首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Temperatures below the freezing point of water and the ensuing ice crystal formation pose serious challenges to cell structure and function. Consequently, species living in seasonally cold environments have evolved a multitude of strategies to reorganize their cellular architecture and metabolism, and the underlying mechanisms are crucial to our understanding of life. In multicellular organisms, and poikilotherm animals in particular, our knowledge about these processes is almost exclusively due to invasive studies, thereby limiting the range of conclusions that can be drawn about intact living systems.

Methodology

Given that non-destructive techniques like 1H Magnetic Resonance (MR) imaging and spectroscopy have proven useful for in vivo investigations of a wide range of biological systems, we aimed at evaluating their potential to observe cold adaptations in living insect larvae. Specifically, we chose two cold-hardy insect species that frequently serve as cryobiological model systems–the freeze-avoiding gall moth Epiblema scudderiana and the freeze-tolerant gall fly Eurosta solidaginis.

Results

In vivo MR images were acquired from autumn-collected larvae at temperatures between 0°C and about −70°C and at spatial resolutions down to 27 µm. These images revealed three-dimensional (3D) larval anatomy at a level of detail currently not in reach of other in vivo techniques. Furthermore, they allowed visualization of the 3D distribution of the remaining liquid water and of the endogenous cryoprotectants at subzero temperatures, and temperature-weighted images of these distributions could be derived. Finally, individual fat body cells and their nuclei could be identified in intact frozen Eurosta larvae.

Conclusions

These findings suggest that high resolution MR techniques provide for interesting methodological options in comparative cryobiological investigations, especially in vivo.  相似文献   

2.
3.
Progress in identifying new therapies for multiple sclerosis (MS) can be accelerated by using imaging biomarkers of disease progression or abatement in model systems. In this study, we evaluate the ability to noninvasively image and quantitate disease pathology using emerging “hot-spot” 19F MRI methods in an experimental autoimmune encephalomyelitis (EAE) rat, a model of MS. Rats with clinical symptoms of EAE were compared to control rats without EAE, as well as to EAE rats that received daily prophylactic treatments with cyclophosphamide. Perfluorocarbon (PFC) nanoemulsion was injected intravenously, which labels predominately monocytes and macrophages in situ. Analysis of the spin-density weighted 19F MRI data enabled quantification of the apparent macrophage burden in the central nervous system and other tissues. The in vivo MRI results were confirmed by extremely high-resolution 19F/1H magnetic resonance microscopy in excised tissue samples and histopathologic analyses. Additionally, 19F nuclear magnetic resonance spectroscopy of intact tissue samples was used to assay the PFC biodistribution in EAE and control rats. In vivo hot-spot 19F signals were detected predominantly in the EAE spinal cord, consistent with the presence of inflammatory infiltrates. Surprising, prominent 19F hot-spots were observed in bone-marrow cavities adjacent to spinal cord lesions; these were not observed in control animals. Quantitative evaluation of cohorts receiving cyclophosphamide treatment displayed significant reduction in 19F signal within the spinal cord and bone marrow of EAE rats. Overall, 19F MRI can be used to quantitatively monitored EAE disease burden, discover unexpected sites of inflammatory activity, and may serve as a sensitive biomarker for the discovery and preclinical assessment of novel MS therapeutic interventions.  相似文献   

