首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Mean pore size is an essential aspect of scaffolds for tissue-engineering. If pores are too small cells cannot migrate in towards the center of the construct limiting the diffusion of nutrients and removal of waste products. Conversely, if pores are too large there is a decrease in specific surface area available limiting cell attachment. However the relationship between scaffold pore size and cell activity is poorly understood and as a result there are conflicting reports within the literature on the optimal pore size required for successful tissue-engineering. Previous studies in bone tissue-engineering have indicated a range of mean pore sizes (96–150 µm) to facilitate optimal attachment. Other studies have shown a need for large pores (300–800 µm) for successful bone growth in scaffolds. These conflicting results indicate that a balance must be established between obtaining optimal cell attachment and facilitating bone growth. In this commentary we discuss our recent investigations into the effect of mean pore size in collagen-glycosaminoglycan (CG) scaffolds with pore sizes ranging from 85–325 μm and how it has provided an insight into the divergence within the literature.  相似文献   

2.
3.
The development of blended collagen and glycosaminoglycan (GAG) scaffolds can potentially be used in many soft tissue engineering applications since the scaffolds mimic the structure and biological function of native extracellular matrix (ECM). In this study, we were able to obtain novel nanofibrous collagen-GAG scaffolds by electrospinning collagen blended with chondroitin sulfate (CS), a widely used GAG, in a mixed solvent of trifluoroethanol and water. The electrospun collagen-GAG scaffold with 4% CS (COLL-CS-04) exhibited a uniform fiber structure with nanoscale diameters. A second collagen-GAG scaffold with 10% CS consisted of smaller diameter fibers but exhibited a broader diameter distribution due to the different solution properties in comparison with COLL-CS-04. After cross-linking with glutaraldehyde vapor, the collagen-GAG scaffolds became more biostable and were resistant to collagenase degradation. This is evidently a more favorable environment allowing increased proliferation of rabbit conjunctiva fibroblast on the scaffolds. Incorporation of CS into collagen nanofibers without cross-linking did not increase the biostability but still promoted cell growth. The potential of applying the nanoscale collagen-GAG scaffold in tissue engineering is significant since the nanodimension fibers made of natural ECM mimic closely the native ECM found in the human body. The high surface area characteristic of this scaffold may maximize cell-ECM interaction and promote tissue regeneration faster than other conventional scaffolds.  相似文献   

4.

Background

The seeding of scaffolds with the stromal vascular fraction (SVF) of adipose tissue is a common prevascularization strategy in tissue engineering. Alternatively, adipose tissue-derived microvascular fragments (ad-MVF) may serve as vascularization units. In contrast to SVF single cells, they represent a mixture of intact arteriolar, capillary and venular vessel segments. Therefore, we herein hypothesized that the ad-MVF-based prevascularization of scaffolds is superior to the conventional SVF single cells-based approach.

Results

SVF single cells and ad-MVF were enzymatically isolated from epididymal fat pads of green fluorescent protein (GFP)+ donor mice to assess their viability and cellular composition using fluorescence microscopy and flow cytometry. Moreover, collagen-glycosaminoglycan matrices (Integra®) were seeded with identical amounts of the isolates and implanted into full-thickness skin defects within dorsal skinfold chambers of GFP? recipient mice for the intravital fluorescent microscopic, histological and immunohistochemical analysis of implant vascularization and incorporation throughout an observation period of 2 weeks. Non-seeded matrices served as controls. While both isolates contained a comparable fraction of endothelial cells, perivascular cells, adipocytes and stem cells, ad-MVF exhibited a significantly higher viability. After in vivo implantation, the vascularization of ad-MVF-seeded scaffolds was improved when compared to SVF-seeded ones, as indicated by a significantly higher functional microvessel density. This was associated with an enhanced cellular infiltration, collagen content and density of CD31+/GFP+ microvessels particularly in the center of the implants, demonstrating a better incorporation into the surrounding host tissue. In contrast, non-seeded matrices exhibited a poor vascularization, incorporation and epithelialization over time.

Conclusions

The present study demonstrates that ad-MVF are highly potent vascularization units that markedly accelerate and improve scaffold vascularization when compared to the SVF.
  相似文献   

