首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The blood cancer T cell large granular lymphocyte (T-LGL) leukemia is a chronic disease characterized by a clonal proliferation of cytotoxic T cells. As no curative therapy is yet known for this disease, identification of potential therapeutic targets is of immense importance. In this paper, we perform a comprehensive dynamical and structural analysis of a network model of this disease. By employing a network reduction technique, we identify the stationary states (fixed points) of the system, representing normal and diseased (T-LGL) behavior, and analyze their precursor states (basins of attraction) using an asynchronous Boolean dynamic framework. This analysis identifies the T-LGL states of 54 components of the network, out of which 36 (67%) are corroborated by previous experimental evidence and the rest are novel predictions. We further test and validate one of these newly identified states experimentally. Specifically, we verify the prediction that the node SMAD is over-active in leukemic T-LGL by demonstrating the predominant phosphorylation of the SMAD family members Smad2 and Smad3. Our systematic perturbation analysis using dynamical and structural methods leads to the identification of 19 potential therapeutic targets, 68% of which are corroborated by experimental evidence. The novel therapeutic targets provide valuable guidance for wet-bench experiments. In addition, we successfully identify two new candidates for engineering long-lived T cells necessary for the delivery of virus and cancer vaccines. Overall, this study provides a bird's-eye-view of the avenues available for identification of therapeutic targets for similar diseases through perturbation of the underlying signal transduction network.  相似文献   

2.
3.
4.
5.
6.
7.
8.
9.
Till now, no appropriate biomarkers for high‐risk population screening and prognosis prediction have been identified for patients with oesophageal squamous cell carcinoma (ESCC). In this study, by the combined use of data from the Gene Expression Omnibus (GEO) datasets and The Cancer Genome Atlas (TCGA)‐oesophageal carcinoma (ESCA), we aimed to screen dysregulated genes with prognostic value in ESCC and the genetic and epigenetic alterations underlying the dysregulation. About 222 genes that had at least fourfold change in ESCC compared with adjacent normal tissues were identified using the microarray data in GDS3838. Among these genes, only PDLIM2 was associated with nodal invasion and overall survival (OS) at the same time. The high PDLIM2 expression group had significantly longer OS and its expression was independently associated with better OS (HR: 0.64, 95% CI: 0.43‐0.95, P = 0.03), after adjustment for gender and pathologic stages. The expression of its exon 7/8/9/10 had the highest AUC value (0.724) and better prognostic value (HR: 0.43, 95% CI: 0.22‐0.83, P = 0.01) than total PDLIM2 expression. PDLIM2 DNA copy deletion was common in ESCC and was associated with decreased gene expression. The methylation status of two CpG sites (cg23696886 and cg20449614) in the proximal promoter region of PDLIM2 showed a moderate negative correlation with the gene expression in PDLIM2 copy neutral/amplification group. In conclusion, we infer that PDLIM2 expression might be a novel prognostic indicator for ESCC patients. Its exon 7/8/9/10 expression had the best prognostic value. Its down‐regulation might be associated with gene‐level copy deletion and promoter hypermethylation.  相似文献   

10.
11.
12.
In an effort to explore the possible causes of human radiosensitivity and identify more rapid assays for cellular radiosensitivity, we interrogated a set of assays that evaluate cellular functions involved in recognition and repair of DNA double-strand breaks: (1) neutral comet assay, (2) radiation-induced γ-H2AX focus formation, (3) the temporal kinetics of structural maintenance of chromosomes 1 phosphorylation, (4) intra-S-phase checkpoint integrity, and (5) mitochondrial respiration. We characterized a unique panel of 19 "radiosensitive" human lymphoblastoid cell lines from individuals with undiagnosed diseases suggestive of a DNA repair disorder. Radiosensitivity was defined by reduced cellular survival using a clonogenic survival assay. Each assay identified cell lines with defects in DNA damage response functions. The highest concordance rate observed, 89% (17/19), was between an abnormal neutral comet assay and reduced survival by the colony survival assay. Our data also suggested that the neutral comet assay would be a more rapid surrogate for analyzing DNA repair/processing disorders.  相似文献   