4.
Carbonic anhydrase IX (CA IX) is a transmembrane protein that has been shown to be greatly upregulated under conditions of hypoxia in many tumor cell lines. Tumor hypoxia is associated with impaired efficacy of cancer therapies making CA IX a valuable target for preclinical and diagnostic imaging. We have developed a quantitative in vivo optical imaging method for detection of CA IX as a marker of tumor hypoxia based on a near-infrared (NIR) fluorescent derivative of the CA IX inhibitor acetazolamide (AZ). The agent (HS680) showed single digit nanomolar inhibition of CA IX as well as selectivity over other CA isoforms and demonstrated up to 25-fold upregulation of fluorescent CA IX signal in hypoxic versus normoxic cells, which could be blocked by 60%–70% with unlabeled AZ. CA IX negative cell lines (HCT-116 and MDA-MB-231), as well as a non-binding control agent on CA IX positive cells, showed low fluorescent signal under both conditions. In vivo FMT imaging showed tumor accumulation and excellent tumor definition from 6–24 hours. In vivo selectivity was confirmed by pretreatment of the mice with unlabeled AZ resulting in >65% signal inhibition. HS680 tumor signal was further upregulated >2X in tumors by maintaining tumor-bearing mice in a low oxygen (8%) atmosphere. Importantly, intravenously injected HS680 signal was co-localized specifically with both CA IX antibody and pimonidazole (Pimo), and was located away from non-hypoxic regions indicated by a Hoechst stain. Thus, we have established a spatial correlation of fluorescence signal obtained by non-invasive, tomographic imaging of HS680 with regions of hypoxia and CA IX expression. These results illustrate the potential of HS680 and combined with FMT imaging to non-invasively quantify CA IX expression as a hypoxia biomarker, crucial to the study of the underlying biology of hypoxic tumors and the development and monitoring of novel anti-cancer therapies.  相似文献   

5.
Macrophages are an essential component of the immune system and have protective and pathogenic functions in various diseases. Imaging of macrophages in vivo could furnish new tools to advance evaluation of disease and therapies. Critical limb ischemia is a disease in which macrophages have considerable pathogenic roles, and are potential targets for cell-based immunotherapy. We sought to develop a new near-infrared fluorescence (NIRF) imaging probe to target macrophages specifically in vivo in various pathological states, including hind-limb ischemia. We rapidly screened the photostable cyanine-based NIRF library against different blood cell lines. The identified monocyte/macrophage-selective hit was tested in vitro in live-cell labeling assay. Non-invasive NIRF imaging was performed with murine models of paw inflammation by lipopolysaccharide challenge and hind-limb ischemia with femoral artery ligation. in vivo macrophage targeting was further evaluated using intravital microscopy with Csf1r-EGFP transgenic mice and immunofluorescent staining with macrophage-specific markers. We discovered MF800, a Macrophage-specific near-infrared Fluorophore, which showed selective live-cell imaging performance in a panel of cell lines and primary human blood samples. MF800 outperforms the clinically-available NIRF contrast agent ICG for in vivo specificity in paw inflammation and hind-limb ischemia models. We observed a marked overlap of MF800-labeled cells and EGFP-expressing macrophages in intravital imaging of Csf1r-EGFP transgenic mice. In the histologic analysis, MF800-positive cells also expressed the macrophage markers CD68 and CD169. NIRF imaging showcased the potential of using MF800 to understand macrophage behavior in vivo, characterize macrophage-associated diseases, and may help in assessing therapeutic responses in the clinic.  相似文献   

6.
Actin microridges form labyrinth like patterns on superficial epithelial cells across animal species. This highly organized assembly has been implicated in mucus retention and in the mechanical structure of mucosal surfaces, however the mechanisms that regulate actin microridges remain largely unknown. Here we characterize the composition and dynamics of actin microridges on the surface of zebrafish larvae using live imaging. Microridges contain phospho-tyrosine, cortactin and VASP, but not focal adhesion kinase. Time-lapse imaging reveals dynamic changes in the length and branching of microridges in intact animals. Transient perturbation of the microridge pattern occurs before cell division with rapid re-assembly during and after cytokinesis. Microridge assembly is maintained with constitutive activation of Rho or inhibition of myosin II activity. However, expression of dominant negative RhoA or Rac alters microridge organization, with an increase in distance between microridges. Latrunculin A treatment and photoconversion experiments suggest that the F-actin filaments are actively treadmilling in microridges. Accordingly, inhibition of Arp2/3 or PI3K signaling impairs microridge structure and length. Taken together, actin microridges in zebrafish represent a tractable in vivo model to probe pattern formation and dissect Arp2/3-mediated actin dynamics in vivo.  相似文献   

7.