5.
6.
7.
Sliding motion and shear are important mediators for the synthesis of cartilage matrix and surface molecules. This study investigated the effects of velocity magnitude and motion path on the response of bovine chondrocytes cultured in polyurethane scaffolds and subjected to oscillation against a ceramic ball. In order to vary velocity magnitude, the ball oscillated ±25° at 0.01, 0.1, and 1 Hz to generate 0.28, 2.8, and 28 mm/s, respectively. The median velocity of these ‘open’ motion trajectories was tested against ‘closed’ motion trajectories in that the scaffold oscillated ±20° against the ball at 1 Hz, reaching 2.8 mm/s. Constructs were loaded twice a day for 1 h over 5 days. Gene expression of cartilage oligomeric matrix protein (COMP), proteoglycan 4 (PRG4, lubricin), and hyaluronan synthase 1 (HAS1) and release of COMP, PRG4, and hyaluronan (HA) were analyzed.Velocity magnitude determined both gene expression and release of target molecules. Using regression analysis, there was a positive and significant relationship with all outcome variables. However, only COMP reacted significantly at 0.28 mm/s, while all other measured variables were considerably up-regulated at 28 mm/s. Motion path characteristics affected COMP, but not PRG4 and HAS1/HA.To conclude, velocity magnitude is a critical determinant for cellular responses in tissue engineered cartilage constructs. The motion type also plays a role. However, different molecules are affected in different ways. A molecule specific velocity threshold appears necessary to induce a significant response. This should be considered in further studies investigating the effects of continuous or intermittent motion.  相似文献   

8.
1.  By penetrating axons in the ventral nerve cord of the dragonfly, Aeshna umbrosa, we measured the intracellular responses of target-selective visual interneurons to movement of black square targets ranging from 1° to 32° visual angle at several levels of mean background luminance.
2.  Neuronal responses, measured both in number of spikes and in the magnitude of integrated postsynaptic potentials, showed a preference for larger target size at lower mean luminance (Table 1, Figs. 1–3). The latency of postsynaptic potential (psp) and spike responses from onset of target movement increased with a decrease in mean luminance (Fig. 1).
3.  A measure of mean target size preference (Eqn. 1) for one identified interneuron (MDT4) in both laboratory and outdoor lighting shows a continuous decrease of preferred size with increases of mean luminance over more than 4 orders of magnitude.
4.  The time to reach the new steady state of cell response after the decrease of mean luminance was ordinarily less than 30 s, but sometimes longer (Fig. 4).
  相似文献   

9.
The failure of hydrodynamic analysis to define pore size in cell membranes   总被引:2,自引:0,他引:2  
The equivalent pore theory predicts that the size of water transporting pores can be calculated from the ratio of osmotic (Pf, cm . s-1) to diffusive (Pd, cm . s-1) water permeability. Determinations of Pf and Pd in human red cells within the last thirty years have increased the ratio of Pf to Pd. According to the equivalent pore theory the pore diameter has increased from 9 A to 25 A. A pore diameter of 25 A is not compatible with the permeability characteristics of the red cell membrane. We conclude that the equivalent pore theory fails to determine pore size in red blood cells. We suggest that water transporting pores in human red cells transport water molecules in a single file fashion.  相似文献   

10.
Trevithick, John R. (University of Wisconsin Medical School, Madison), Robert L. Metzenberg and Donald F. Costello. Genetic alteration of pore size and other properties of the Neurospora cell wall. J. Bacteriol. 92:1016-1020. 1966.-Several properties of the cell walls of wild type and the osmotic mutant of Neurospora crassa have been examined. The peameability of the isolated cell walls to polyethylene glycol and dextran polymers of different molecular weights was investigated by the volume of distribution technique. The exclusion thresholds were evaluated by a statistical treatment. The molecular weights corresponding to these thresholds for wild type and osmotic were approximately 4,750 and 18,500, respectively; these values are significantly different. The cell walls of osmotic appeared to be thinner, more easily broken, and more easily compressed to ribbonlike shapes, whereas those of wild type were tubular and strong. Chemical analysis showed that osmotic walls had roughly a 30-fold higher galactosamine-glucosamine ratio than did wild type. It is proposed that the osmotic mutant has a cell wall with abnormally large pores, and that this may account for the increased rate of egress of invertase and the decreased fractionation of light from heavy invertase in this strain.  相似文献   

11.
12.
A significant number of exocytosis events recorded with amperometry demonstrate a prespike feature termed a "foot" and this foot has been correlated with messengers released via a transitory fusion pore before full exocytosis. We have compared amperometric spikes with a foot with spikes without a foot at chromaffin cells and found that the probability of detecting a distinct foot event is correlated to the amount of catecholamine released. The mean charge of the spikes with a foot was found to be twice that of the spikes without a foot, and the frequency of spikes displaying a foot was zero for small spikes increasing to approximately 50% for large spikes. It is hypothesized that in chromaffin cells, where the dense core is believed to nearly fill the vesicle, the expanding core is a controlling factor in opening the fusion pore, that prefusion of two smaller vesicles leads to excess membrane, and that this slows pore expansion leading to an increased observation of events with a foot. Clearly, the physicochemical properties of vesicles are key factors in the control of the dynamics of release through the fusion pore and the high and variable frequency of this release makes it highly significant.  相似文献   

