 (50) and Cdc42 (27, 38), where it participates in filopodium and lamellipodium production (38, 51, 54, 86), neurite extension (27), dendritic-spine morphogenesis (1, 15, 66, 67), cell motility and invasiveness (24). The N terminus of IRSp53 contains a conserved helical domain that is found in five different gene products and is referred to as the IRSp53/MIM homology domain (IMD) (51, 70). This domain has been postulated to bind to Rac1 (50, 70) in a nucleotide-independent manner (52), but no convincing effector-like region has been identified. A Cdc42-specific CRIB-like sequence that does not bind Rac1 (27, 38) allows coupling of this and perhaps related Rho GTPases. The structure of the IMD reveals a zeppelin-shaped dimer that could bind “bent” membranes; thus, its potential as an F-actin-bundling domain (51, 82) could be an in vitro artifact often attributed to proteins with basic patches (46). Although there are reports of F-actin binding at physiological ionic strength (ca. 100 mM KCl) (82, 19), this region when expressed in isolation does not decorate F-actin in vivo.Two reports showed the IMD to be an “inverse-BAR” domain. BAR (Bin-amphipysin-Rvs) domains are found in proteins involved in endocytic trafficking, such as amphipysin and endophilin, and stabilize positively bent membranes, such as those on endocytic vesicles (31, 47). The IMD domains of both IRSp53 (70) and MIM-B (46) associate with lipids and can induce tubulations of PI(3,4,5)P3 or PI(4,5)P2-rich membranes, respectively. These tubulations are equivalent to membrane protrusions and are also referred to as negatively bent membranes. Ectopic expression of the IMD from IRSp53 (51, 70, 82, 86) or two other family members, MIM-B (11, 46) and IRTKS (52), can give rise to cells with many peripheral extensions. MIM-B is said to stimulate lamellipodia (11), while IRTKS generates “short actin clusters” at the cell periphery (52).In IRSp53 is a CRIB-like motif that mediates binding to Cdc42 (27, 38), but the function of this interaction in unclear. Cdc42 could relieve IRSp53 autoinhibition as described for N-Wasp (38), but there is little evidence for this. It has been suggested that Cdc42 controls IRSp53 localization and actin remodeling (27, 38), but another study indicated that these events are Cdc42 independent (19). IRSp53 contains a central SH3 domain that may bind proline-rich proteins, such as Dia1 (23), Mena (38), WAVE2 (49, 50, 69), and Eps8 (19, 24). However, it seems unlikely that all of these represent bona fide partners, and side-by-side comparison is provided in this study. Mena is involved in filopodium production (37), Dia1 in stress fiber formation (81), and WAVE2 in lamellipodium extension (72). Thus, Mena is a better candidate as a partner for IRSp53-mediated filopodia than Dia1 or WAVE2.There is good evidence for IRSp53 as a cellular partner for Eps8 (19). Eps8 is an adaptor protein containing an N-terminal PTB domain that can associate with receptor tyrosine kinases (65), and perhaps β integrins (13), and a C-terminal SH3 domain that can associate with Abi1 (30). Binding of the general adaptor Abi1 appears to positively regulate the actin-capping domain at the C terminus of Eps8 (18). It has been suggested that IRSp53 and Eps8 as a complex regulate cell motility, and perhaps Rac1 activation, via SOS (24); more recently, their roles in filopodium formation have been addressed (19). The involvement of IRSp53, but not MIM-B or IRTKS, in filopodium formation might be related to its role as a Cdc42 effector. We show here that, surprisingly, the CRIB motif is not essential for this activity, but rather, the ability of IRSp53 to associate via its SH3 domain is required, and that this domain is controlled by 14-3-3 binding.We have focused on the regulation of Cdc42 effectors that bind 14-3-3, including IRSp53 and PAK4, which are found as 14-3-3 targets in various proteomic projects (32, 44). In this study, we characterize the binding of 14-3-3 to IRSp53 and uncover how this activity regulates IRSp53 function. The phosphorylation-dependent 14-3-3 binding is GSK3β dependent, and 14-3-3 blocks the accessibility of both the CRIB and SH3 domains of IRSp53, thus indicating its primary function in controlling IRSp53 partners. This regulation of the SH3 domain by 14-3-3 is critical in the proper localization and termination of IRSp53 function to promote filopodium dynamics.  相似文献   

13.
14.
15.
16.