Background

Extrapancreatic tissues such as liver may serve as potential sources of tissue for generating insulin-producing cells. The dynamics of insulin gene promoter activity in extrapancreatic tissues may be monitored in vivo by bioluminescence-imaging (BLI) of transgenic mice Tg(RIP-luc) expressing the firefly luciferase (luc) under a rat-insulin gene promoter (RIP).

Methods

The Tg(RIP-luc) mice were made diabetic by a single injection of the pancreatic β-cell toxin streptozotocin. Control mice were treated with saline. Mice were subject to serum glucose measurement and bioluminescence imaging daily. On day eight of the treatment, mice were sacrificed and tissues harvested for quantitative luciferase activity measurement, luciferase protein cellular localization, and insulin gene expression analysis.

Results

Streptozotocin-induced diabetic Tg(RIP-luc) mice demonstrated a dramatic decline in the BLI signal intensity in the pancreas and a concomitant progressive increase in the signal intensity in the liver. An average of 5.7 fold increase in the liver signal intensity was detected in the mice that were exposed to hyperglycemia for 8 days. Ex vivo quantitative assays demonstrated a 34-fold induction of the enzyme activity in the liver of streptozotocin-treated mice compared to that of the buffer-treated controls. Luciferase-positive cells with oval-cell-like morphology were detected by immunohistochemistry in the liver samples of diabetic mice, but not in that of non-treated control transgenic mice. Gene expression analyses of liver RNA confirmed an elevated expression of insulin genes in the liver tissue exposed to hyperglycemia.

Conclusions

BLI is a sensitive method for monitoring insulin gene expression in extrapancreatic tissues in vivo. The BLI system may be used for in vivo screening of biological events or pharmacologic activators that have the potential of stimulating the generation of extrapancreatic insulin-producing cells.  相似文献   

8.
With antibody-mediated magnetic nanoparticles (MNPs) applied in cancer examinations, patients must pay at least twice for MNP reagents in immunomagnetic reduction (IMR) of in vitro screening and magnetic resonance imaging (MRI) of in vivo tests. This is because the high maintenance costs and complex analysis of MRI have limited the possibility of in vivo screening. Therefore, this study proposes novel methods for in vivo screening of tumors by examining the AC susceptibility of bound MNPs using scanning superconducting-quantum-interference-device (SQUID) biosusceptometry (SSB), thereby demonstrating high portability and improved economy. The favorable agreement between in vivo tests using SSB and MRI demonstrated the feasibility of in vivo screening using SSB for hepatocellular carcinoma (HCC) targeted by anti-alpha fetoprotein (AFP)-mediated MNPs. The magnetic labeling was also proved by in vitro tests using SSB and biopsy assays. Therefore, patients receiving bioprobe-mediated MNPs only once can undergo in vivo screening using SSB in the future.  相似文献   

9.

Background and Aim

High tidal volume (VT) ventilation during resuscitation of preterm lambs results in brain injury evident histologically within hours after birth. We aimed to investigate whether magnetic resonance spectroscopy (MRS) and/or diffusion tensor imaging (DTI) can be used for early in vivo detection of ventilation-induced brain injury in preterm lambs.