13.
The aim of this study was to maximize oxygen diffusion within a three-dimensional scaffold in order to improve cell viability and proliferation. To evaluate the effect of pore architecture on oxygen diffusion, we designed a regular channel shape with uniform diameter, referred to as cylinder shaped, and a new channel shape with a channel diameter gradient, referred to as cone shaped. A numerical analysis predicted higher oxygen concentration in the cone-shaped channels than in the cylinder-shaped channels, throughout the scaffold. To confirm these numerical results, we examined cell proliferation and viability in 2D constructs and 3D scaffolds. Cell culture experiments revealed that cell proliferation and viability were superior in the constructs and scaffolds with cone-shaped channels.  相似文献   

14.
15.
16.
Summary Deterioration in foraging conditions discourages foraging relatively more from large than from small colonies.
Résumé Une détérioration des conditions de butinage décourage relativement plus le butinage chez les fortes colonies que chez les petites.
  相似文献   

17.
Surface area has been proposed as a major factor determining the extent of enzymatic hydrolysis of cellulose. We used cornstalk residue (CR) and Solka Floc BW-300 (SF) as substrates and NaOH (a cellulose swelling agent) and iron sodium tartrate (FeTNa, intercolates between cellulose microfibrils) as pretreatments to study the effect of surface area on extent of fermentation. Micropore sizes (8-130 A) were determined by a solute exclusion technique using glucose, cellobiose, and polyethylene glycols as molecular probes. The pore size distributions follow the logistic model function: I = a/[1+exp(b - cX)] where I is pore volume; X = log D; D is the molecular probe diameter; and a, b, and c are constants. The pore volumes of CR (1.9 mL/g) and SF (1.6 mL/g) are increased to 2.1 mL/g by pretreatment with NaOH. Pretreatment of SF with NaOH and cornstalk residue with FeTNa caused an upward shift in the pore size distribution. Fermentation of untreated CR by rumen microbes resulted in a 46% loss of dry matter while increasing the internal pore size and decreasing the pore volume to 0.9 mL/g. Fermentation of NaOH pretreated CR resulted in a 73% loss of dry matter with little change in pore size, total pore volume, or fiber composition. Fiber analysis indicated that selective utilization of hemicellulose over cellulose in both fermentations was small. The data show that: (1) removal of hemicellulose and lignin increases dry matter disappearance upon fermentation of the remaining material; (2) relative to the size of bacterial cellulases (40-160 A), the pretreatments have little effect on increasing accessibility of surface internal to the cellulose particles; and (3) the micropore changes caused by NaOH or FeTNa treatment do not explain the enchanced fermentation obtained for treated cornstalk residue. These observations infer that external or macropore surface properties may be a significant factor in determining the extent of utilization of the solid substrates by cellulolytic microorganisms.  相似文献   

18.
19.
Mechanically stimulating cell-seeded scaffolds by flow-perfusion is one approach utilized for developing clinically applicable bone graft substitutes. A key challenge is determining the magnitude of stimuli to apply that enhances cell differentiation but minimizes cell detachment from the scaffold. In this study, we employed a combined computational modeling and experimental approach to examine how the scaffold mean pore size influences cell attachment morphology and subsequently impacts upon cell deformation and detachment when subjected to fluid-flow. Cell detachment from osteoblast-seeded collagen-GAG scaffolds was evaluated experimentally across a range of scaffold pore sizes subjected to different flow rates and exposure times in a perfusion bioreactor. Cell detachment was found to be proportional to flow rate and inversely proportional to pore size. Using this data, a theoretical model was derived that accurately predicted cell detachment as a function of mean shear stress, mean pore size, and time. Computational modeling of cell deformation in response to fluid flow showed the percentage of cells exceeding a critical threshold of deformation correlated with cell detachment experimentally and the majority of these cells were of a bridging morphology (cells stretched across pores). These findings will help researchers optimize the mean pore size of scaffolds and perfusion bioreactor operating conditions to manage cell detachment when mechanically simulating cells via flow perfusion.  相似文献   

20.
The goal of this project was to develop 3-D biomaterial scaffolds that present cues to direct the differentiation of embryonic stem (ES) cell-derived neural progenitor cells, seeded inside the scaffolds, into mature neural phenotypes, specifically neurons and oligodendrocytes. Release studies were performed to determine the appropriate conditions for retention of neurotrophin-3 (NT-3), sonic hedgehog, and platelet-derived growth factor (PDGF) by an affinity-based delivery system incorporated into fibrin scaffolds. Embryoid bodies containing neural progenitors were formed from mouse ES cells, using a 4−/4+ retinoic acid treatment protocol, and then seeded inside fibrin scaffolds containing the drug delivery system. This delivery system was used to deliver various growth factor doses and combinations to the cells seeded inside the scaffolds. Controlled delivery of NT-3 and PDGF simultaneously increased the fraction of neural progenitors, neurons, and oligodendrocytes while decreasing the fraction of astrocytes obtained compared to control cultures seeded inside unmodified fibrin scaffolds with no growth factors present in the medium. These results demonstrate that such a strategy can be used to generate an engineered tissue for the potential treatment of spinal cord injury and could be extended to the study of differentiation in other tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号