Saccharomyces cerevisiae produces extracellular glycerophosphoinositol through phospholipase-mediated turnover of phosphatidylinositol and transports glycerophosphoinositol into the cell upon nutrient limitation. A screening identified the RAS GTPase-activating proteins Ira1 and Ira2 as required for utilization of glycerophosphoinositol as the sole phosphate source, but the RAS/cyclic AMP pathway does not appear to be involved in the growth phenotype. Ira1 and Ira2 affect both the production and transport of glycerophosphoinositol.Membrane phospholipids are continually synthesized and degraded as cells grow and respond to environmental conditions. A major pathway of phosphatidylinositol (PI) turnover in Saccharomyces cerevisiae is its deacylation to produce extracellular glycerophosphoinositol (GroPIns) (3). Plb3, an enzyme with phospholipase B (PLB)/lysophospholipase activity, is thought to be primarily responsible for the production of extracellular GroPIns, with Plb1 playing a lesser role (11, 12, 13). GroPIns is transported into the cell by the Git1 permease (17). GIT1 expression is upregulated by phosphate limitation and inositol limitation. In fact, GroPIns can act as the cell''s sole source of both inositol (17) and phosphate (1).A screening for gene products involved in the process by which GroPIns enters the cellular metabolism identified Ira1 and Ira2, yeast homologs of the mammalian protein neurofibromin. Alterations in NF1, the gene encoding neurofibromin, are associated with the pathogenesis of neurofibromatosis type 1, an autosomal dominant genetic disease (4, 5, 25). Ira1 and Ira2 and neurofibromin function as RAS GTPase-activating proteins (RAS GAPs). S. cerevisiae Ras1 and Ras2 activate adenylate cyclase to modulate cyclic AMP (cAMP) levels. The binding of cAMP to the regulatory subunits of protein kinase A (Bcy1) results in dissociation and activation of the catalytic subunits (Tpk1 to Tpk3). Ira1 and Ira2 inactivate RAS and thereby downregulate the pathway (18, 19). Hydrolysis of cAMP by the phosphodiesterases encoded by PDE1 and PDE2 also downregulate the pathway (7, 20, 23). The RAS/cAMP pathway responds to nutrient signals to modulate fundamental cellular processes, including stress resistance, metabolism, and cell proliferation (7, 20, 21).  相似文献   

17.
18.
19.
During yeast sporulation, a forespore membrane (FSM) initiates at each spindle-pole body and extends to form the spore envelope. We used Schizosaccharomyces pombe to investigate the role of septins during this process. During the prior conjugation of haploid cells, the four vegetatively expressed septins (Spn1, Spn2, Spn3, and Spn4) coassemble at the fusion site and are necessary for its normal morphogenesis. Sporulation involves a different set of four septins (Spn2, Spn5, Spn6, and the atypical Spn7) that does not include the core subunits of the vegetative septin complex. The four sporulation septins form a complex in vitro and colocalize interdependently to a ring-shaped structure along each FSM, and septin mutations result in disoriented FSM extension. The septins and the leading-edge proteins appear to function in parallel to orient FSM extension. Spn2 and Spn7 bind to phosphatidylinositol 4-phosphate [PtdIns(4)P] in vitro, and PtdIns(4)P is enriched in the FSMs, suggesting that septins bind to the FSMs via this lipid. Cells expressing a mutant Spn2 protein unable to bind PtdIns(4)P still form extended septin structures, but these structures fail to associate with the FSMs, which are frequently disoriented. Thus, septins appear to form a scaffold that helps to guide the oriented extension of the FSM.Yeast sporulation is a developmental process that involves multiple, sequential events that need to be tightly coordinated (59, 68). In the fission yeast Schizosaccharomyces pombe, when cells of opposite mating type (h+ and h) are mixed and shifted to conditions of nitrogen starvation, cell fusion and karyogamy occur to form a diploid zygote, which then undergoes premeiotic DNA replication, the two meiotic divisions, formation of the spore envelopes (comprising the plasma membrane and a specialized cell wall), and maturation of the spores (74, 81). At the onset of meiosis II, precursors of the spore envelopes, the forespore membranes (FSMs), are formed by the fusion of vesicles at the cytoplasmic surface of each spindle-pole body (SPB) and then extend to engulf the four nuclear lobes (the nuclear envelope does not break down during meiosis), thus capturing the haploid nuclei, along with associated cytoplasm and organelles, to form the nascent spores (55, 68, 81). How the FSMs recognize and interact with the nuclear envelope, extend in a properly oriented manner, and close to form uniformly sized spherical spores is not understood, and study of this model system should also help to elucidate the more general question of how membranes obtain their shapes in vivo.It has been shown that both the SPB and the vesicle trafficking system play important roles in the formation and development of the FSM and of its counterpart in the budding yeast Saccharomyces cerevisiae, the prospore membrane (PSM). In S. pombe, the SPB changes its shape from a compact dot to a crescent at metaphase of meiosis II (26, 29), and its outer plaque acquires meiosis-specific components such as Spo2, Spo13, and Spo15 (30, 57, 68). This modified outer plaque is required for the initiation of FSM assembly. In S. cerevisiae, it is well established that various secretory (SEC) gene products are required for PSM formation (58, 59). Similarly, proteins presumably involved in the docking and/or fusion of