Methods

Newborn lambs (0.85 gestation) were stabilized with a “protective ventilation” strategy (PROT, n = 7: prophylactic Curosurf, sustained inflation, VT 7 mL/kg, positive end expiratory pressure (PEEP) 5 cmH2O) or an initial 15 minutes of “injurious ventilation” (INJ, n = 10: VT 12 mL/kg, no PEEP, late Curosurf) followed by PROT ventilation for the remainder of the experiment. At 1 hour, lambs underwent structural magnetic resonance imaging (Siemens, 3 Tesla). For measures of mean/axial/radial diffusivity (MD, AD, RD) and fractional anisotropy (FA), 30 direction DTI was performed. Regions of interests encompassed the thalamus, internal capsule, periventricular white matter and the cerebellar vermis. MRS was performed using a localized single-voxel (15×15×20 mm3, echo time 270 ms) encompassing suptratentorial deep nuclear grey matter and central white matter. Peak-area ratios for lactate (Lac) relative to N-acetylaspartate (NAA), choline (Cho) and creatine (Cr) were calculated. Groups were compared using 2-way RM-ANOVA, Mann-Whitney U-test and Spearman''s correlations.

Results

No cerebral injury was seen on structural MR images. Lambs in the INJ group had higher mean FA and lower mean RD in the thalamus compared to PROT lambs, but not in the other regions of interest. Peak-area lactate ratios >1.0 was only seen in INJ lambs. A trend of higher mean peak-area ratios for Lac/Cr and Lac/Cho was seen, which correlated with lower pH in both groups.

Conclusion

Acute changes in brain diffusion measures and metabolite peak-area ratios were observed after injurious ventilation. Early MRS/DTI is able to detect the initiation of ventilation-induced brain injury.  相似文献   

10.

Background

Non-invasive monitoring of disease progression in kidney disease is still a major challenge in clinical practice. In vivo near-infrared (NIR) imaging provides a new tool for studying disease mechanisms and non-invasive monitoring of disease development, even in deep organs. The LI-COR IRDye® 800CW RGD optical probe (RGD probe) is a NIR fluorophore, that can target integrin alpha v beta 3 (αvβ3) in tissues.

Objective

This study aims to monitor renal disease progression in an anti-glomerular basement membrane (GBM) nephritis mouse model.

Methods

Anti-GBM nephritis was induced in 129x1/svJ mice by anti-GBM serum challenge. The expression of integrin αvβ3 in the diseased kidney was examined by immunohistochemistry and quantitative polymerase chain reaction. The RGD probe and control fluorophores, the 800CW dye, and the BSA-conjugated 800CW dye, were administered into anti-GBM nephritic mice. LI-COR Pearl® Impulse imaging system was used for in vivo imaging; while ex vivo organ imaging was acquired using the MaestroTM imaging system.

Results

Kidney tissue from anti-GBM nephritic mice showed higher levels of integrin αvβ3 expression at both the protein and the mRNA level compared to normal mice. The RGD probe allowed in vivo renal imaging and the fluorescent signal could be specifically captured in the diseased kidneys up to 14 days, reflecting longitudinal changes in renal function.

Conclusion

The infrared RGD molecular probe that tracks integrin expression can be successfully used to monitor renal disease progression following immune-mediated nephritis.  相似文献   

11.
Modern anti-retroviral therapy is highly effective at suppressing viral replication and restoring immune function in HIV-infected persons. However, such individuals show reduced physiological performance and increased frailty compared with age-matched uninfected persons. Contemporary anti-retroviral therapy is thought to be largely free from neuromuscular complications, whereas several anti-retroviral drugs previously in common usage have been associated with mitochondrial toxicity. It has recently been established that patients with prior exposure to such drugs exhibit irreversible cellular and molecular mitochondrial defects. However the functional significance of such damage remains unknown. Here we use phosphorus magnetic resonance spectroscopy (31P-MRS) to measure in vivo muscle mitochondrial oxidative function, in patients treated with contemporary anti-retroviral therapy, and compare with biopsy findings (cytochrome c oxidase (COX) histochemistry). We show that dynamic oxidative function (post-exertional ATP (adenosine triphosphate) resynthesis) was largely maintained in the face of mild to moderate COX defects (affecting up to ∼10% of fibers): τ½ ADP (half-life of adenosine diphosphate clearance), HIV-infected 22.1±9.9 s, HIV-uninfected 18.8±4.4 s, p = 0.09. In contrast, HIV-infected patients had a significant derangement of resting state ATP metabolism compared with controls: ADP/ATP ratio, HIV-infected 1.24±0.08×10−3, HIV-uninfected 1.16±0.05×10−3, p = 0.001. These observations are broadly reassuring in that they suggest that in vivo mitochondrial function in patients on contemporary anti-retroviral therapy is largely maintained at the whole organ level, despite histochemical (COX) defects within individual cells. Basal energy requirements may nevertheless be increased.  相似文献   