13.
Shen C  Yu Y  Li H  Yan G  Liu M  Shen H  Yang P 《Proteomics》2012,12(12):1917-1927
Proteolysis affects every protein at some point in its life cycle. Many biomarkers of disease or cancer are stable proteolytic fragments in biological fluids. There is great interest and a challenge in proteolytically modified protein study to identify physiologic protease-substrate relationships and find potential biomarkers. In this study, two human hepatocellular carcinoma (HCC) cell lines with different metastasis potential, MHCC97L, and HCCLM6, were researched with a high-throughput and sensitive PROTOMAP platform. In total 391 proteins were found to be proteolytically processed and many of them were cleaved into persistent fragments instead of completely degraded. Fragments related to 161 proteins had different expressions in these two cell lines. Through analyzing these significantly changed fragments with bio-informatic tools, several bio-functions such as tumor cell migration and anti-apoptosis were enriched. A proteolysis network was also built up, of which the CAPN2 centered subnetwork, including SPTBN1, ATP5B, and VIM, was more active in highly metastatic HCC cell line. Interestingly, proteolytic modifications of CD44 and FN1 were found to affect their secretion. This work suggests that proteolysis plays an important role in human HCC metastasis.  相似文献   

14.
15.
16.
The allosteric mechanism plays a key role in cellular functions of several PDZ domain proteins (PDZs) and is directly linked to pharmaceutical applications; however, it is a challenge to elaborate the nature and extent of these allosteric interactions. One solution to this problem is to explore the dynamics of PDZs, which may provide insights about how intramolecular communication occurs within a single domain. Here, we develop an advancement of perturbation response scanning (PRS) that couples elastic network models with linear response theory (LRT) to predict key residues in allosteric transitions of the two most studied PDZs (PSD-95 PDZ3 domain and hPTP1E PDZ2 domain). With PRS, we first identify the residues that give the highest mean square fluctuation response upon perturbing the binding sites. Strikingly, we observe that the residues with the highest mean square fluctuation response agree with experimentally determined residues involved in allosteric transitions. Second, we construct the allosteric pathways by linking the residues giving the same directional response upon perturbation of the binding sites. The predicted intramolecular communication pathways reveal that PSD-95 and hPTP1E have different pathways through the dynamic coupling of different residue pairs. Moreover, our analysis provides a molecular understanding of experimentally observed hidden allostery of PSD-95. We show that removing the distal third alpha helix from the binding site alters the allosteric pathway and decreases the binding affinity. Overall, these results indicate that (i) dynamics plays a key role in allosteric regulations of PDZs, (ii) the local changes in the residue interactions can lead to significant changes in the dynamics of allosteric regulations, and (iii) this might be the mechanism that each PDZ uses to tailor their binding specificities regulation.  相似文献   

17.
18.
Bronchodilator response (BDR) is an important asthma phenotype that measures reversibility of airway obstruction by comparing lung function (i.e. FEV(1)) before and after the administration of a short-acting β(2)-agonist, the most common rescue medications used for the treatment of asthma. BDR also serves as a test of β(2)-agonist efficacy. BDR is a complex trait that is partly under genetic control. A genome-wide association study (GWAS) of BDR, quantified as percent change in baseline FEV(1) after administration of a β(2)-agonist, was performed with 1,644 non-Hispanic white asthmatic subjects from six drug clinical trials: CAMP, LOCCS, LODO, a medication trial conducted by Sepracor, CARE, and ACRN. Data for 469,884 single-nucleotide polymorphisms (SNPs) were used to measure the association of SNPs with BDR using a linear regression model, while adjusting for age, sex, and height. Replication of primary P-values was attempted in 501 white subjects from SARP and 550 white subjects from DAG. Experimental evidence supporting the top gene was obtained via siRNA knockdown and Western blotting analyses. The lowest overall combined P-value was 9.7E-07 for SNP rs295137, near the SPATS2L gene. Among subjects in the primary analysis, those with rs295137 TT genotype had a median BDR of 16.0 (IQR = [6.2, 32.4]), while those with CC or TC genotypes had a median BDR of 10.9 (IQR = [5.0, 22.2]). SPATS2L mRNA knockdown resulted in increased β(2)-adrenergic receptor levels. Our results suggest that SPATS2L may be an important regulator of β(2)-adrenergic receptor down-regulation and that there is promise in gaining a better understanding of the biological mechanisms of differential response to β(2)-agonists through GWAS.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号