post-Golgi vesicles and organelles in S. pombe, such as the syntaxin-1A Psy1, the SNAP-25 homologue Sec9, and the Rab7 GTPase homologue Ypt7, are also required for proper FSM extension (34, 53, 54). Consistent with this hypothesis, Psy1 disappears from the plasma membrane upon exit from meiosis I and reappears in the nascent FSM.Phosphoinositide-mediated membrane trafficking also contributes to the development of the FSM. Pik3/Vps34 is a phosphatidylinositol 3-kinase whose product is phosphatidylinositol 3-phosphate [PtdIns(3)P] (35, 72). S. pombe cells lacking this protein exhibit defects in various steps of FSM formation, such as aberrant starting positions for extension, disoriented extension and/or failure of closure, and the formation of spore-like bodies near, rather than surrounding, the nuclei, suggesting that Pik3 plays multiple roles during sporulation (61). The targets of PtdIns(3)P during sporulation appear to include two sorting nexins, Vps5 and Vps17, and the FYVE domain-containing protein Sst4/Vps27. vps5Δ and vps17Δ mutant cells share some of the phenotypes of pik3Δ cells (38). sst4Δ cells also share some of the phenotypes of pik3Δ cells but are distinct from vps5Δ and vps17Δ cells, consistent with the hypothesis that Pik3 has multiple roles during sporulation (62).Membrane trafficking processes alone do not seem sufficient to explain how the FSMs and PSMs extend around and engulf the nuclei, suggesting that some other mechanism(s) must regulate and orient FSM/PSM extension. The observation that the FSM is attached to the SPB until formation of the immature spore is complete (68) suggests that the SPB may regulate FSM extension. In addition, the leading edge of the S. cerevisiae PSM is coated with a complex of proteins (the LEPs) that appear to be involved in PSM extension (51, 59). S. pombe Meu14 also localizes to the leading edge of the FSM, and deletion of meu14 causes aberrant FSM formation in addition to a failure in SPB modification (60). However, it has remained unclear whether the SPB- and LEP-based mechanisms are sufficient to account for the formation of closed FSMs and PSMs of proper size and position (relative to the nuclear envelope), and evidence from S. cerevisiae has suggested that the septin proteins may also be involved.The septins are a conserved family of GTP-binding proteins that were first identified in S. cerevisiae by analysis of the cytokinesis-defective cdc3, cdc10, cdc11, and cdc12 mutants (41). Cdc3, Cdc10, Cdc11, and Cdc12 are related to each other in sequence and form an oligomeric complex that localizes to a ring in close apposition to the plasma membrane at the mother-bud neck in vegetative cells (12, 20, 25, 41, 47, 77). The septin ring appears to be filamentous in vivo (12), and indeed, the septins from both yeast (11, 20) and metazoans (31, 36, 69) can form filaments in vitro. The yeast septin ring appears to form a scaffold for the localization and organization of a wide variety of other proteins (8, 22), and it forms a diffusion barrier that constrains movement of membrane proteins through the neck region (7, 8, 73). In metazoan cells, the septins are involved in cytokinesis but are also implicated in a variety of other cellular processes, such as vesicular transport, organization of the actin and microtubule cytoskeletons, and oncogenesis (27, 70).In S. cerevisiae, a fifth septin (Shs1) is also expressed in vegetative cells, but the remaining two septin genes, SPR3 and SPR28, are expressed at detectable levels only during sporulation (15, 17). In addition, at least some of the vegetatively expressed septins are also present in sporulating cells (17, 48), and one of them (Cdc10) is expressed at much higher levels there than in vegetative cells (32). The septins present during sporulation are associated with the PSM (15, 17, 48, 51), and their normal organization there depends on the Gip1-Glc7 protein phosphatase complex (71). However, it has been difficult to gain insight into the precise roles of the septins during sporulation in S. cerevisiae (59), because some septins are essential for viability during vegetative growth, and the viable mutants have only mild phenotypes during sporulation (15, 17), possibly because of functional redundancy among the multiple septins.S. pombe seemed likely to provide a better opportunity for investigating the role of septins during spore formation. There are seven septin genes (spn1+ to spn7+) in this organism (23, 41, 63). Four of these genes (spn1+ to spn4+) are expressed in vegetative cells, and their products form a hetero-oligomeric complex that assembles during cytokinesis into a ring at the division site (2, 3, 10, 76, 79). The septin ring is important for proper targeting of endoglucanases to the division site (44), and septin mutants show a corresponding delay in cell separation (10, 41, 44, 76). However, even the spn1Δ spn2Δ spn3Δ spn4Δ quadruple mutant is viable and grows nearly as rapidly as the wild type (our unpublished results), a circumstance that greatly facilitates studies of the septins'' role during sporulation.spn5+, spn6+, and spn7+ are expressed at detectable levels only during sporulation (1, 45, 78; our unpublished results), and spn2+, like its orthologue CDC10 (see above), is strongly induced (45), but the roles of the S. pombe septins in sporulation have not previously been investigated. In this study, we show that the septins are important for the orientation of FSM extension, suggesting that the septins may have a more general role in dynamic membrane organization and shape determination.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号