12.
Oxidative stress is a major contributor to kidney injury following ischemia reperfusion. Ferritin, a highly conserved iron-binding protein, is a key protein in the maintenance of cellular iron homeostasis and protection from oxidative stress. Ferritin mitigates oxidant stress by sequestering iron and preventing its participation in reactions that generate reactive oxygen species. Ferritin is composed of two subunit types, ferritin H and ferritin L. Using an in vivo model that enables conditional tissue-specific doxycycline-inducible expression of ferritin H in the mouse kidney, we tested the hypothesis that an increased level of H-rich ferritin is renoprotective in ischemic acute renal failure. Prior to induction of ischemia, doxycycline increased ferritin H in the kidneys of the transgenic mice nearly 6.5-fold. Following reperfusion for 24 hours, induction of neutrophil gelatinous-associated lipocalin (NGAL, a urine marker of renal dysfunction) was reduced in the ferritin H overexpressers compared to controls. Histopathologic examination following ischemia reperfusion revealed that ferritin H overexpression increased intact nuclei in renal tubules, reduced the frequency of tubular profiles with luminal cast materials, and reduced activated caspase-3 in the kidney. In addition, generation of 4-hydroxy 2-nonenal protein adducts, a measurement of oxidant stress, was decreased in ischemia-reperfused kidneys of ferritin H overexpressers. These studies demonstrate that ferritin H can inhibit apoptotic cell death, enhance tubular epithelial viability, and preserve renal function by limiting oxidative stress following ischemia reperfusion injury.  相似文献   

13.
We generated transgenic human neural stem cells (hNSCs) stably expressing the reporter genes Luciferase for bioluminescence imaging (BLI) and GFP for fluorescence imaging, for multimodal imaging investigations. These transgenic hNSCs were further labeled with a clinically approved perfluoropolyether to perform parallel 19F MRI studies. In vitro validation demonstrated normal cell proliferation and differentiation of the transgenic and additionally labeled hNSCs, closely the same as the wild type cell line, making them suitable for in vivo application. Labeled and unlabeled transgenic hNSCs were implanted into the striatum of mouse brain. The time profile of their cell fate after intracerebral grafting was monitored during nine days following implantation with our multimodal imaging approach, assessing both functional and anatomical condition. The 19F MRI demarcated the graft location and permitted to estimate the cell number in the graft. BLI showed a pronounce cell loss during this monitoring period, indicated by the decrease of the viability signal. The in vivo obtained cell fate results were further validated and confirmed by immunohistochemistry. We could show that the surviving cells of the graft continued to differentiate into early neurons, while the severe cell loss could be explained by an inflammatory reaction to the graft, showing the graft being surrounded by activated microglia and macrophages. These results are different from earlier cell survival studies of our group where we had implanted the identical cells into the same mouse strain but in the cortex and not in the striatum. The cortical transplanted cells did not show any loss in viability but only pronounced and continuous neuronal differentiation.  相似文献   

14.

Background

Schistosomes are chronic intravascular helminth parasites of humans causing a heavy burden of disease worldwide. Diagnosis of schistosomiasis currently requires the detection of schistosome eggs in the feces and urine of infected individuals. This method unreliably measures disease burden due to poor sensitivity and wide variances in egg shedding. In vivo imaging of schistosome parasites could potentially better assess disease burden, improve management of schistosomiasis, facilitate vaccine development, and enhance study of the parasite''s biology. Schistosoma mansoni (S. mansoni) have a high metabolic demand for glucose. In this work we investigated whether the parasite burden in mice could be assessed by positron emission tomography (PET) imaging with 2-deoxy-2[18F]fluoro-D-glucose (FDG).

Methodology/Principal Findings

Live adult S. mansoni worms FDG uptake in vitro increased with the number of worms. Athymic nude mice infected with S. mansoni 5–6 weeks earlier were used in the imaging studies. Fluorescence molecular tomography (FMT) imaging with Prosense 680 was first performed. Accumulation of the imaging probe in the lower abdomen correlated with the number of worms in mice with low infection burden. The total FDG uptake in the common portal vein and/or regions of elevated FDG uptake in the liver linearly correlated to the number of worms recovered from infected animals (R2 = 0.58, P<0.001, n = 40). FDG uptake showed a stronger correlation with the worm burden in mice with more than 50 worms (R2 = 0.85, P<0.001, n = 17). Cryomicrotome imaging confirmed that most of the worms in a mouse with a high infection burden were in the portal vein, but not in a mouse with a low infection burden. FDG uptake in recovered worms measured by well counting closely correlated with worm number (R2 = 0.85, P<0.001, n = 21). Infected mice showed a 32% average decrease in total FDG uptake after three days of praziquantel treatment (P = 0.12). The total FDG uptake in untreated mice increased on average by 36% over the same period (P = 0.052).

Conclusion

FDG PET may be useful to non-invasively quantify the worm burden in schistosomiasis-infected animals. Future investigations aiming at minimizing non-specific FDG uptake and to improve the recovery of signal from worms located in the lower abdomen will include the development of more specific radiotracers.  相似文献   

15.
8-oxoG is one of the most common and mutagenic DNA base lesions caused by oxidative damage. However, it has not been possible to study the replication of a known 8-oxoG base in vivo in order to determine the accuracy of its replication, the influence of various components on that accuracy, and the extent to which an 8-oxoG might present a barrier to replication. We have been able to place a single 8-oxoG into the Saccharomyces cerevisiae chromosome in a defined location using single-strand oligonucleotide transformation and to study its replication in a fully normal chromosome context. During replication, 8-oxoG is recognized as a lesion and triggers a switch to translesion synthesis by Pol η, which replicates 8-oxoG with an accuracy (insertion of a C opposite the 8-oxoG) of approximately 94%. In the absence of Pol η, template switching to the newly synthesized sister chromatid is observed at least one third of the time; replication of the 8-oxoG in the absence of Pol η is less than 40% accurate. The mismatch repair (MMR) system plays an important role in 8-oxoG replication. Template switching is blocked by MMR and replication accuracy even in the absence of Pol η is approximately 95% when MMR is active. These findings indicate that in light of the overlapping mechanisms by which errors in 8-oxoG replication can be avoided in the cell, the mutagenic threat of 8-oxoG is due more to its abundance than the effect of a single lesion. In addition, the methods used here should be applicable to the study of any lesion that can be stably incorporated into synthetic oligonucleotides.  相似文献   

16.

Background

Early and non-invasive detection of platelets on micro atherothrombosis provides a means to identify unstable plaque and thereby allowing prophylactic treatment towards prevention of stroke or myocardial infarction. Molecular magnetic resonance imaging (mMRI) of activated platelets as early markers of plaque rupture using targeted contrast agents is a promising strategy. In this study, we aim to specifically image activated platelets in murine atherothrombosis by in vivo mMRI, using a dedicated animal model of plaque rupture.

Methods

An antibody targeting ligand-induced binding sites (LIBS) on the glycoprotein IIb/IIIa-receptor of activated platelets was conjugated to microparticles of iron oxide (MPIO) to form the LIBS-MPIO contrast agent causing a signal-extinction in T2*-weighted MRI. ApoE−/− mice (60 weeks-old) were fed a high fat diet for 5 weeks. Using a small needle, the surface of their carotid plaques was scratched under blood flow to induce atherothrombosis. In vivo 9.4 Tesla MRI was performed before and repetitively after intravenous injection of either LIBS-MPIO versus non-targeted-MPIO.

Results

LIBS-MPIO injected animals showed a significant signal extinction (p<0.05) in MRI, corresponding to the site of plaque rupture and atherothrombosis in histology. The signal attenuation was effective for atherothrombosis occupying ≥2% of the vascular lumen. Histology further confirmed significant binding of LIBS-MPIO compared to control-MPIO on the thrombus developing on the surface of ruptured plaques (p<0.01).

Conclusion

in vivo mMRI detected activated platelets on mechanically ruptured atherosclerotic plaques in ApoE−/− mice with a high sensititvity. This imaging technology represents a unique opportunity for noninvasive detection of atherothrombosis and the identification of unstable atherosclerotic plaques with the ultimate promise to prevent strokes and myocardial infarctions.  相似文献   

17.
18.
The focus of this study was to test the resolution limits of structural MRI of a postmortem brain compared to living human brains. The resolution of structural MRI in vivo is ultimately limited by physiological noise, including pulsation, respiration and head movement. Although imaging hardware continues to improve, it is still difficult to resolve structures on the millimeter scale. For example, the primary visual sensory pathways synapse at the lateral geniculate nucleus (LGN), a visual relay and control nucleus in the thalamus that normally is organized into six interleaved monocular layers. Neuroimaging studies have not been able to reliably distinguish these layers due their small size that are less than 1 mm thick.The resolving limit of structural MRI, in a postmortem brain was tested using multiple images averaged over a long duration (~24 h). The purpose was to test whether it was possible to resolve the individual layers of the LGN in the absence of physiological noise. A proton density (PD)1 weighted pulse sequence was used with varying resolution and other parameters to determine the minimum number of images necessary to be registered and averaged to reliably distinguish the LGN and other subcortical regions. The results were also compared to images acquired in living human brains. In vivo subjects were scanned in order to determine the additional effects of physiological noise on the minimum number of PD scans needed to differentiate subcortical structures, useful in clinical applications.  相似文献   

19.
20.
Bacterial infections are a primary cause of morbidity and mortality worldwide. Bacteremia is a particular concern owing to the possibility of septic shock and the development of metastatic infections. Treatment of bacteremia is increasingly compromised by the emergence of antibiotic resistant strains, creating an urgent need for alternative therapy. Here, we introduce a method for in vivo photoacoustic (PA) detection and photothermal (PT) eradication of Staphylococcus aureus in tissue and blood. We show that this method could be applicable for label-free diagnosis and treatment of in the bloodstream using intrinsic near-infrared absorption of endogenous carotenoids with nonlinear PA and PT contrast enhancement. To improve sensitivity and specificity for detection of circulating bacteria cells (CBCs), two-color gold and multilayer magnetic nanoparticles with giant amplifications of PA and PT contrasts were functionalized with an antibody cocktail for molecular targeting of S. aureus surface-associated markers such as protein A and lipoprotein. With a murine model, the utility of this approach was demonstrated for ultrasensitive detection of CBCs with threshold sensitivity as low as 0.5 CBCs/mL, in vivo magnetic enrichment of CBCs, PT eradication of CBCs, and real-time monitoring of therapeutic efficacy by CBC counting. Our PA-PT nano-theranostic platform, which integrates in vivo multiplex targeting, magnetic enrichment, signal amplification, multicolor recognition, and feedback control, could be used as a biological tool to gain insights on dissemination pathways of CBCs, infection progression by bacteria re-seeding, and sepsis development and treatment, and could potentially be feasible in humans, especially using bypass schematic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号